
Specifying Design-Rules to
improve modularity between
OO/AO code with CaesarJ

Carlos Eduardo Pontual

M.Sc. student

Advisor: Paulo Borba

21/09/2009

Rules to
between
CaesarJ

Pontual

: Paulo Borba

• Better modularize the crosscutting

• Transactional management,

Aspect-Oriented Software Development

• However, aspects may break

• It's not possible to reason about

aspects that may advice this

• Envolving a class might break

• Programmers are not able to

related classes have been implemented

• No parallel development

crosscutting concerns

management, Persistence, ...

2

Oriented Software Development

break class modularity

about a class without consider all

this class

break the intents of an Aspect

to write the aspects until the

implemented

development of classes and aspects

• We need a brief specification

relations/restrictions between

• Interfaces (Design-Rules)

development of classes and

• Guide the developers

• Enable compiler checking

• Existing solutions (XPIs, Aspect

are not enough for parallel

Improving Modularization OOxAO___

specification of the

between classes and aspects

that enable the parallel

and aspects

Aspect-Aware Interfaces)

parallel development

3

Improving Modularization OOxAO___

• Simple Tetris games SPL

• Dificulty variant (easy, normal), among others.

Motivating Example___

Dificulty variant (easy, normal), among others.

4

Variation details___

• Two versions of the following

• paintBox(), which is called by

• updatePiece(), which is called

program (e.g. GameCanvas class

• paintBox() has to access non

NextPiece

• Bi-directional between base
5

following methods of NextPiece:

by other methods of NextPiece

called by other classes of the

class)

non-variant members of

base and variations

Possible Implementation ___

• Tangling of design (abstract signatures)

implementation

• The variation part can only

implementation of the base

abstract class NextPiece {

void paint() { ...

paintBox(); ... }

void drawPiece() { ... }

abstract void updatePiece();

abstract void paintBox();

}

class Var1 extends NextPiece {

void updatePiece() { ...' }

void updateBox() { ...' }

}

6

Possible Implementation - OO___

design (abstract signatures) and

only be implemented after the

base code

class Var2 extends NextPiece {

void updatePiece() { ..." }

void updateBox() { ..." }

}

Enhanced TM____________________

• Its not clear on the interface

the base (one team) and which

• Not enough for parallel development

• Variation code can not be compiled

the base code (inheritance) 7

interface which methods are from

which are from the variations

development

compiled independently of

)

Implementation - AO___

• Parallel development compromised

• How specify the methods declared

• Independently compilation

• XPI can not guarantee that the

8

AO___

compromised

declared using ITD?

is not possible

the methods nor the class exist.

CaesarJ___

• No differentiation between

• An aspect is a Caesar class (cclass

• Aspect Collaboration Interfaces (

• Interface that contains other

• Virtual classes

• Partial implementation

• Mixins are used to compose

9

classes and Aspects

cclass) with pointcuts / advices

Interfaces (ACI)

interfaces (nested)

compose the partial implementations

Tetris Example ACI –___

• ACI defining that two cclasses

GameCanvas) must exist

• Defines the minimun content

10

– CaesarJ ___

cclasses (NextPiece and

content of both classes

Implementation of ACI___

11

Implementation of ACI___

• Mixin composition

Selection of the variation___

• As on TM, we can use a Factory

correct variation

• Each cclass can be independently

the Interface (ACI)

cclass NPComposition extends NPImpl

12

Selection of the variation___

Factory to instantiate the

independently compiled, just using

NPImpl & GCImpl & Var1Impl

• Its not possible to specify on

methods are from each “role” (base

• Commentaries can not ensure

• Implementation or Refinement

• Refine or implement a complete abstract

same thing

• Different nomenclatures

• Overhead of the virtual classes (

• All partial implementations

Problems___

on the interface which

“role” (base or variation) (1)

ensure the constrains

Refinement? (2)

a complete abstract class is the

nomenclatures

virtual classes (3)

implementations contain an outer class

13

Problems (1) ___

• paint() and drawPiece(): Methods of the “base”

• updatePiece() and paintBox(): Methods of the

variations

14

paint() and drawPiece(): Methods of the “base”

updatePiece() and paintBox(): Methods of the

Problems (2, 3) ___

Virtual class overhead

Refinement or

Implementation?

15

• Extension to the actual concept

Proposed Solution___

NextPieceCI [Base, Variation, Canvas] {

Base {

paint();

drawPiece();

pointcut update(): execution(

}

Variation complements Base {

updatePiece();

paintBox();

}

Canvas {

sideBoxes();

paintCanvas();

}

}

concept of ACI

16

[Base, Variation, Canvas] {

update(): execution(Canvas.sideBoxes()) || ...;

Base {

Implementation of DR___

NextPiece extends NextPieceCI as Base {

paint() { ... }

drawPiece(){ ... }

after(): update { ... }

}

GameCanvas extends NextPieceCI as Canvas {

sideBoxes() { ... }

paintCanvas(){ ... }

}

cclass NPComposition extends NextPiece

Common part

17

Implementation of DR___

GameCanvas extends NextPieceCI as Canvas {

OnePiece extends CI as Variation {

updatePiece() { ...' }

paintBox() { ...' }

}

TwoPieces extends CI as Variation {

updatePiece() { ..." }

paintBox() { ..." }

}

NextPiece & GameCanvas & OnePiece

Variation part

• Using Stratego/XT to transform the code written on our

extension into a valid CaesarJ code

• More examples

• HealthWatcher

• MobileMedia

• Propose new constructors to the DR extension

• Analysis of the proposed solution

• Parallel with CaesarJ, LSD...

Current Stage and Future Work___

Using Stratego/XT to transform the code written on our

extension into a valid CaesarJ code

Propose new constructors to the DR extension

Analysis of the proposed solution

Parallel with CaesarJ, LSD...

18

Current Stage and Future Work___

Thank you! Questions__

Specifying Design-Rules to improve
between OO/AO code

Carlos Eduardo Pontual

ceplc@cin.ufpe.br

19

Thank you! Questions__

Rules to improve modularity
code with CaesarJ

Carlos Eduardo Pontual

ceplc@cin.ufpe.br

