Soffware Engineering Lab

USH

Icmc

&

N

M\-

USP - SAO CARLOS

Implementing relationships among

classes of analysis

pattern languages using aspects

Rosana T. V. Braga
Rodrigo H. R. Marchesini

University of Sao Paulo
Institute of Mathematics and Computer Science

Sao Carlos — SP — Braazil

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences

Summary

»> Introduction
Context
Motivation
#Objectives

»* Proposed approach for implementing
associations using aspects

x> Case study
»» Concluding remarks

Sofftware Engineering Lab

Artigo publicado no workshop do ECOOP 2009: RAOOL: Workshop on
Relations and Associations in Object-Oriented Languages
2

Sofftware Engineering Lab

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences
Introduction

== Software Patterns:

Describe solutions to common problems found during
software development

Patterns: reuse in higher abstraction levels:
+architectural patterns
+analysis patterns
+design patterns
+organizational patterns
+coding patterns, etc.

=* Analysis Patterns:

Propose analysis models that solve problems found
durina analvsis phase (UML) 3

Sofftware Engineering Lab

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences
Introduction

=» Pattern Language:

+Set of inter-related patterns that lead to the
complete model of a particular application
+ A structured collection of patterns that support

each other to transform requirements into an
architecture [Coplien 98].

+The application of one pattern sets the
context for the next pattern to be applied

+It can be thought of as a way of dividing a
general problem and its solution into a
number of related problems and the
corresponding solutions

Resource
- Resource Type
idCode has B> [fdCode

description

Pattern Language

b1 *list by description '
/ \r\A Analysis Patterns
P2 P3/"P4
pe . S
P7 O
P84/

Complete design and
implementation of
analysis patterns and
their relationships

Framework

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences

Motivation

x> Patterns solutions are expressed as a set
of classes and their relationships

»» A pattern can have variants

x> Patterns are used together (combined or
integrated with each other)

»» Relationships among classes can be
added or removed depending on the
combination of patterns, or on pattern
variants

Sofftware Engineering Lab

| ! :) p mr;it?t?.lrtiitgf?vflaila'uznﬁzﬁil:os;EilaéiémputerSciences
Motivation — First Scenario - Variants
Pattern 1
Class| R1
all:int \

al2: char Class2

class2: Class2 | |a2l: int Default solution
a22: int
class3: Class3

Class3 /{2
a3l: int

a32: char

Software Engineering Lab

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences

Pattern 1

Classl R1
all: int \
al2: char Class2
class2: Class2 | |a2l: int
a22: int
class3: Class3

Class3 Az
a3l: int

a32: char

Sofftware Engineering Lab

'

which Class3 does not exist?

Motivation — First Scenario - Variants

Default solution

What happens if there is a pattern variant in

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences

Motivation — First Scenario - Variants

Pattern 1
Classl R1
all: int \ Variant 1 - Class3
al?2: char Class2 is removed as well
class?: Class? | |a21: int as its relationship
322: lnt to Class2

Software Engineering Lab

'

This is difficult to do because the relationship
is hard-coded in Class2

l ! :) p mr;it?t?.lrtiitgf?vflaila'uznﬁzﬁil:os;EilaéiémputerSciences
Motivation — Second Scenario — Combination
of patterns

Pattern 1 Pattern 2
Classl R1 Class4
all: int T~ R3|_-| a41: char
al2: char Class2] a42: int
class2: Class2 | |a2l: int
a22: int

class3: Class3

Class3 /{2
a3l: int

a32: char

Sofftware Engineering Lab

'

The user can apply only pattern 1
Or pattern 1 combined with pattern 2

10

| ! :) p mr;it?t?.lrtiitgf?vflaila'uznﬁztl}ltl:os;EilaéiémputerSciences
Motivation — Second Scenario — Combination
of patterns

Pattern 1 Pattern 2
Class] R1 Class4
all: int \ R3~ a4l: char
al2: char Class?2] a42: int
class2: Class2 | |a2l: int
a22: int

class3: Class3
class4: Class4

Class3 /{2
a3l: int

a32: char

Soffware Engineering Lab

!

The relationship (R3) implies an-extra
attribute in Class2

11

| ! :) p mr;it?t?.lrtiitgf?vflaila'uznﬁztl}ltl:os;EilaéiémputerSciences
Motivation — Third Scenario — Same pattern
applied several times

Pattern 1 Pattern 2
Class]1 R1 Class4
all: int \ a41: char
R3L~ .
al2: char Class2 4+~ | a42:int
class2: Class2 | |a2l: int
a22: int

class3: Class3
class4a: Class4\[R3 Pattern 2

class4b: Class4 \ Class4

a41: char
Class3 R2 242 int
a3l: int

a32: char

Sofftware Engineering Lab

'

The relationship (R3) is instantiated twice

12

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences

Objective of this work

** An approach to gradual implementation
of patterns using aspect-oriented
programming (AOP)

4+ each pattern can be considered individually,
and aspects are used to include the

crosscutting behaviors, particularly those
associated with relationships among classes

Sofftware Engineering Lab

13

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences

=* In each step one pattern is designed and
implemented (the analysis pattern is the basis
for the design)

=r Initially, all relationships are considered
permanent, so they are hard-coded in the
classes

** Relationship aspects [Pearce and Noble] are
used to implement relationships when some
situations occur during the design of a pattern
(detailed in the next slides)

** To obtain a particular application, combine the
classes with the aspects needed to implement
the desired patterns and their relationships.

Sofftware Engineering Lab

14

Sofftware Engineering Lab

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences

=» Situations that lead to the refactoring of
previous patterns to include relationship
aspects:

The application of a pattern or pattern variant implies
removing an existing relationship between classes

The application of a pattern or pattern variant
requires the replacement of one relationship by
another

The same pattern can be applied several times, each
of which originating different concrete classes

+ Etc.

15

Soffware Engineering Lab

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences

Example 1

Before Ppattern 1

Classl R1
all: int \

al2: char Class2
class2: Class2 | |a2l: int
a22: int

After Pattern 1

Classl R1
Class3 /12 all: int \

[class3: Class3|

\J

al2: char Class2

a3l: int class2: Class2 | [a2l: int
a32: char a27: int

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences

Example 1

Before

?ublic Class2 Afide
i.n.t .a21- public Class2
int a22; {
pr.‘i\./ate Class3 class3; // represents R2 int a21;

public Class3 getClass3()
{ return class3; }

public void setClass3 (Class3 c3)

{ class3 =c3; }

int a22;

public aspect R2
{

// introduce attributte class3 in Class2
private Class3 Class2.class3;
// introduce setters and getters in Class2
public Class3 Class2.getClass3()

{ return class3; }
public void Class2.setClass3 (Class3 c3)
{ class3 =c3; }

Sofftware Engineering Lab

17

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences

Example 2

Soffware Engineering Lab

Before
Pattern 1 Pattern 2
Class1 R1 Class4
all: int \ R3_~ a4l1: char
al2: char Class2 —] a42: int
class2: Class2 | |a21: int
a22: int
class3: Class3
class4: Class4 After
Class3 /{2 Pattern 1 Pattern 2
a31: int Class] R1 Class4
a32: char all:int \ __| a41: char
al2: char Class2 / a42: int
class2: Class2 | |a2l: int |
a22: int |
class3: Class3 .
R3
<<aspect>>
Class3 /{2 class4: Class4
a3l: int
a32: char

18

Soffware Engineering Lab

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences

Example 2

Before

public ClassZ
{

int aZzl;
int aZz?;

private Class4 class4; /{ represents R3
public Class4 getClassd ()

{ return classd; }
public wvoid setClass4 (Class4 c4)

{ classd = cd; } After

public aspect E3
{

/f{ introduce attributte class4 in Class2
private Class4 ClassZl.classd;
/f introduce setters and getters in Class2
public Class4 Class2.getClass4()

{ return class4; }
public wveoid Class2.setClass4 (Class4 cd)

{ clas=d4 = c4; }

19

Sofftware Engineering Lab

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences

Problem with this solution

»» Patterns have to be instantiated every
time they are used

#Several classes are abstract and need
subclassing

> We don’t know beforehand the name of
the concrete subclass

+This name would be used to create the
relationship aspect

20

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences
Valid solution

= Use relationship aspects and Relationship
Aspects Library (RAL) [Pearce and Noble,
2005/2006]

Main idea: the relationship itself is separated from
the participating objects.

Code belonging to the relationship is isolated and
easily changed when necessary

Implementation (based on RAL)

+abstract aspects are created to represent
the relationships

+By using Java Generics, it is not required
to make the types of the target classes
explicit in the base (or abstract) aspect

+placeholders will be replaced by the 21

Sofftware Engineering Lab

Before

public aspect ER3
{

/¢ introduce attributte classd4 in ClassZ
private Classd4 ClassZ.claszssd;

/4 introduce setters and getters in Class2
public Class4 Class2.getClass4()

{ return classd:

public woid Class2.
{ classd4 = cd4; }

¥
setClassd (Claszsd4 cd)

After

public abstract aspect RI<I extends Classl,

{

Y extends Classd >

interface InterfaceR3<T> {1}

declare parents : X implements
IntefaceR3I<Y>;

private T InterfaceR3.clas=z4d;

public T getClass4() { return class4; }

public woid setClass4(T c4) { classd4 = cd;

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences

** GRN [Braga et al 1999] is an analysis
pattern language to model systems for
business resource management
4+ Rental of resources (e.g. books, cars)
+Trade/Sale of resources (e.g. products)
#Maintenance of resources (e.g. car repair)

** Provides a solution in terms of class
diagrams

»» Patterns can be combined in many ways
to produce concrete applications

Sofftware Engineering Lab

23

Sofftware Engineering Lab

Identify the
Resource

'

Quantify the
Resource

¥

/

\

Store the
Resource

g

Rent the
Resource

Trade the
Resource

Maintain the
Resource

Y

v

Y

Reserve the Cluote Quote the
Resource the trade maintenance
Check
Resource
Delivery
Y Y ¢ Yy v L
Identifty
ltemize the Pay for the maintenance
resource ™ resuun?e ks
transaction traniactlon /
1“*""””5’:.“& Identifty
- f:“:gct;)” maintenance
REERTL parts

LHH

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences

GRN Pattern

Language
(Braga et al 1999)

24

Example of
an analysis
pattern
(Braga et al
1999)

Pattern 2: QUANTIFY THE RESOURCE
Context
You have identified a resource that vour application
deals with and 1its relevant qualities. An important issue
to be considered now 15 the form of resource
quantification. There are certain applications i which it
s important to trace specific instances of a resource,
because they are transacted individually. For example. a
book 1n a library can have several copies. each lent to a
different reader. Some applications deal with a certain
quantity of the resource or with resource lots. In these
applications. 1t 1s not necessary to know what particular
instance of the resource was actually transacted. For
example, a certain weight of steel 15 sold. In other
applications. the resource 1s dealt with as a whole, as for
example a car that goes to maintenance or a doctor that
examines a patient.
Problem
How does the application quantify the business
resource”
Forces
* Knowing exactly what 1s the form of quantification
adopted by the application 1s important during
analysis. A wrong deciston at this point may
compromise future evolution.

Example of an
analysis
pattern
(Braga et al
1999)

Structure
There are four slightly different solutions for this
problem. depending on the form of quantification.

Figures 4 through 7 show the four QUANTIFY THE
RESOURCE sub-patterns.

When 1t 15 important to distinguish among resource
instances, use INSTANTIABLE RESOURCE sub-pattern
(Figure 4). When the resource is managed in a cerfain
quantity, use the MEASURABIE RESOURCE sub-pattern
(Figure 5). When the resource 1s unique, use the SINGLE
RESOURCE sub-pattern (Figure). When the resource 1s
dealt with in lots., use the LOTAEBLE RESOURCE sub-
pattern (Figure 7).

Fesource Fesource Instance
has e |mumber
location
caleulate ity of avallable mstances | 1| * |status
1sAvailable

Figure 4: INSTANTIABLE RESOURCE sub-pattern

Resource Measure Uity
quantity mn stock description

e-supply level * 1

Izlist resources to be re-supplied

Figure 5: MEASURABLE RESOURCE sub-pattern

Example of analysis patterns (Braga et al 1999)

Resounce

rod ResowrceType
el e has [
deseription T Pattern 1
: - 0.1
£40cE F list by id Codel)
<<uc k> list by des crptionn) IR R e S I PAL)
Resource has MeasureUnity
e idCode
re-supply lewel 0.n 1/description
<<uc>> list resources to be re-supplied() P att ern 2
calculate available quantity() Resource Lot
1 has lotld
date

0..n | quantity in stock

:> Notice that class Resource is present in both
patterns

| | () |_.] inshhite of Wathainatica 4nd CoffiuNE Seishiss
Pattern Implementation using our
incremental approach

** First pattern (Identify the Resource):
default solution and 2 variants

** The design has considered the variants,
so the relationship between classes
Resource and Resourcelype was
implemented using aspects.

Sofftware Engineering Lab

28

Pattern 1 and its variants (Braga et al 1999)

- Resaurce FesowceType
idCode has

A id Code
description des e ption P atte rn 1
<<uek ¥ list by id Coded)
<<uck ¥ list by descrptioni)

UGBSt resounces by typel)

Fesource lype
idCode
Fesource has description
idCode ;
description - 1 |==uc=> list resources by type()
=«ucx> list by idCodel)
T ==ucxx list by description() has
idCode 0.n 0.n
CesCHation has 1 ResourceType?
<zuce> list by idCode() 1 dCade
==uc=> list by description() deseription
FesourceTyped
G <=ucx= list resources by typeZ()
description
Pattern 1
V1 ==ucx+ list resources by type3()

Pattern 1
- V2

| | () |_-] inshhite of Wathainatica 4nd CoffiuNE Seishiss
Pattern Implementation using our
incremental approach

public abstract class StaticObject {
private int idTlode ;

private String description;
public StaticObject (int idCode, String

description) {
thizs.idCode = idCods ;
this.description = description;

+

/{ getters and setters omitted

/¢ walidation code (such as not allowving
/f idCode less than 1 or null description)
/f were also omitted

Soffware Engineering Lab

+

pubklic class Rescource sxtends StaticlObject

{ ... } Classes
Resource and

public class HResourceType extends StaticObject ResourceType

{ ... %

30

Sofftware Engineering Lab

| | () |_-] inshhite of Wathainatica 4nd CoffiuNE Seishiss
Pattern Implementation using our
incremental approach

public abstract aspect Has<RES extends Resource,
TYPE extends RescurceType >

{
interface ISimpleResourceType<T> {}
declare parents : RES implements

ISimpleResourcaType <TYPE >;
private T SimplsRkezsourceTlyps.resourcelyps;
public T getRescurceType(}) { return
resourcaeTypea; F
public woid setResourceType (T type)
{ rescurceType = type: T
+

Abstract aspect implementing the relationship

31

Example of pattern 1 instantiation

Pattern 1

- V1

<<R\7i88:r(c):e>> <<ResourceType>>
G VideoCategory
arode has umber
title L
year description
0.n rentalRate
<<uc>> list by barCode() .
<<uc>> list by title() <<uc>> list videos by category()
<<Resource>>
Car
_ <<Resource>>
licenseNumber Product | g
..N
yelar description
color serialNumber
0..n

Pattern 1

<<ResourceType>>
Manufacturer

name
idCode

<<ResourceType>>

Category

name
idCode

Pattern 1 - V2

Sofftware Engineering Lab

| | () P inshhite of Wathainatica 4nd CoffiuNE Seishiss
Pattern Instantiation Code (P1-v2)

public class Product sxtends EKesourcs

{ ...}

public class Category extends ResourceTyps

{ ...}

public class Manufacturer sextends ResourceType

{ ... %

Concrete Classes

public aspect Has<Product ,Category>{ }

public aspect Has<Product ,Manufacturer>{ }
f*no extra code required=*/

Concrete Aspects

33

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences

- Pattern Implementation using our
incremental approach

b

»» Second pattern (Quantify the Resource):
default solution and 3 variants.

** The design has considered the previous
nattern, because a class of the new
nattern ("Resource”) is shared with
pattern 1.

**Variants were also considered and
designed in this step.

Soffware Engineering La

34

Pattern Implementation using our
incremental approach

Resource

status

(a) P2-V1

Resourcelnstance

Resource has |number

location

1 0..n Status

calculate qtty of available instances()

Resource

quantity in stock
re-supply level

<<uc>> list resources to be re-supplied()

0..n
has

MeasureUnity

1

idCode
description

(b) P2-V2

isAvailable()
(c) P2-V3
Resource . MeasureUnity
- idCode
re-supply level 0.n 1/description

<<uc>> list resources to be re-supplied()
calculate available quantity()

1

has

Resource Lot

(d) P2-V4

lotld
date
quantity in stock

Pattern Implementation using our
incremental approach

Resource

status

Existing Classes

Resource

1

calculate qtty of available instances()

Resource

quantity in stock
re-supply level

<<uc>> list resources to be re-supplied
N pplied(.

i

0..n
has

MeasureUnity

1

idCode
description

(b) P2-V2

/('C%Z—V3

Resourcelnstance

number
location
0..n Status

as

isAvailable()

—

Resource

re-supply level

N
\I{as

MeasureUnity

0..n}) 1

calculate available quantity()

<<uc>> list resources to be re-supplied()

P

1/

has

idCode
description

Resource Lot

(d) P2-V4

lotld
date
quantity in stock

Pattern Implementation using our
incremental approach

Resource

status

(a) P2-V1

N

New Classes

P
Resourcelnstance

N

Resource

number
location
1 0..n Status

calculate qtty of available instances()

Resource

quantity in stock
re-supply level

<<uc>> list resources to be re-supplied()

0..n

has/
idCode

e

MeasureUnity

\ description

N

O —

(b) P2-V2

i\sAvaiIabIe() P
© P2V3 N~
A
4 Y
Resource haf/ MeasureUnity
idCode

re-supply level

<<uc>> list resources to be re-supplied()

calculate available quantity()

1

has

description

0..n&
N

S

S

/Resource Lot\

lotld
date

(d) P2-V4

quantity in stock

N .
\/

Pattern Implementation using our
incremental approach

New Attributes/Methods

Resource
Resourcelnstance
o Resource has |number
< status) location
T —
— —~—l1 0..n Status
< calculate qtty of available instances() >
—— — isAvailable()
e Fz (c) P2-v3
A
y Y
Resource Resource haf/ MeasureUnity
o idCode
< quantity in stock > re-supply level) 0..n &descn’ption
e-supply lewel N P
<<uc>> list resources to be remf@dﬁ.’ S
<<uc>> list resources to be re-supplied() > calculate available quantity() /Resource Lot\

0..n

has | MeasureUnity

idCode
1 |description

(b) P2-V2

1

date
0_\ quantity in stock
(d) P2-V4 \\/1

| | () |_-] inshhite of Wathainatica 4nd CoffiuNE Seishiss
Pattern Implementation using our
incremental approach

eNew classes were added in the conventional
way.

eRelationships to existing classes were
implemented using aspects

eAspects were used also to include new
attributes and methods present in the variants.

Sofftware Engineering Lab

39

Sofftware Engineering Lab

Mapping Table

Useful to guide the framework user in the instantiation

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences

LHH

Process
Pattern Variant (C'lasses to include What 1s included by the aspects?
1 = Identify the |Default Resource Has relatonship (Resource to Eesourcel'ype)
Resource ResourceType
Mo Type Eesource -
Multiple Types |Resource Has relahonship (one for each type)
EesourceType
(one for each type)
2 — Cuantify Default — single | - Attribute: status
the Eesource resOUrce
Measurable MeasureUnit Has relahonship (Resource to MeasureUnit)
Attributes quantty in stock, re-supply level
Method: list resources to be re-supplied
Instantable Eesourcelnstance |Has relabhonship (Eesource to Eesourcelnstance)
Method: calculate gity of available instances
In lots Measurelnit Has relahonship (Resource to MeasureTTnit)
EesourceLot Has relath onship (Resource to Eesourcelot)

Methods: list resources to be re-supplied and calcul ate
aval ailable quantity

40

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences
Concluding remarks

** We have proposed an approach for incremental
development of frameworks to support pattern
languages.

=r The framework instantiation process is more
flexible than in traditional approaches where
relationships are hard-coded in the classes.

** The framework construction (and future
evolution) is also easier, because we do not
need to anticipate the design of the next
patterns.

=* Application generators can automate the
Instantiation process.

Sofftware Engineering Lab

41

University of Sao Paulo - Brazil
Institute of Mathematics and Computer Sciences

*>» Rosana
#rtvb@icmc.usp.br
#WwWw.icmc.usp.br/~rtvb

*» Rodrigo
+marchesini@gmail.com

s> ACKNOWLEDGMENTS

The authors thank FAPESP for the financial support of this
research and both the University of Sao Paulo and ICMC
Department of Computing Systems to support the
presentation of this work at ECOOP/RAQOL.

Sofftware Engineering Lab

42

http://www.icmc.usp.br/~rtvb
http://www.icmc.usp.br/~rtvb
http://www.icmc.usp.br/~rtvb
http://www.icmc.usp.br/~rtvb
http://www.icmc.usp.br/~rtvb
http://www.icmc.usp.br/~rtvb
http://www.icmc.usp.br/~rtvb
http://www.icmc.usp.br/~rtvb
mailto:marchesini@gmail.com
mailto:marchesini@gmail.com
mailto:marchesini@gmail.com
mailto:marchesini@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

