

- Está em Lancaster desde agosto: trabalhando com Jaejoon
- Aluno de mestrado desistiu

Masiero

- Teste de programas OO/OA com ênfase em exceções e experimentos de custo e eficácia (Luciano). Possivel colaboração com Roberta e missão em novembro/dezembro
- Certificação de Processo de DS c/LPS
- CK+ Ger. Variabilidades em Simulink (Hephaestus e P:V) – Eduardo

Prolices: um processo de desenvolvimento de sistemas embarcados críticos

Rosana Braga Masiero, Onofre, Kalinka...

- Introduction
- Background
- Previous Work
 - The Tiriba Product Line
 - SAFE-CRITES
- ProLiCES
- Preliminary results
- Conclusions

- Introduction
- Background
- Previous Work
 - The Tiriba Product Line
 - SAFE-CRITES
- ProLiCES
- Preliminary results
- Conclusions

Background: definitions

- Complex embedded system (at least four of the following features)
 - 1) multiprocessor or multi-core;
 - 2) 10k+ lines of code (without comment lines);
 - 3) multi-language;
 - 4) RTOS based;
 - 5) 10+ different types of I/O communication; and
 - 6) Critical nature.

Background: definitions

- UAS (Unmanned Aerial System) = aircraft + all associated elements (payload, ground control station, communication links)
- SPL (Software Product Line) = set of software systems that share common and managed features and fulls requirements of a particular market segment
- Model Driven Development (MDD): models are considered in all the development cycle and transformations are used to obtain lower level artifacts

- Introduction
- Background
- o Previous Work
 - The Tiriba Product Line
 - SAFE-CRITES
- ProLiCES
- Preliminary results
- Conclusions

Previous work: Tiriba domain

- Tiriba
 - UAV for monitoring applications in agriculture and security
 - Autonomous missions
 - Complex safety-critical embedded system
- At the end of Tiriba development, there was a motivation to create a SPL for UAV, as the next product would share several Tiriba features

Previous work: SAFE-CRITES

- Process to develop embedded software based on reuse of artifacts
 - rigorous validation (extra effort to avoid the need of revising a previous phase)
 - Maximum use of modeling, simulation, and code generation tools
 - Maximum reuse of previously tested artifacts (not only code)
 - Not forcing the use of OO
 - Certification of the product (system) developed

SAFE-CRITES

The process is composed of six development activities

A repository is created to ease reuse

VOU

- Introduction
- Background
- Previous Work
 - The Tiriba Product Line
 - SAFE-CRITES
- o ProLiCES
- Preliminary results
- Conclusions

ProLiCES: motivation

- Tiriba development: potential software product line could be created
- Sarvant (new bigger project) has several features in common, but many other challenges

ProLiCES: overview

- SPL development:
 - domain engineering: reusable artifacts of the SPL are created
 - application engineering: artifacts are combined to produce concrete products
- Two-path parallel life cycle which activity is done first depends on the context:
 - a concrete product can be created first, and then the SPL will be developed extractively or reactively based on one or more products; or
 - the SPL can be developed in a proactive approach

ProLiCES

Domain **Engineering**

ProLiCES – Domain Engineering

- Main goal: produce reusable artifacts of the SPL
 - a set of core assets that will be present in any SPL product
 - a set of variable assets that will be included according to specific needs of the final product

Domain Engineering

ProLiCES

Application Engineering

ProLiCES – Application Engineering

- Main goal: production of real-world SPL products.
 - Products are composed by selecting optional and alternative features

- Introduction
- Background
- Previous Work
 - The Tiriba Product Line
 - SAFE-CRITES
- ProLiCES
- Preliminary results
- Conclusions

Preliminary results

- ProLiCES is being used in the Sarvant project: development of a long-endurance unmanned aircraft with the specic mission of carrying a dual band SAR sensor
- Stakeholders:
 - AGX
 - OrbiSAT
 - INCT-SEC
 - FINEP

Preliminary results

- Tiriba was the basis for the feature model
- New features:
 - MOSA concept (Mission Oriented Sensor Array)
 - Redundancy of software and hardware
 - IFA (In-Flight-Awareness)

Preliminary results

- Some results:
 - Feature model
 - System Architecture
 - Repository of reusable items
 - Hardware engineering

Preliminary results: Feature Model

- Introduction
- Background
- Previous Work
 - The Tiriba Product Line
 - SAFE-CRITES
- ProLiCES
- Preliminary results
- Conclusions

Conclusions

- ProLiCES applied to Tiriba project:
 25.000 lines of code.
- Sarvant projetct: estimated 10 times bigger, two years to be concluded.
- Results of the application of ProLiCES to Sarvant will allow its refinement
- Certification under DO-178B is also a goal

Thanks!!

- Contact by E-mail
 - rtvb@icmc.usp.br (Rosana)

Instituto Nacional de Ciência e Tecnologia em Sistemas Embarcados Críticos