
Implementing relationships among
classes of analysis

pattern languages using aspects

Rosana T. V. Braga
Rodrigo H. R. Marchesini

University of São Paulo

Institute of Mathematics and Computer Science

São Carlos – SP – Brazil

22

Summary

Introduction
Context
Motivation
Objectives

Proposed approach for implementing
associations using aspects
Case study
Concluding remarks

Artigo publicado no workshop do ECOOP 2009: RAOOL: Workshop on
Relations and Associations in Object-Oriented Languages

3

Introduction

Software Patterns:
Describe solutions to common problems found during
software development
Patterns: reuse in higher abstraction levels:

architectural patterns
analysis patterns
design patterns
organizational patterns
coding patterns, etc.

Analysis Patterns:
Propose analysis models that solve problems found
during analysis phase (UML)

4

Introduction

Pattern Language:
Set of inter-related patterns that lead to the
complete model of a particular application

A structured collection of patterns that support
each other to transform requirements into an
architecture [Coplien 98].

The application of one pattern sets the
context for the next pattern to be applied
It can be thought of as a way of dividing a
general problem and its solution into a
number of related problems and the
corresponding solutions

Pattern Language
P1

P2

P8

P3 P4
P5 P6

P7

Framework

*

Resource
idCode
description
!*list by idCode
!*list by description

has

0..1

Resource Type
idCode
description
!list resources by type

Analysis Patterns

Complete design and
implementation of
analysis patterns and
their relationships

6

Motivation

Patterns solutions are expressed as a set
of classes and their relationships
A pattern can have variants
Patterns are used together (combined or
integrated with each other)
Relationships among classes can be
added or removed depending on the
combination of patterns, or on pattern
variants

7

Motivation – First Scenario - Variants

 Class1
a11: int
a12: char Class2

 a21: int
a22: int

Class3
a31: int
a32: char

Pattern 1
R1

R2

class2: Class2

class3: Class3

Default solution

8

Motivation – First Scenario - Variants

Default solution

What happens if there is a pattern variant in
which Class3 does not exist?

 Class1
a11: int
a12: char Class2

 a21: int
a22: int

Pattern 1
R1

class2: Class2

Class3
a31: int
a32: char

class3: Class3

R2

9

Motivation – First Scenario - Variants

Variant 1 – Class3
is removed as well
as its relationship

to Class2

 Class1
a11: int
a12: char Class2

 a21: int
a22: int

Pattern 1
R1

class2: Class2

This is difficult to do because the relationship
is hard-coded in Class2

10

Motivation – Second Scenario – Combination
of patterns

The user can apply only pattern 1
Or pattern 1 combined with pattern 2

 Class1
a11: int
a12: char Class2

 a21: int
a22: int

Class3
a31: int
a32: char

Pattern 1 Pattern 2

Class4
a41: char
a42: int

R1

R2

R3

class2: Class2

class3: Class3

11

The relationship (R3) implies an extra
attribute in Class2

 Class1
a11: int
a12: char Class2

 a21: int
a22: int

Class3
a31: int
a32: char

Pattern 1 Pattern 2

Class4
a41: char
a42: int

R1

R2

R3

class2: Class2

class3: Class3
class4: Class4

Motivation – Second Scenario – Combination
of patterns

12

The relationship (R3) is instantiated twice

Motivation – Third Scenario – Same pattern
applied several times

 Class1
a11: int
a12: char Class2

 a21: int
a22: int

Class3
a31: int
a32: char

Pattern 1 Pattern 2

Class4
a41: char
a42: int

R1

R2

R3

class2: Class2

class3: Class3
class4a: Class4 Pattern 2

Class4
a41: char
a42: int

R3
class4b: Class4

13

Objective of this work

An approach to gradual implementation
of patterns using aspect-oriented
programming (AOP)

each pattern can be considered individually,
and aspects are used to include the
crosscutting behaviors, particularly those
associated with relationships among classes

14

Proposed Approach

In each step one pattern is designed and
implemented (the analysis pattern is the basis
for the design)
Initially, all relationships are considered
permanent, so they are hard-coded in the
classes
Relationship aspects [Pearce and Noble] are
used to implement relationships when some
situations occur during the design of a pattern
(detailed in the next slides)
To obtain a particular application, combine the
classes with the aspects needed to implement
the desired patterns and their relationships.

15

Proposed Approach

Situations that lead to the refactoring of
previous patterns to include relationship
aspects:

The application of a pattern or pattern variant implies
removing an existing relationship between classes
The application of a pattern or pattern variant
requires the replacement of one relationship by
another
The same pattern can be applied several times, each
of which originating different concrete classes
Etc.

16

Example 1

 Class1
a11: int
a12: char Class2

 a21: int
a22: int

Class3
a31: int
a32: char

Pattern 1
R1

R2

class2: Class2

class3: Class3

 Class1
a11: int
a12: char Class2

 a21: int
a22: int

Pattern 1
R1

class2: Class2

Before

After

17

public Class2
{
 . . .
 int a21;
 int a22;
 . . .
 private Class3 class3; // represents R2
 public Class3 getClass3()
 { return class3; }
 public void setClass3 (Class3 c3)
 { class3 = c3; }
}

Example 1
Before

After

public Class2
{
 . . .
 int a21;
 int a22;
 . . .
}

public aspect R2
{
 // introduce attributte class3 in Class2
 private Class3 Class2.class3;
 // introduce setters and getters in Class2
 public Class3 Class2.getClass3()
 { return class3; }
 public void Class2.setClass3 (Class3 c3)
 { class3 = c3; }
}

18

 Class1
a11: int
a12: char Class2

 a21: int
a22: int

Class3
a31: int
a32: char

Pattern 1 Pattern 2

Class4
a41: char
a42: int

R1

R2

R3

class2: Class2

class3: Class3
class4: Class4

Example 2
Before

After

 Class1
a11: int
a12: char Class2

 a21: int
a22: int

Class3
a31: int
a32: char

Pattern 1 Pattern 2

Class4
a41: char
a42: int

R1

R2

R3

class2: Class2

class3: Class3

class4: Class4
<<aspect>>

19

Example 2
Before

After

20

Problem with this solution

Patterns have to be instantiated every
time they are used

Several classes are abstract and need
subclassing

We don’t know beforehand the name of
the concrete subclass

This name would be used to create the
relationship aspect

21

Valid solution

Use relationship aspects and Relationship
Aspects Library (RAL) [Pearce and Noble,
2005/2006]

Main idea: the relationship itself is separated from
the participating objects.
Code belonging to the relationship is isolated and
easily changed when necessary
Implementation (based on RAL)

abstract aspects are created to represent
the relationships
By using Java Generics, it is not required
to make the types of the target classes
explicit in the base (or abstract) aspect
placeholders will be replaced by the
concrete class name during instantiation

Before

After

23

Case study

GRN [Braga et al 1999] is an analysis
pattern language to model systems for
business resource management

Rental of resources (e.g. books, cars)
Trade/Sale of resources (e.g. products)
Maintenance of resources (e.g. car repair)

Provides a solution in terms of class
diagrams
Patterns can be combined in many ways
to produce concrete applications

24

GRN Pattern
Language

(Braga et al 1999)

Example of
an analysis
pattern
(Braga et al
1999)

Example of an
analysis
pattern
(Braga et al
1999)

Example of analysis patterns (Braga et al 1999)

MeasureUnity
idCode
description

Resource Lot
lotId
date
quantity in stock

Resource
. . .
re-supply level

<<uc>> list resources to be re-supplied()
calculate available quantity()

10..n 10..n

has

0..n

1

0..n

1 has

Pattern 1

Pattern 2

Notice that class Resource is present in both
patterns

28

Pattern Implementation using our
incremental approach
First pattern (Identify the Resource):
default solution and 2 variants
The design has considered the variants,
so the relationship between classes
Resource and ResourceType was
implemented using aspects.

Pattern 1 and its variants (Braga et al 1999)

Pattern 1

Pattern 1
– V1

Pattern 1
– V2

Pattern 1
– V1

30

Pattern Implementation using our
incremental approach

Classes
Resource and
ResourceType

31

Pattern Implementation using our
incremental approach

Abstract aspect implementing the relationship

Example of pattern 1 instantiation

Pattern 1

Pattern 1
– V1

Pattern 1 – V2

Pattern 1
– V1

VideoCategory
number
description
rentalRate

<<uc>> list videos by category()

<<ResourceType>>Video
barCode
title
year

<<uc>> list by barCode()
<<uc>> list by title()

<<Resource>>

10..n 10..n

has

Car
licenseNumber
year
color

<<Resource>>
Manufacturer

name
idCode

<<ResourceType>>

Product
description
serialNumber

<<Resource>> 1

0..n

has

Category
name
idCode

<<ResourceType>>
1

0..n

has

0..n

1

0..n

1

33

Pattern Instantiation Code (P1-v2)

Concrete Classes

Concrete Aspects

34

Pattern Implementation using our
incremental approach

Second pattern (Quantify the Resource):
default solution and 3 variants.
The design has considered the previous
pattern, because a class of the new
pattern (“Resource”) is shared with
pattern 1.
Variants were also considered and
designed in this step.

Pattern Implementation using our
incremental approach

Resource
. . .
status

(a) P2-V1

MeasureUnity
idCode
description

Resource
. . .
quantity in stock
re-supply level

<<uc>> list resources to be re-supplied()

1

0..n

1

0..n
has

(b) P2-V2

(c) P2-V3

ResourceInstance
number
location
status

isAvailable()

Resource
. . .

calculate qtty of available instances()
0..n1 0..n1

has

MeasureUnity
idCode
description

Resource Lot
lotId
date
quantity in stock

Resource
. . .
re-supply level

<<uc>> list resources to be re-supplied()
calculate available quantity()

10..n 10..n

has

0..n

1

0..n

1 has

(d) P2-V4

Pattern Implementation using our
incremental approach

Resource
. . .
status

(a) P2-V1

MeasureUnity
idCode
description

Resource
. . .
quantity in stock
re-supply level

<<uc>> list resources to be re-supplied()

1

0..n

1

0..n
has

(b) P2-V2

(c) P2-V3

ResourceInstance
number
location
status

isAvailable()

Resource
. . .

calculate qtty of available instances()
0..n1 0..n1

has

MeasureUnity
idCode
description

Resource Lot
lotId
date
quantity in stock

Resource
. . .
re-supply level

<<uc>> list resources to be re-supplied()
calculate available quantity()

10..n 10..n

has

0..n

1

0..n

1 has

(d) P2-V4

Existing Classes

Pattern Implementation using our
incremental approach

Resource
. . .
status

(a) P2-V1

MeasureUnity
idCode
description

Resource
. . .
quantity in stock
re-supply level

<<uc>> list resources to be re-supplied()

1

0..n

1

0..n
has

(b) P2-V2

(c) P2-V3

ResourceInstance
number
location
status

isAvailable()

Resource
. . .

calculate qtty of available instances()
0..n1 0..n1

has

MeasureUnity
idCode
description

Resource Lot
lotId
date
quantity in stock

Resource
. . .
re-supply level

<<uc>> list resources to be re-supplied()
calculate available quantity()

10..n 10..n

has

0..n

1

0..n

1 has

(d) P2-V4

New Classes

Pattern Implementation using our
incremental approach

Resource
. . .
status

(a) P2-V1

MeasureUnity
idCode
description

Resource
. . .
quantity in stock
re-supply level

<<uc>> list resources to be re-supplied()

1

0..n

1

0..n
has

(b) P2-V2

(c) P2-V3

ResourceInstance
number
location
status

isAvailable()

Resource
. . .

calculate qtty of available instances()
0..n1 0..n1

has

MeasureUnity
idCode
description

Resource Lot
lotId
date
quantity in stock

Resource
. . .
re-supply level

<<uc>> list resources to be re-supplied()
calculate available quantity()

10..n 10..n

has

0..n

1

0..n

1 has

(d) P2-V4

New Attributes/Methods

39

Pattern Implementation using our
incremental approach

•New classes were added in the conventional
way.
•Relationships to existing classes were
implemented using aspects
•Aspects were used also to include new
attributes and methods present in the variants.

40

Mapping Table
Useful to guide the framework user in the instantiation
process

41

Concluding remarks

We have proposed an approach for incremental
development of frameworks to support pattern
languages.
The framework instantiation process is more
flexible than in traditional approaches where
relationships are hard-coded in the classes.
The framework construction (and future
evolution) is also easier, because we do not
need to anticipate the design of the next
patterns.
Application generators can automate the
instantiation process.

42

CONTACT

Rosana
rtvb@icmc.usp.br
www.icmc.usp.br/~rtvb

Rodrigo
marchesini@gmail.com

ACKNOWLEDGMENTS
The authors thank FAPESP for the financial support of this
research and both the University of Sao Paulo and ICMC
Department of Computing Systems to support the
presentation of this work at ECOOP/RAOOL.

http://www.icmc.usp.br/~rtvb
http://www.icmc.usp.br/~rtvb
http://www.icmc.usp.br/~rtvb
http://www.icmc.usp.br/~rtvb
http://www.icmc.usp.br/~rtvb
http://www.icmc.usp.br/~rtvb
http://www.icmc.usp.br/~rtvb
http://www.icmc.usp.br/~rtvb
mailto:marchesini@gmail.com
mailto:marchesini@gmail.com
mailto:marchesini@gmail.com
mailto:marchesini@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

