On the Impact of Feature
Dependencies when Maintaining
Preprocessor-based
Software Product Lines

Marcio Ribeiro Felipe Queiroz Paulo Borba
Tarsis Tolédo Claus Brabrand Sérgio Soares

®
‘Centro
~:'nformética :é T Unfly Ser:-l}y @
$ OFTWARE-PRODUCTIVITY- GROUP

Virtual Separation of Concerns (VSoC)

(N\
public boolean validate () {
String error = public boolean validate () {
showMessage(“Error: “ + error); String error = ...
Hifdef PDF showMessage(“Error: “ + error);
if (error.equals(“”)) :>
//enable PDF button |:|
#endif
#ifdef INTERRUPTION I
inter = getIinterruptions(); }
#endif —

}
—

‘Centro L.
~delnformatlca

But not enough for Feature Modularity...

Centro
~delnformatlca
U-F-P-E

7

—

public boolean validate () {

Feature

String errorD

showMessage(“Error: “ + error);

\\\Efff?dency!

if (error.equals(“”))
//enable PDF button

Problem

e Developers can introduce compilation and behavioral
errors to features due to feature dependencies...

[public boolean validate () {) i public boolean validate () {)
glcring error = ...; ;tring[] error = ...;
;EowMessage(”Error: “+ error); :> ;HowMessage(”Error: “+ error);

if (error.equals(“”)) if (error.equals(”))
//enable PDF button //enable PDF button
} }

——

‘Centro L.
~delnformatlca

... leading to lower productivity

Late error detection

Developers discover the problem only when compiling and
executing the problematic product

Difficult navigation
Developers do not know where are feature dependencies
Even worse when using VSoC: features are hidden!

To minimize these
problems:
Emergent Interfaces

Emergent Interfaces in a nutshell

()

public boolean validate () {

String error = ..;

showMessage(“Error: “ + error);

hmm. I'll take a
look there! |:|

Vv

Be careful! You provide o
‘ error for the PDFF}eature! \ <:| Code Analysis is performed...
‘Centro

~¢elnformética

Dependencies captured! Developers can ®
focus on the impacted features...

>
‘ QQ

| don't need to
open and analyze
the blue feature!

or: “ + errory \d’(°

&°

N\

Be careful! You provide
error for the PDF feature!
(YELLOW)

Now, we know that
feature dependencies
can cause problems

Also, we know that
Emergent Interfaces
complement VSoC

Agenda

‘Centro

~delnformética
U-F-P-E

()

Question 1: how often methods with
preprocessors directives contain

feature dependencies?

_ h
Why is this question important?

To assess to what extent dependencies

IS a problem in practice
—

Question 2: how feature dependencies
impact maintenance effort when using
VSoC and Emergent Interfaces?

\—)
Why is this question important?

To better understand to what extent

emergent interfaces complement VSoC
—

‘Centro L,
‘ denformatica

Study settings

43 Preprocessor-based Software Product lines

Java and C
Different sizes and domains

Script tool for computing two metrics:

MDi: number of methods with preprocessor directives
MDe: number of methods with feature dependencies

Feature dependencies our tool considers

()
int x = 0;

X
Declaration/Assignment - Use:
One #ifdef

int x = 0;

‘Centro

~delnformética
U-F-P-E

int x = 1;

X

~\

-
int x = 0; - <y
int x 0;
X
—_— —

Declaration/Assignment - Use:

int x 0;

int x 1;

—_—

Alternative features:

Nested #ifdefs

int x = 0;

—)

#ifdef (light gray) followed by #else (dark gray)

Effort estimation (= or #)

f:

‘Centro

~delnformética

if (1 < len && 1 >= 0) {

.
:TScreen *screen = TScreenOf (xw) ;I

1.
i

//\
1 screen

screen

| 2
5 g
e 3
o @
LL. LL.
Y Y
o o
Feature | LOC - —
"EESE 2 2
[48 € S
1.0 [= = 2
Approach LOC NoFa NoFe
VSoC 82 3 3
Emergent 61 2 2

Methods selection

Randomly methods selection

Only methods that contain dependencies (our focus)

Which methods should we select?
Many fragments: favoring emergent interfaces
Few fragments: no differences

O
Groups
e Two groups: Group 2:
> 2 fragments
o—©@ @ o—0—© >
1 2 3 4) 6 Number of
Group 1: Fragments

1 or 2 fragments

e Why 2 as a threshold?

» Differences between both approaches appear from 2
» 1: both approaches have always the same effort estimation

‘ Centro L.
~delnformatlca

Methods selection to fit the groups

Proportional selection according to each SPL

Example: libxml2

Group 1: 125 methods (1 method selected)
Group 2: 953 methods (8 methods selected)

Majority
1:1 (28 product lines)

General algorithm

Algorithm 2 General algorithm of our evaluation.
while we do not reach 3 replications do

for each product line do
- Randomly select methods with feature dependencies proportionally to fit the
groups;
for each method do
- Randomly select a variable;
- From this variable, compute the effort (LOC, NoFa, and NoFe) of both ap-
proaches.
end for
end for

end while

‘Centro ,
~¢elnformatica

‘Centro L,
‘ denformatica

Question 1: how often
methods with preprocessor
directives contain feature
dependencies?

Frequency of feature dependencies

Methods with Dependencies

/ Methods with Directives

System MDe MDi MDe/MDi
berkeley
dia 1.94% 3.04% 63.75%
freebsd 6.57% 8.98% 73.2%
gcc 4.55% 5.95% 76.4%
gimp 1.85% 2.87% 64.48%
gnuplot 10.14% 15.41% 65.83%
linux 3.68% 4.9% 75.09%
privoxy 17.84% 20.95% 85.15%
xterm 20.46% 24.63% 83.08%
Yo lampiro 0.33% 2.6% 12.5%
ARy nformética

Our data reveal that...

11.26% + 7.13% of the methods use preprocessors

65.92% + 18.54% of the methods with directives
also have dependencies

So, the feature dependencies we considered are
indeed common in the 43 SPLs we studied

CCCCCC

Question 2: how feature
dependencies impact
maintenance effort when
using VSoC and emergent
interfaces?

Selection: methods, groups, SPLs

For each replication: 115 methods

Methods selection according to each product line

Number of SPLs Group 1 Group 2
23 1 1
13 2 1
3 (gimp, gnumeric, lampiro) 3 1
2 (parrot, linux) 4 1
1 (libxml2) 8 1
1 (sendmail) 1 5

CCCCCC

Global effort estimation

e Emergent interfaces: effort reduction in all replications

fragments

features lines
400 300 S 2000
300 200 = 1500
200 1000
100 B vsoC
100 500 -
0 0 0
Fragments Features LoC
‘Centro

~delnformética e
U-F-P-E

Emergent Interfaces effort reduction

e Effort reduction in the majority of the SPLs

Rep. Methods (Less effort) [SPLs (Less effort)
1 40 (33%) 34 (79%)
2 41 (34%) 36 (84%)
3 47 (39%) 36 (84%)

e Distribution by groups:

Methods (Less effort)
40 (33%)
41 (34%)
47 (39%)

‘Centro L.
~delnformatlca

When increasing the number of @
fragments...

e ... the percentage of methods where Emergent
Interfaces achieve effort reduction also increases...

100% i
95%
90%
85%

/ & Replication 1
- Replication 2

80% Replication 3

Effort reduction

75%
700%™

65%
>2 >3 >4 >5 >6

stf,.;,o ” @
nrormatica
’~ Number of fragments

Threats to validity

Metrics and effort estimation

Overhead to compute emergent interfaces
Time better measure effort

Highlighting tools
Do not consider dataflow analysis
We cannot hide features

Dependencies
Interprocedural, chain of assignments... (not computed)

Concluding remarks

How often feature dependencies occur in practice?

65.92% + 18.54%
Reasonably common in the SPLs we studied

Emergent interfaces achieve effort reduction:
Methods: 35.25% + 3.6%;
Majority (64.75%): same effort of VSoC
So, the negative impact of VSoC is not so common

More significant effort reductions: methods with

~...many fragments
/Ry formatica

