Specifying Design-Rules to
improve modularity between
OO /AO code with Caesar)

Carlos Eduardo Pontual
M.Sc. student

Advisor: Paulo Borba

21/09/2009

Aspect-Oriented Software Development

* Better modularize the crosscutting concerns

* Transactional management, Persistence, ...

* However, aspects may break class modularity

* It's not possible to reason about a class without consider all
aspects that may advice this class

* Envolving a class might break the intents of an Aspect

* Programmers are not able to write the aspects until the
related classes have been implemented

* No parallel development of classes and aspects

Improving Modularization OOxAO

* We need a brief specification of the
relations/restrictions between classes and aspects

* Interfaces (Design-Rules) that enable the parallel
development of classes and aspects
* Guide the developers

* Enable compiler checking

* Existing solutions (XPIs, Aspect-Aware Interfaces)
are not enough for parallel development

Motivating Example

* Simple Tetris games SPL

 Dificulty variant (easy, normal), among others.

I

*CofFe

|yl

lines

Variation details

GameCanvas NextPlece

NextPlece np;

void paint{) |

void sideBoxes () |
np.updateFiece(); ... 1}

void paintCanvas () |
np.updatePiece(); ... }

* Two versions of the following methods of NextPiece:
* paintBox(), which 1s called by other methods of NextPiece

* updatePiece(), which 1s called by other classes of the
program (e.g. GameCanvas class)

* paintBox() has to access non-variant members of

NextPiece
 Bi-directional between base and variations

Possible Implementation - OO

abstract class NextPiece {
void paint() { ...
paintBox(); ... }
void drawPiece() { ... }
abstract void updatePiece();
abstract void paintBox();

}

class Varl extends NextPiece { class Var2 extends NextPiece {
void updatePiece() { ..." } void updatePiece() { ..." }
void updateBox() { ..." } void updateBox() { ..." }

} }

* Tangling of design (abstract signatures) and
implementation

* The variation part can only be implemented after the
implementation of the base code

Enhanced TM

INextPilece

void paint () ;

void dreswPiece () ;
void setupPiece () ;
void palntBocxi);

A

NextPicce

void painz () |
ocalntBox () ... |}
veoeld drawPiece ()

i T

Varl

Vg,

void paint3ox ()

vold scctupPicco ()

{

AR void oS

ctupP_coo ()
} void pa-ntBox ()

 Its not clear on the interface which methods are from
the base (one team) and which are from the variations

* Not enough for parallel development

* Variation code can not be compiled independently of
the base code (1nheritance)

7

Implementation - AO

AbstractiPiece
pointcut update () :
exec (GC.z1deRox== ()] ||

exec (GC.palntCanvas ()) ;
after (): updaz-e - ... }
OncPilicccAspect TwoPilccesAspect
NextPiece.paintBox () {...} Nexc-Piece.paintBox () < ..."}
NextPiliece. . updatePiece { ...} Nex-Piliece.apdatePiece {..."}

* Parallel development compromised
* How specity the methods declared using ITD?
* Independently compilation 1s not possible
* XPI can not guarantee that the methods nor the class exist.

8

CaesarJ

* No differentiation between classes and Aspects

* An aspectis a Caesar class (cclass) with pointcuts / advices

* Aspect Collaboration Interfaces (ACI)
* Interface that contains other interfaces (nested)
e Virtual classes

* Partial implementation

* Mixins are used to compose the partial implementations

Tetris Example ACI — CaesarJ

NextPiece(CI

NextPiece
abstract wvoid paint ()
abstract void drawPiece () ;
abstract void update-iecel()
abstract void pa_ntBocx () ;
pPeointcut updzato (] :
exec (GC.sideloxes () ||
exec (GC.paintCanvazs () ;

Game(Canvas
abstract void sideBox=x () ;
abstract void paintCanvas():;

* ACI defining that two cclasses (NextPiece and
GameCanvas) must exist

 Defines the minimun content of both classes

10

Implementation of ACI

NextFPiece(Cl

NextPiece |<

- o+ m

CamelCaznvad

AN
NPImpl F S N
NoxtPloco CCTmp Varl Tmpi \
pe_at i} | GameCanvas OnePiece
paintBox () ; ..} sicdePox=s () { ..} setupFicoe () (..
drawFPicecc () {..} ozntCanvas () {..} cainBox () ..]
after: update{..}

™~

NPieceCcmposed

Selection of the variation

* Mixin composition

cclass NPComposition extends NPImpl & GCImpl & VarlImpl

* As onTM, we can use a Factory to instantiate the
correct variation

* Each cclass can be independently compiled, just using
the Interface (ACI)

12

Problems

* Its not possible to specify on the interface which
methods are from each “role” (base or variation) (1)

« Commentaries can not ensure the constrains

* Implementation or Refinement? (2)

* Refine or implement a complete abstract class 1s the
same thing

e Different nomenclatures

 Overhead of the virtual classes (3)

* All partial implementations contain an outer class

13

Problems (1)

* paint() anc

NextPiece(CI

raint () ;
drawPiece () ;
update-liece () s
ra_ntbBg
pointcut updzatc (; :
exec (GC.sideloxes ()) ||
exec (GC.paintCanvazs () ;

void
vold

Game(Canvas

abstract void sideBox=x () ;
abstract void paintCanvas():;

| drawPiece(): Methods of t!

he “‘base”

* updatePiece() and paintBox(): Methods of the

variations

14

Problems (2, 3)

Virtual class overhead

Next Piecel(l

Nexl Prece

Refinement or
Implementation?

)7 CameCanvas

\

'Varﬁ?ﬁuj?

{

calntBox () ;

Ppalac ()

drawFiece () {..}
qfifter: vpdate|

NFPieceComposed

lOneFiece

!

scetupPicco{) { ..}
paintBox (Y { ..}

15

Proposed Solution

* Extension to the actual concept of ACI

NextPieceClI [Base, Variation, Canvas] {

Base {
paint();
drawPiece();
pointcut update(): execution(Canvas.sideBoxes()) Il ...;

}

Variation complements Base {
updatePiece();
paintBox();

}

Canvas {
sideBoxes();
paintCanvas();

}

16

Implementation of DR

NextPiece extends NextPieceCl as Base { OnePiece extends CI as Variation {
paint() { ... } updatePiece() { ..." }
drawPiece(){ ... } paintBox() { ..." }
after(): update { ... } }
}
GameCanvas extends NextPieceClI as Canvas { TwoPieces extends CI as Variation {
sideBoxes() { ... } updatePiece() { ..." }
paintCanvas(){ ...} paintBox() { ..." }
} }
Common part Variation part

cclass NPComposition extends NextPiece & GameCanvas & OnePiece

17

Current Stage and Future Work

Using Stratego/XT to transform the code written on our
extension 1nto a valid CaesarJ code

More examples
e HealthWatcher

* MobileMedia
Propose new constructors to the DR extension

Analysis of the proposed solution
e Parallel with CaesarJ, LSD...

18

Thank you! Questions

%
/

Specifying Design-Rules to improve modularity
between OO/AO code with Caesar]

Carlos Eduardo Pontual
ceplc@cin.ufpe.br

19

