Specifying Design Rules in Aspect-Oriented Systems
Marcos Désea’, Alberto Costa Neto!, Paulo Borba', Sérgio Soares?

! Informatics Center — Federal University of Pernambuco
Caixa Postal 7851, 50740-540 — Recife — PE — Brazil

2Computing Systems Department — Pernambuco State University
Rua Benfica, 455, Madalena, 50720-001 — Recife — PE — Brazil

{mbd2, acn, phmb}@cin.ufpe.br, sergio@dsc.upe.br

Abstract. Modularization of crosscutting concerns is the main benefit provided
by Aspect-Oriented constructs. However, current AO languages do not address
class modularity adequately. In order to achieve both class and crosscutting
modularity, Design Rules for AO Systems should be defined. In this work we
propose a language to specify Design Rules that establish the minimum require-
ments to enable the parallel development of class and aspects. Beyond the
modularization improvement, the language creates a simpler and unambigu-
ous specification, supporting the development of mechanisms for automatically
checking the specified rules and making easier the using of the parametrization
mechanisms.

1. Introduction

Aspect-Oriented Programming (AOP) [Kiczales et al. 1997] has been proposed as a tech-
nique for modularizing crosscutting concerns. Previous work [Ribeiro et al. 2007] pre-
sented an analysis about Class and Crosscutting Modularity using different versions of a
system both OO and AO, and confirmed that Crosscutting Concerns localized in single
modules (aspects) provide better crosscutting modularity. On the other hand, this ap-
proach does not provide class modularity because in order to reason about any class it is
necessary to consider all aspects implementations.

This weakness can be mitigated, achieving also class modularity, by using ade-
quate Design Rules between classes and aspects, which are necessary to reduce syntactic
and semantic dependencies [Neto et al. 2007] in AO systems. Design rules are not just
guidelines and recommendations: they generalize the notion of information hiding inter-
faces and must be rigorously obeyed.

The use of Design Rules has been discussed in other works but none of these
works propose a final solution where they can be described in an unambiguous manner
and utilized not only for checking but as a guideline for developers since the initial phases
of the development process. In this work we discuss about the problems found in some of
these proposals (Section 2).

The main contribution of this paper is a Design Rule specification language (Sec-
tion 3) that improves class and crosscutting modularity. This language defines a more
modular design to decouple classes and aspects through the establishment of the mini-
mum requirements necessary to work in parallel. These requirements are checked stat-
ically. Beyond all the advantages cited so far, the usage of a specific language for this
purpose brings the following advantages:



< IS IC NV RN TR SN

S I N I S R S S R e e e el
NEWNHN—=,OO0VOIAN0NRAWND—= O\

e Allows the description of the Design Rules in a simple and unambiguous manner,
making easier the development of mechanisms for an automatic checking of the
rules in the written code.

e Provides a guideline to be utilized since the initial development phases of the com-
ponents, specifying the essential constructions so that each developed component
can have the proper functionality.

The language was initially evaluated in real systems promoting a simpler and un-
ambiguous specification. Moreover, it seems to improve the opportunities for reuse in
comparison to other approaches (Section 4).

2. The Problem

In this section we discuss some works related to the modularity problem presented in Sec-
tion 1. The concept of modularity applied to software development was first introduced by
Parnas [Parnas 1972]. The following quality attributes are expected in a modular design:
Comprehensibility, Changeability, and Independent Development.

Regardless of the fact that the OO approach reach Class Modularity, OO applica-
tions design usually results in tangled and scattered code, due to the existence of crosscut-
ting concerns, reducing the degree of modularity. AOP was proposed to modularize these
crosscutting concerns, but constructions supported by Aspect] [Kiczales et al. 2001] like
languages may lead to high coupling between classes and aspects, because aspects are
usually dependent on classes implementation details.

Listing 1. OO Display Update Example.

interface IShape {
public void moveBy(int dx, int dy);
}

class Point implements IShape {
private int x, y;

public void moveBy(int dx, int dy) {
setX ( x + dx )
setY( y + dy );
Display . update ();

}

class Line implements IShape {
private Point pl, p2;

public void moveBy(int dx, int dy) {
pl.setX( pl.getX()+dx );
pl.setY( pl.getY()+dy
p2.setX ( p2.getX()+dx
p2.setY ( p2.getY ()+dy
Display . update ();

— = = —

The Listing 1 shows an implementation of the non-crosscutting concerns Point
and Line. For simplicity, constructors and accessors (get and set) methods were omitted.
In this implementation we observe the scattering of calls to the method Display.update
tangled with shape positioning adjustment. That makes difficult reusing the class and
suggest that it is necessary to improve the modularization somehow.




01NN WN =

Listing 2. Display Update Aspect.

public aspect UpdateSignaling {

pointcut change ():
execution( void IShape.moveBy(int, int) );
after () returning: change (){
Display . update ();
}
}

The Listing 2 shows an aspect implementation of the crosscutting concern Dis-
play Update. This design provides better crosscutting modularity because calls to Dis-
play.update() would be removed from classes Point and Line (lines 11 and 23 from Listing
1) and localized in a single place (UpdateSignaling aspect).

Although creating an aspect to modularize the crosscutting concern Display Up-
date improves the crosscutting modularity, it breaks the class modularity, because class
developers should be concerned about the aspect so that, for example, the developers
of Line and Point classes do not call again the Display.update() method within moveBy
method. This situation exposes some modularity problems: (1) the comprehensibility is
compromised, since two modules (class and aspect) should be studied in order to under-
stand the concern and how they interact (required join points can not be changed, for
example); and (2) the parallel development and changeability is problematic, because one
developer can implement unintended behavior into a module which, though it is not under
his responsibility, might break the system.

This weakness can be mitigated by using adequate design rules between classes
and aspects. Design Rules are not just guidelines or recommendations: they must be rig-
orously obeyed in all phases of design and production [Baldwin and Clark 2000]. They
are design parameters used as interfaces between modules that are less likely to be
changed [Lopes and Bajracharya 2006]. In this way, they can promote decoupling of de-
sign parameters, like interfaces decrease the coupling between software components. An
example of a Design Rule is: “every class from a package must be Serializable”.

The use of Design Rules has been discussed in other works. Sullivan et
al [Sullivan et al. 2005] used Design Rules specified in natural language and in a subse-
quent work (Griswold et al [Griswold et al. 2006]) proposed a way of specifying them us-
ing Aspect] constructions so that they could be automatically checked. Some of the short-
comings of the first approach are that they can be imprecise, are difficult to enforce, and
check. On the other side, trying to express the Design Rules using Aspect] results in com-
plex verification aspects. Chavez et al [Chavez et al. 2006] proposed a visual model that
express some kinds of Design Rules. Despite a less ambiguous specification, the model
does not allow the automatic verification of the code. Morgan et al [Morgan et al. 2007]
presents a language, inspired by the pointcut language in Aspect] to declaratively encode
design rules to OO systems. However, this language is useful only in OO systems and
does not permit a clear definition of the rules for the parallel development of components.

In this paper, we propose a language to specify design rules in order to reduce syn-
tactic and semantic dependencies between aspects and classes. This language allows to
specify the set of minimal requirements that enable the parallel development, by reducing
the coupling between such components and promoting modularity. By using the language




0NN AW~

it is possible specify the Design Rules in unambiguous form and automatically verify if
they are being followed by both class and aspect developers. Moreover the language
provides a guideline since the early phases of the system development.

3. Design Rules Specification Language

In this section we present a Design Rule specification language. The main objective of
this language is to decouple syntactically and semantically classes and aspects, maximiz-
ing independent development opportunities. Through the definition of Design Rules we
argue that both class and aspect developers can work independently if a minimum set of
constraints is defined and respected.

Listing 3. Display Update Design Rule.

dr DRUpdateShape {
interface IShape {
void moveBy(int dx, int dy);
}

class Shape implements IShape {
void moveBy(int dx, int dy) {
xset (IShape+.x);
}
}

class Display {
void update ();
}

aspect UpdateSignaling {
pointcut change ():
execution ( void IShape.moveBy(int, int) );

after () returning: change (){
xcall ( void Display.update() );
}

}
}

Listing 3 contains a Design Rule specification for the Display Update concern
shown in the section 2. The Design Rule DRUpdateShape enforces that it is necessary
to define an interface IShape containing at least the method moveBy (Lines 2-4). Also,
all classes acting as a Shape must implement IShape and state changes on attributes are
allowed only within the moveBy method (Lines 6-10). It also requires that a class Display
with a method update must exist (Lines 12-14). Additionally, it requires the existence of
the aspect UpdateSignaling with a pointcut change. This pointcut must be referred by an
after returning advice that is the exclusive point, among the components specified by the
Design Rule, allowed to call the method update from class Display (Lines 16-23).

The Design Rule DRUpdateShape specifies the minimum requisites that each
component developer must know about the others, hence allowing their independent de-
velopment. This specification uses a language similar to that used in the development
of the components, making the specification much simpler. Comparing with Griswold et
al [Griswold et al. 2006] approach, it would be necessary approximately twice lines of
code to specify the XPI, yet, many rules would still being expressed in natural language.

The Listing 4 shows the Design Rules wusing the Griswold et
al [Griswold et al. 2006] approach. This approach allows only to check if the De-
sign Rules are being followed, but requires from the class developer deep knowledge




< IS IC NV NI SN

about Aspect] constructions, besides it does not guide developers. Our language supports
the declarative specification of Design Rules adopting a syntax similar to the used by
both developers.

Listing 4. Display Update XPI.

public aspect XDisplayUpdate {

/x The purpose of the joinpoint() PCD is to expose all and only Shape abstract
state transitions. We require that all such transitions be implemented by calls to
Shape mutators with names that match the PCDs of this XPI, and we assume that
any such call causes such a state transition. Advisors of this XPI may not change
the state of any Shape directly or indirectly. The topLevelJoinpoint() PCD exposes
all and only “top level” transitions in the abstract states of compound Shape
objects. x/

public pointcut joinpoint(Shape s):
target(s) && call (void Shape+.moveBy (..);

public pointcut topLevellJoinpoint(Shape s):
joinpoint(s) && !cflowbelow (joinpoint(Shape));

protected pointcut staticscope ():
within (Shape +);

protected pointcut staticmethodscope ():
withincode (void Shape+.moveBy (..));

}

/% Checks the contracts for the XDisplayUpdate XPI. x/ public
aspect FigureElementChangeContract {

/* PROVIDES: XPI matches all calls and only calls to Shape mutators x/
declare error:
(! XDisplayUpdate . staticmethodscope () &&
set(int Shape+.x)): Contract violation: must set Shape field inside
setter method!;

/% REQUIRES: advisers of this XPI must not change the state of any Shape object x/
private pointcut advisingXPI():
adviceexecution ();

before (): cflow(advisingXPI())
&& XDisplayUpdate.joinpoint(Shape) {
ErrorHandling . signalFatal (Contract violation: advisor of
DisplayUpdate cannot change Shape instances);

The language supports the specification of the structural rules of classes, inter-
faces and aspects, enabling also the establishment of behavioral rules. These rules are
valid within classes and aspects in both methods and advices.

The Table 1 shows the behavioral rules provided by the language. The scope of
these rules includes classes and aspects methods and advices. Every rule initiated by ’x’
guarantees that the rule will be followed only in the defined scope and this will not be
possible in any other location. For example, the xcall rule guarantees that the method will
be called exclusively within the scope which it was defined and no other scope among the
components specified by the Design Rule will be call this method. In case that the rule
xcall(method) exists in more than one scope, then this call can only be made within these
defined scopes.

These rules are also useful to guarantee, for example, that a method must not be
called in a given scope, by using the negation operator (!).




(O N S

0NN AW =

=)

Table 1. Behavioral Rules provided for the Design Rule Language.
Rule Description
call(method) | Must have a method call within the defined scope.
xcall(method) | Must have a method call exclusively in the defined scope.
set(attribute) | Must have an attribute state change within the defined scope.
xset(attribute) | Must have an attribute state change exclusively in the defined
scope.
get(attribute) | Must have an attribute read within the scope.
xget(attribute) | Must have an attribute read exclusively in the defined scope.

Listing 5. Display Update Design Rule.

class Shape implements IShape {
void moveBy(int dx, int dy) {
lcall (IShape .moveBy(int dx, int dy));
}
}

Listing 5 shows an improvement on the Design Rules previously established, forc-
ing the inexistence of calls to method moveBy within it.

In order to express that classes and aspects must follow a Design Rule, we have
chosen to include explicit references from each component to the Design Rules that it
implements. It is important to note that although this breaks the obliviousness principle,
we argue that even without the explicit references, the class developer would have to be
aware of all aspects presents in the system. Using our approach, he can be oblivious about
aspects, but must be aware of the constraints contained in the Design Rules.

Listing 6. Components.

interface IShape implements DRUpdateShape {
// original code
}

class Display implements DRUpdateShape {
// original code
}

aspect UpdateSignaling implements DRUpdateShape {
// original code within the pointcut description
}

class Line implements DRUpdateShape (Shape) {
// original code
}

class Point implements DRUpdateShape(Shape) {
// original code
}

The Listing 6 depicts the behavior of a concrete implementation of the compo-
nents complying with a Design Rule DRUpdateShape shown in the listing 3. When the
component name matches the name of a component specified by the Design Rule, for
example like class Display (Line 5-7)), it must follow the rules established for the com-
ponent Display. Moreover, when the component name differs, we must explicitly inform
(between parentheses) the name of the corresponding component specified in the Design




[ R N

[l e N R N S

O g g Sy
VWD = O 0

Rule. The class Line (Line 13-15), for example, must follow the rules specified for the
component Shape.

Furthermore, the language allows that several components implement the same
Design Rule assuming the same function. In the Listing 6, it could exist, for example,
different implementations for the aspect UpdateSignaling. Generally, this is necessary
when there is a possibility of different configurations for the same system.

To indicate which components are going to be used in a given instance of the
system, the specification of the Design Rule configuration module is needed. Through
the module it is also possible to create different system configurations where each module
would register one configuration option.

Listing 7. Configuration Module Example.

module ModuleUpdate implements DRUpdateShape {
IShape display.IShape;
Display display.Display;
UpdateSignaling display.UpdateSignaling;
}

The Listing 7 shows an example of module configuration for the Design Rule
specified in the Listing 3. This module indicates which classes or concrete aspects will
be used for the Design Rule instantiation DRUpdateShape. For example, the aspect Up-
dateSignaling specified in the Design Rule will be bounded to the aspect with the same
name that is inside the package display.

3.1. Parametrization

The language also allows the specification of parameterized Design Rules. The
parametrization is important for the specification flexibility and reuse.

The Listing 8 describes a partial implementation of the Design Rule DRUpdate-
Shape where the update method is parameterized. This description makes the nomencla-
ture that can be used by the method flexible and also allows that numerous methods can
be considered as update methods. The concrete value of each utilized parameters will
always be specified within the configuration module, thus, it is possible to create different
system configurations by modifying only the parameters values within the module.

Listing 8. Parametrization Example.

dr DRUpdateShape{
aspect UpdateSignaling {
pointcut change ():
execution ( void IShape.moveBy(int, int) );
after () returning: change (){
xcall ( <update_method> );
}
}
class Display {
<update_method >;
}
}

The Listing 9 show the configuration module of the parameterized Design Rule.
The value of the parameter update_method is associated using the reserved word where




NN AW =

inside the Display component specification. The parameter value could also be associated
inside the UpdateSignaling component, but this value must be specified by only one of
these components.

Listing 9. Configuration Module with Parametrization Example.

module ModuleUpdate implements DRUpdateShape {
IShape display.IShape;
Display display.Display where
update_method: veoid update ();
UpdateSignaling display.UpdateSignaling;

3.2. Design Rule Specification Language Meta-Models

This section presents the language and the configuration module meta-models that show
other possible Design Rules the language can describe. They are not explored in detail
due to lack of space.

*

Rules Structural Rules Field Module
1.0 \
Method
1.7
* - \\/ Declarations
Class Aspect Advice |~ pehavioural Rules
Pointcut // Zr\,\ *
call Get Set Parameters

(a) (b)
Figure 1. Design Rule Language and Configuration Module Meta-Models

Figure 1(a) shows the Design Rules specification language meta-model. A rule
description is composed by one or more structural rules. They are used to define structural
constraints for classes and aspects. Thus, a class can define fields, method signatures and
behavioral rules. This behavioral rule can be defined within classes and aspects scope or
within methods and advices. When a behavioral rule is defined within the scope of a class
or aspect it means that it has to be executed at any place, for example, if a rule call is used
within the scope of a class means that the required method must be called at least once
in any place this class. The Figure 1(b) depicts the configuration module meta-model
used to describe a configuration option of the specified components by Design Rule. The
configuration module define which components will follow a particular structural rule
(Declaration) and which parameters (Parameter) are informed.

For simplicity we do not detail the parametrization mechanism in this model. This
mechanism can be used to parameterize the method signature and fields. For example, we
can use the rule set(field) to allow that a particular field is updated. This field could be
parameterized and the concrete value would be specified by configuration module.

4. Evaluation

This section describes our initial experience in using the proposed language to specify the
Design Rules in two real AO systems. We focused on defining Design Rules that enable




parallel development, but there are others not covered by the language. These Design
Rules were checked manually because we did not develop yet a verifier.

4.1. Health Watcher system

The first system where we use the Design Rule language was the Health
Watcher (HW) system, a real web-based information system implemented in As-
pect] [Kiczales et al. 2001]. This system was selected because it was used in many pre-
vious works [Soares et al. 2002, Greenwood et al. 2007, Neto et al. 2007] and its design
has a significant number of non-crosscutting and crosscutting concerns.

We specified some Design Rules of this system using the language. In the gener-
ated specifications, the rule xcall was utilized fairly enough, for example, allowing calls
to the synchronization mechanism only within its responsible aspect.

Another language mechanism fairly utilized in the Design Rules specification is
the parametrization. In the HW the parametrization was used, for example, to define
facade methods where transactional management would be necessary. These methods
were specified within the configuration module belonging to the defined Design Rule.
Considering the utilization of the same transactional management mechanism, this Design
Rule could be easily reused in other systems, changing only the configuration module.

The utilization of the language to define Design Rules seemed fairly simple. The
parametrization mechanism created Design Rules that can be reused in other applications.
However, we believe that some improvements have to be done in the parametrization
mechanism to enhance the language expressivity.

4.2. BestLap - Arena

We have also applied the proposed language to specify Design Rules related to an optional
feature called Arena in a J2ME mobile game called BestLap. This feature consists of
posting the player score to a server after a game execution. This feature imposes a series
of restrictions on the base code, like calling methods from certain points and providing a
specific set of members (attributes and methods).

The Arena feature is characterized by a strong heterogeneous crosscutting, in-
volving components like menu exhibition and event handling, network communication,
additional screens and data. Our language seems to be useful to establish which methods
must be present in certain core classes and to enforce some method calls within specific
points. By making this clear in a Design Rule, it is possible to evolve core classes and
aspects because the dependencies between them are visible to developers.

Although the language has been useful to express the constraints imposed by the
optional feature Arena, we believe that more constructs are necessary to deal with alter-
native features, that may impose different constraints. Another point we did not explore
was the feature interaction.

5. Related Work

Aspect] declare error and declare warning constructions [Kiczales et al. 1997] are useful
to prohibit some join points, but can not be used to force the existence of a specific join
point. Besides, there are design rules with structural requirements that again can not be



checked with these constructions. As an example, We can check if an specific method
is called or executed using declare error/warning and consider this an error, but we can
not check if the same method is defined in a class (structural constraint) because defining
a method is not a join point in Aspect]. In addition, it is not possible using declare er-
ror/warning to force a call to a method from an specific point because its semantics is to
prohibit a join point and not require it. In contrast, the proposed language aims to guide
developers during initial development phases.

Sullivan et al. [Sullivan et al. 2005] presented a comparative analysis between an
AO system developed following an oblivious approach, with the same system developed
with clear design rules that document interfaces between classes and aspects. In this
work the design rules are specified in natural language, leading to a long and ambiguous
interpretation in an automatic checking.

Griswold et al. [Griswold et al. 2006] showed how to express part of the design
rules into a set of Crosscutting Programming Interfaces (XPIs) that are useful to docu-
ment and check part of the design rules (contracts). These XPIs were specified using
Aspect]. Although it was possible to check part of the design rules, the use of a language
not designed to this propose leads to very complex specifications (contracts imposed by
aspects). The language we propose in this paper eliminates the ambiguity that may be in-
troduced by natural language and easies the task of specifying design rules. Additionally,
it enables the parallel development of components, supporting the clear specification of
responsibilities that each component developer must attend.

Chavez et al [Chavez et al. 2006] presented crosscutting interfaces as a conceptual
tool for dealing with complexity of heterogeneous aspects at the design level. This work
also presents a modeling notation for description of architectural-level aspects that also
supports the explicit representation of crosscutting interfaces. However, despite of using
a visual notation is important for documentation purpose, it does not enable to check if
the code was built according to established interfaces. Our proposal, besides enabling the
specification a major number of design rules uncovered by the visual notation, allows to
verify automatically if code is in conformity with the specified design rules.

Morgan et al [Morgan et al. 2007] presents a language, inspired by the pointcut
language in Aspect] to declaratively encode design rules to OO systems. However, this
language is useful only in OO systems and does not permit a clear definition of rules for
parallel development of components.

Open Modules [Aldrich 2005] permits defining an interface composed by a set of
pointcuts that can be advised by clients, introducing a form of encapsulating join points
occurring inside a module and protecting them from external advising. Although join
point hiding is an important concern, it does not provide information to the aspect devel-
oper beyond exported join points. Our approach aims to support class and aspect develop-
ers since initial development phases through the establishment of some design rules that
serve as interface between them. It also provides a mechanism that enforces a structure
to both classes and aspects. This structure can be useful to write pointcuts, advices and
inter-type declarations that refer only to classes methods present on the design rule.

Kellens et al [Kellens et al. 2006] propose the concept of model-based pointcuts
that capture join points based on conceptual properties instead of structural properties of



the base program entities, achieving a low coupling of the pointcut definition with the
source code. However, changes to base code may impose modifications in the conceptual
model, although generally protecting aspects from changes. Our approach, though based
on structural properties, supports parametrization that is useful to accommodate syntactic
changes. Additionally, both classes and aspects agree on a common interface that exposes
requirements to both, specially during early development phases.

6. Concluding Remarks and Future Work

We presented in this work a language for Design Rules specification in AOP systems that
defines the minimum requirements to be followed by developers of classes and aspects.
Beyond the modularity enhancement, the utilization of a specific language for this purpose
generates a unambiguous and simpler specification.

Another benefit presented is the possibility of defining and using parametrization
mechanisms. This characteristic increases the possibility of specified Design Rules reuse
decreasing consequently the involved costs. When using this language in real systems we
verified the importance of the parametrization in several examples.

The language was evaluated specifying the Design Rules of a Web based system
called Health Watcher and an optional feature called Arena in a game called BestLap. This
work presented that some improvements still have to be done to improve the language
parametrization mechanism and new constructions able to deal with alternative features
can be also necessary.

The next steps are clearly define the language semantics, utilize the language to
describe Design Rules in other case studies and develop a compiler that automatically
checks if the rules are followed. In addition, we are evaluating new constructions that
tackle more specific problems in AOP product lines and new parametrization mechanisms
that may improve the language expressivity.

7. Acknowledgments

We would like to thank CNPq and CAPES, Brazilian research funding agencies, for par-
tially supporting this work. In addition, we thank SPG' members for feedback and fruitful
discussions about this paper.

References

Aldrich, J. (2005). Open Modules: Modular Reasoning about Advice. In Proceedings of
the 19th European Conference on Object-Oriented Programming.

Baldwin, C. Y. and Clark, K. B. (2000). Design Rules, Vol. 1: The Power of Modularity.
The MIT Press.

Chavez, C., Garcia, A., Kulesza, U., SantAnna, C., and de Lucena, C. J. P. (2006). Cross-
cutting interfaces for aspect-oriented modeling. Journal of the Brazilian Computer
Society, 12(1):43-58.

Greenwood, P., Bartolomei, T., Figueiredo, E., Désea, M., Garcia, A., Cacho, N.,
SantAnna, C., Soares, S., Borba, P., Kulesza, U., and Rashid, A. (2007). On the Impact

Thttp://www.cin.ufpe.br/spg



of Aspectual Decompositions on Design Stability: An Empirical Study. In Proceed-
ings of the 21st European Conference on Object—Oriented Programming, ECOOP’07.
to appear.

Griswold, W. G., Sullivan, K., Song, Y., Shonle, M., Tewari, N., Cai, Y., and Rajan,
H. (2006). Modular Software Design with Crosscutting Interfaces. IEEE Software,
23(1):51-60.

Kellens, A., Mens, K., Brichau, J., and Gybels, K. (2006). Managing the evolution of
aspect-oriented software with model-based pointcuts. In European Conference on
Object-Oriented Programming (ECOOP), number 4067 in LNCS, pages 501-525.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G. (2001).
Getting Started with Aspect]. Communications of the ACM, 44(10):59-65.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., and Ir-
win, J. (1997). Aspect-Oriented Programming. In European Conference on Object—
Oriented Programming, ECOOP’97, LNCS 1241, pages 220-242.

Lopes, C. V. and Bajracharya, S. K. (2006). Assessing Aspect Modularizations Using
Design Structure Matrix and Net Option Value. In LNCS Transactions on Aspect-
Oriented Software Development I, pages 1-35. Springer.

Morgan, C., Volder, K. D., and Wohlstadter, E. (2007). A static aspect language for
checking design rules. In AOSD ’07: Proceedings of the 6th international conference
on Aspect-oriented software development, pages 63—72, New York, NY, USA. ACM
Press.

Neto, A. C., de Medeiros Ribeiro, M., Ddsea, M., Bonifacio, R., Borba, P., and
Soares, S. (2007). Semantic Dependencies and Modularity of Aspect-Oriented Soft-
ware. In Ist Workshop on Assessment of Contemporary Modularization Techniques
(ACoM’07), in conjunction with the 29th International Conference on Software Engi-
neering (ICSE’07). to appear.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053—-1058.

Ribeiro, M., Désea, M., Bonifacio, R., Neto, A. C., Borba, P., and Soares, S. (2007).
Analyzing Class and Crosscutting Modularity Structure Matrixes. In Proceedings of
the 21th Brazilian Symposium on Software Engineering (SBES 2007).

Soares, S., Laureano, E., and Borba, P. (2002). Implementing distribution and persistence
aspects with Aspect]. In 17th Annual ACM Conference on Object-Oriented Program-
ming, Systems, Languages and Applications, OOPSLA’2002, pages 174—-190, Seattle,
USA.

Sullivan, K., Griswold, W. G., Song, Y., Cai, Y., Shonle, M., Tewari, N., and Rajan, H.
(2005). Information Hiding Interfaces for Aspect-Oriented Design. In Proceedings of
the 10th European Software Engineering Conference held jointly with 13th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (ESEC/FSE),
pages 166—175, New York, NY, USA. ACM Press.



