
1

Using aspect-oriented programming to 
promote reuse across domains in 
software product lines

Rosana Teresinha Vaccare Braga
Paulo Cesar Masiero

Carlos A. F. Pereira Jr.

Universidade de São Paulo
Instituto de Ciências Matemáticas e Computação – ICMC – São Carlos



2

Introduction

 Objective:
 Combined use of AOP and SPL to improve 

reuse across different domains
 Crosscutting domains and crosscutting features

 Benefits: avoid tangling and scattering of 
features, incresase reuse in other SPLs, higher 
cohesion, better system maintenance and 
evolution

 Context: Code Generator Captor



3

SPL development considering 
aspects

 What happens when we have several 
SPLs (for several domains)?
 Features (functional or non-functional) 

begin to appear in more than one domain

 Example: Electronic commerce
 Authentication
 Persistence
 Payment



4

SPL development considering 
aspects



5

SPL development considering 
aspects
 What happens when we have several 

SPLs (for several domains)?
 Crosscutting features are still designed to 

be reused in each individual domain
 Pointcuts are usually fixed: they represent 

points in the SPL domain where the aspect 
will intercept the code 

 After developing several SPLs, redundant 
code begins to be produced

 But more reuse could be provided if 
crosscutting features are intended to be 
used in several domains!!!
 Pointcuts could vary depending on the base 

domain



6

SPL development considering 
aspects

 Crosscutting features are isolated into 
“crosscutting domains”
 They can be both functional or non-functional 

features

 Domains that represent the core of the 
product line, and that will be crosscut by 
aspects, are named “primary domains”
 They can be combined with zero or more 

crosscutting domains

 A crosscutting domain can be reused 
across different primary domains



Primary and Crosscutting Domains

Crosscutting 
Domains

“E”

Primary Domains

“B”
<core>
Feature 

7

<core>
Feature 

6

<core>
Feature 

8

“A”
<core>
Feature 

1

<core>
Feature 

3

<var>
Feature 

5

“C”
<core>
Feature 

11

<core>
Feature 

10

<var>
<crosc>
Feature 

12

“D”
<var>

<crosc>
Feature 

4

<var>
<crosc>
Feature 

9

Artefacts 
Generated

Products Generated: 
<1,2,3,5,9>, <1,2,3,4,5,9>, 

<10,11,4>, <10,11,4,9> 
<10,11,12,4>, 

<10,11,12,4,9>

Artefacts 
Generated

Products Generated: 
<6,7,8>, <6,7,8,4>, 

<6,7,8,9>, <6,7,8,4,9>

Artefacts 
Generated

Products Generated: 
<1,2,3>, <1,2,3,4>, 

<1,2,3,5>, <1,2,3,4,5>

Artefacts Generated

<core>
Feature 

2

Products Generated: 
<10, 11>, <10, 11, 9>, 

<10, 11, 12>, <10,11,9,12>



8

AJPs and PJPs

 Abstract Join Points (AJPs) are 
defined in crosscutting domain
 They represent the points where the 

aspect code will intercept the base code
 Predefined Join Points (PJPs) can be 

defined, if possible
 They represent predefined 

instantiations of AJPs for certain 
combinations of primary and 
crosscutting domains



AJPs and PJPs

Crosscutting 
Domains

“E”

Primary Domains

“B”
<core>
Feature 

7

<core>
Feature 

6

<core>
Feature 

8

“A”
<core>
Feature 

1

<core>
Feature 

3

<var>
Feature 

5

“C”
<core>
Feature 

11

<core>
Feature 

10

<var>
<crosc>
Feature 

12

“D”
<var>

<crosc>
Feature 4

<core>
Feature 

2

AJP-1

<var>
<crosc>

Feature 9

AJP-2

PJP-A1

PJP-A2

PJP-B1

PJP-C2



10

Extension Sets

 Extension Sets (ESs) can be defined in 
primary domains, according to possible 
combinations with crosscutting domains
 They represent pieces of code that will be 

included depending on the composition
 They are useful when it is difficult to determine 

join points in the primary domains
 Non-obliviousness - Primary domains are 

aware of the presence of crosscutting domains.



Extension Sets

Crosscutting 
Domains

“E”

Primary Domains

“B”
<core>
Feature 

7

<core>
Feature 

6

<core>
Feature 

8

“A”
<core>
Feature 

1

<core>
Feature 

3

<var>
Feature 

5

“C”
<core>
Feature 

11

<core>
Feature 

10

<var>
<crosc>
Feature 

12

“D”
<var>

<crosc>
Feature 4

<core>
Feature 

2

AJP-1

<var>
<crosc>

Feature 9

AJP-2

PJP-A1

PJP-A2

PJP-B1

PJP-C2

ES-BD

ES-CE



Scenarios of SPL Evolution

 New Primary Domains
 New Crosscutting Domains
 New combinations of Primary X 

Crosscutting Domains



Scenarios of SPL Evolution:
New Primary Domains

Crosscutting 
Domains

“E”

Primary Domains

“B”
<core>
Feature 

7

<core>
Feature 

6

<core>
Feature 

8

“A”
<core>
Feature 

1

<core>
Feature 

3

<var>
Feature 

5
“D”

<var>
<crosc>

Feature 4

<core>
Feature 

2

AJP-1

<var>
<crosc>

Feature 9

AJP-2

PJP-A1

PJP-A2

PJP-B1

ES-BD

“C”
<core>
Feature 

11

<core>
Feature 

10

<var>
<crosc>
Feature 

12

PJP-C2

ES-CE



Scenarios of SPL Evolution: 
New Crosscutting Domains

Crosscutting 
Domains

Primary Domains

“B”
<core>
Feature 

7

<core>
Feature 

6

<core>
Feature 

8

“A”
<core>
Feature 

1

<core>
Feature 

3

<var>
Feature 

5

“C”
<core>
Feature 

11

<core>
Feature 

10

<var>
<crosc>
Feature 

12

“D”
<var>

<crosc>
Feature 4

<core>
Feature 

2

AJP-1

PJP-A1

PJP-B1

ES-BD

PJP-C1

“E”

<var>
<crosc>

Feature 9

AJP-2

PJP-A2

PJP-C2

ES-CE



Scenarios of SPL Evolution: New 
combinations of Prim. X Crossc.Domains

Crosscutting 
Domains

“E”

Primary Domains

“B”
<core>
Feature 

7

<core>
Feature 

6

<core>
Feature 

8

“A”
<core>
Feature 

1

<core>
Feature 

3

<var>
Feature 

5

“C”
<core>
Feature 

11

<core>
Feature 

10

<var>
<crosc>
Feature 

12

“D”
<var>

<crosc>
Feature 

4

<var>
<crosc>
Feature 

9

<core>
Feature 

2



Tool support: Captor-AO

 CAPTOR-AO = Configurable 
APplication generaTOR – Aspect 
Oriented
 It is an application generator that can 

be configured to generate applications 
for different domains, including 
crosscutting domains

 Based on templates composition
 Based on a first version called Captor 

(Shimabukuro, 2006)



Captor-AO

 CAPTOR-AO = Configurable APplication 
generaTOR – Aspect Oriented
 AML: Application Modeling Language 

 defines the variabilities of the domain
 focuses on SPL variabilities
 each domain (primary or crosscutting) has its 

own AML
 Software Product Lines are developed by 

combining one primary domain and zero or 
more crosscutting domains

 Captor-AO automatically generates products 
based on the AML instances.



Application Engineering



19

Conclusions

 The use of crosscutting domains allow the 
reuse of crosscutting concerns present in 
different SPLs, avoiding the redunding 
implementation of features. 

 The modularization of the joinpoint variabilities 
eases the combination between aspects of a 
crosscutting domain and primary domain.

 Captor-AO supports the creation of a repository 
of primary and crosscutting domains, easing 
the reuse accross domains.

 SPL evolution can be enhanced, since new 
features can be included with less impact on 
existing ones.



20

Future work

 Allow the use of two or more 
primary domains in the combination 
process

 Enhance the process of testing the 
compatibility among domains

 Create mechanisms to validate the 
join points where crosscutting 
domains intercept primary domains 

 Conduct more experiments to 
validate Captor-AO



21

Contact

 E-mail
 rtvb@icmc.usp.br (Rosana)

 Web page
 http://captor.googlecode.com


