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Introduction

 Objective:
 Combined use of AOP and SPL to improve 

reuse across different domains
 Crosscutting domains and crosscutting features

 Benefits: avoid tangling and scattering of 
features, incresase reuse in other SPLs, higher 
cohesion, better system maintenance and 
evolution

 Context: Code Generator Captor
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SPL development considering 
aspects

 What happens when we have several 
SPLs (for several domains)?
 Features (functional or non-functional) 

begin to appear in more than one domain

 Example: Electronic commerce
 Authentication
 Persistence
 Payment
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SPL development considering 
aspects
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SPL development considering 
aspects
 What happens when we have several 

SPLs (for several domains)?
 Crosscutting features are still designed to 

be reused in each individual domain
 Pointcuts are usually fixed: they represent 

points in the SPL domain where the aspect 
will intercept the code 

 After developing several SPLs, redundant 
code begins to be produced

 But more reuse could be provided if 
crosscutting features are intended to be 
used in several domains!!!
 Pointcuts could vary depending on the base 

domain
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SPL development considering 
aspects

 Crosscutting features are isolated into 
“crosscutting domains”
 They can be both functional or non-functional 

features

 Domains that represent the core of the 
product line, and that will be crosscut by 
aspects, are named “primary domains”
 They can be combined with zero or more 

crosscutting domains

 A crosscutting domain can be reused 
across different primary domains



Primary and Crosscutting Domains
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AJPs and PJPs

 Abstract Join Points (AJPs) are 
defined in crosscutting domain
 They represent the points where the 

aspect code will intercept the base code
 Predefined Join Points (PJPs) can be 

defined, if possible
 They represent predefined 

instantiations of AJPs for certain 
combinations of primary and 
crosscutting domains



AJPs and PJPs
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Extension Sets

 Extension Sets (ESs) can be defined in 
primary domains, according to possible 
combinations with crosscutting domains
 They represent pieces of code that will be 

included depending on the composition
 They are useful when it is difficult to determine 

join points in the primary domains
 Non-obliviousness - Primary domains are 

aware of the presence of crosscutting domains.



Extension Sets

Crosscutting 
Domains

“E”

Primary Domains

“B”
<core>
Feature 

7

<core>
Feature 

6

<core>
Feature 

8

“A”
<core>
Feature 

1

<core>
Feature 

3

<var>
Feature 

5

“C”
<core>
Feature 

11

<core>
Feature 

10

<var>
<crosc>
Feature 

12

“D”
<var>

<crosc>
Feature 4

<core>
Feature 

2

AJP-1

<var>
<crosc>

Feature 9

AJP-2

PJP-A1

PJP-A2

PJP-B1

PJP-C2

ES-BD

ES-CE



Scenarios of SPL Evolution

 New Primary Domains
 New Crosscutting Domains
 New combinations of Primary X 

Crosscutting Domains



Scenarios of SPL Evolution:
New Primary Domains
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Scenarios of SPL Evolution: 
New Crosscutting Domains
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Scenarios of SPL Evolution: New 
combinations of Prim. X Crossc.Domains
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Tool support: Captor-AO

 CAPTOR-AO = Configurable 
APplication generaTOR – Aspect 
Oriented
 It is an application generator that can 

be configured to generate applications 
for different domains, including 
crosscutting domains

 Based on templates composition
 Based on a first version called Captor 

(Shimabukuro, 2006)



Captor-AO

 CAPTOR-AO = Configurable APplication 
generaTOR – Aspect Oriented
 AML: Application Modeling Language 

 defines the variabilities of the domain
 focuses on SPL variabilities
 each domain (primary or crosscutting) has its 

own AML
 Software Product Lines are developed by 

combining one primary domain and zero or 
more crosscutting domains

 Captor-AO automatically generates products 
based on the AML instances.



Application Engineering
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Conclusions

 The use of crosscutting domains allow the 
reuse of crosscutting concerns present in 
different SPLs, avoiding the redunding 
implementation of features. 

 The modularization of the joinpoint variabilities 
eases the combination between aspects of a 
crosscutting domain and primary domain.

 Captor-AO supports the creation of a repository 
of primary and crosscutting domains, easing 
the reuse accross domains.

 SPL evolution can be enhanced, since new 
features can be included with less impact on 
existing ones.
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Future work

 Allow the use of two or more 
primary domains in the combination 
process

 Enhance the process of testing the 
compatibility among domains

 Create mechanisms to validate the 
join points where crosscutting 
domains intercept primary domains 

 Conduct more experiments to 
validate Captor-AO
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Contact

 E-mail
 rtvb@icmc.usp.br (Rosana)

 Web page
 http://captor.googlecode.com


