On the Benefits of Scenario Variability as Crosscutting

Rodrigo Bonifacio
Informatics Center

Paulo Borba
Informatics Center

Sérgio Soares
Department of Computing and

Federal University of Federal University of Systems
Pernambuco Pernambuco University of Pernambuco
Recife, Brazil Recife, Brazil Recife, Brazil

rba2@cin.ufpe.br

ABSTRACT

Variability management allows product customization by
specifying variation points and composition rules related to
feature models and product configurations. This is an in-
teresting kind of crosscutting concern, since a feature might
require variation points to be spread into different artifacts
of each Software Product Line model (requirements, design,
source code, and tests). In order to modularize use case
scenario variability management, we proposed a crosscut-
ting approach that weaves scenarios, feature models, prod-
uct configurations, and configuration knowledge. The result
leads to independent specification of behavior and variabil-
ity concerns. In this work, we report the benefits of such
kind of separation of concerns by comparing our approach
with other techniques for handling scenario variability man-
agement.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements—Languages,
Methodologies; D.2.13 [Software Engineering]: Reusable
Software

General Terms
Design, Documentation

Keywords
Software product line, variability management, requirement
models

1. INTRODUCTION

The Software Product Line (SPL) approach for software
development corresponds to a set of practices that allows
strategic reuse by observing commonalities among applica-
tions in a shared domain [6, 20]. Based on specific feature
configurations, each member of the product line is assembled
by selecting, creating, or customizing specific artifacts. In
this way, features, that describe the SPL variability space,

phmb@cin.ufpe.br

sergio@dsc.upe.br

must be related to variation points that enable product cus-
tomization. Identifying what are the variation points re-
quired for each feature, which techniques are suitable for
specifying them, and how they should be related to feature
models are the main goals of variability management con-
cern. Actually, this is an interesting kind of crosscutting
concern, since features might require variation points to be
spread into different artifacts of SPL models.

Specifically in the context of requirement artifacts, several
techniques for use case scenario variability management were
proposed [14, 4, 10, 9]. However, existing works are basi-
cally concerned about how to represent variation points in
scenario specification; but critical properties of variability
management, such as evolvability upon common SPL incre-
ments and support for reusing specifications, are not well
addressed. We argue that, due to the crosscutting charac-
teristic of variability management, it is necessary to create a
clear separation between scenario specification and variabil-
ity management. Our approach (Section 2) weaves several
specifications (feature model, product configuration, con-
figuration knowledge, and use case model), which crosscut
each other, to better modularize scenario variability man-
agement.

In this paper, we report on the benefits of our approach
to support common increments in a real SPL (introduced in
Section 3). We achieve such goal by comparing our approach
to PLUC [4] and PLUSS [9], two representative notations
for SPL scenario variability. In order to increase our con-
fidence, different modularity analysis techniques were used:
Design Structure Matrices (Section 4.1), a suite of metrics
(Section 4.2), and observations of the effort needed to in-
troduce SPL increments using each approach (Section 4.3).
The main contributions of this paper are

e A comparative analysis that suggests the need for a
better separation between variability management and
SPL artifacts. Although our evaluation is restricted to
use case scenario artifacts, we believe that such sep-
aration is also useful for other product line artifacts,
and has already been claimed for source code [2, 8].

e An approach for comparing variability management
techniques. This approach is based on techniques and
common SPL increments that can also be applied to
analyze modularity in other SPL artifacts. Actually,
similar techniques have being used to evaluate modu-
larity in source code [18, 11, 13].

Finally, we compare our approach to the body of related
work (Section 5) and present our concluding remarks in Sec-
tion 6. Next, we introduce our approach for scenario vari-
ability management.

2. VARIABILITY AS CROSSCUTTING

Variability management, as discussed in the previous sec-
tion, is well known as a crosscutting concern. Therefore,
in order to increase modularity, it is necessary to provide a
clear separation between variability management and typical
software development assets (such as requirements, design,
source code, and test cases). The result is that both rep-
resentations can then evolve independently. However, such
kind of separation of concerns (SoC) also requires mech-
anisms to weave these representations during the product
engineering phase [6].

We proposed a modeling framework for use case scenario
variability that takes into account the crosscutting nature of
variability management. A complete description of our tech-
nique is beyound the scope of this paper, but can be found
elsewhere[1]. It is important to notice that our meaning of
crosscutting is based on Masuhara and Kiczales work [19].
Therefore, applying the modeling framework, we described a
weaver that takes four specifications as input: product line
use case model, feature model, product configuration, and
configuration knowledge. Such specifications crosscut each
other with respect to the resulting product specific use case
model (Figure 1). The weaver presents a clear separation
between variability management and scenario specification,
and also represents the processes required to compose those
input specifications. Section 3, which describes a running
example, presents instances of the aforementioned models.

—
— B
= o e A
SPL Use Case Feature Product Configuration
Model Model Configuration Knowledge
[Weaving Process }

Product Specific
Use Case Model

Figure 1: Overview of the weaving process

It is interesting to enforce that such composition allows the
representation of different kinds of variability, such as op-
tional use cases and scenarios, quantified changed scenarios,
and parameterized scenarios. Additionally, the weaver was
decomposed in subprocesses®, one for each kind of variabil-
ity. The semantics of those weavers (and the meta-model of
the input and output languages) were described using the
Haskell programming language. This decision was made in
order to formally represent our weavers and to keep a similar
level of abstraction that was used in [19].

n fact, each subprocess is also a weaver represented in our
modeling framework.

The first weaver is responsible for checking if a product con-
figuration is a valid instance of the feature model and for
selecting, based on the product configuration, the set of use
cases and scenarios that should be assembled into the fi-
nal product. The second weaver, instead, is responsible for
composing the resulting scenarios of first weaver, since they
might crosscut each other based on from steps and to steps
clauses (Figure 2). These clauses are used to modularize
specifications, in such way that one scenario can crosscut
scenarios of different use cases.

Use Case: Create and Send a Message

Id: 01

Goal: Create and send a multimedia message

Main Flow: The message box is not full.

From step: START
To step: END

id User Action System State System Response
M Starts the message center The message center applica-—
application tion is started
2M Selects Create New MMS The create a new MMS form
option is displayed
3M Fills in the message body The message body is filled
in
4aM Selects the send message The recipient form is dis-
option played
5M Fills in the recipient The recipient field is
field filled
M Selects the confirm option The message The message is sent to the
has not reached recipient and saved in the
<FolderSize> sent folder. The appli-
messages cation returns to message
center

Alternative Flow: Include a multimedia content
From step: 3M,4M
To step: 4M

id User Action

System State System Response

AL.1 | Select the include a <Con-
tentType> option

The list of all <Content-
Type> available content
type is displayed

The selected resource is
attached to the multimedia

AL.2 Selects a specific resource

message

Other alternative scenarios should be specified here

Use Case: Composition Mode Related to DRM Restrictions
Id: 02

Goal: Changes the composition behavior depended on DRM configuration

Alternative Flow: Insert a DRM restricted content in warning mode
From step: UC01/A1.1
To step: UC01/4M

id User Action

System State System Response

CM.1 The subscriber selects one
DRM restricted resource

Request a confirmation of
sending a DRM restricted
content

CM.2 Confirms the attachment
operation attached to the multimedia

The selected resource is

message

Figure 2: Examples of scenario composition

For instance, Figure 2 depicts that the behavior of Insert a
DRM restricted content in warning mode crosscuts the be-
havior of Include a multimedia content after Step A1.1 (from
step clause) and then returns to Step 4M (to step clause) of
Create and send a multimedia message. As a consequence,
after weaving the scenarios showed in Figure 2, the following
sequence of events is valid:

<1M,2M,3M,A1.1,CM.1,CM.2,4M,5M,6M >

The third weaver is responsible for binding parameters em-
bedded in scenario specifications. For example, the Include
a multimedia content scenario in Figure 2 is parameterized
according to the content types supported by a specific prod-
uct. The domain values of parameters are defined in the
product configuration (the selected features of a SPL mem-
ber).

Therefore, if a product is configured with supporting for
image and audio content types, only these options will be
available. In order to reduce coupling, a separated mapping
is used for relating parameters embedded in scenarios to fea-
tures selected in specific configurations. This decision pre-
serves the independence between these artifacts. Although
in this section we have already presented examples of our
approach, the SPL used in our comparative analysis is de-
scribed only in what follows.

3. MMS PRODUCT LINE

In order to compare the benefits of a clear separation be-
tween variability management and scenario specification, as
supported by the approach just introduced, we specify using
three different approaches, several use cases of a real multi-
media message (MMS) product line. The core use cases of
the MMS product line allow a subscriber to create, send and
receive multimedia messages. Such messages might include
both text and multimedia content (images, audio, video, rich
text). Depending on specific feature configurations (Fig-
ure 3), the behavior of core use cases might change, addi-
tional use cases (like Folder Management, Configure Compo-
sition Model) might be included, and parameterized values
might be instantiated. Next, we present a brief description
of the MMS product line functional requirements.

Create and send a message: mandatory requirement
that allows a subscriber to create and send a message. All
sent messages must be saved on sent folder, unless the max-
imum number of messages (expressed by the Size feature)
has been reached. Depending on the supported content, the
user might include different kinds of objects (image, audio,
video) into the message.

Receive a message: mandatory scenario that allows a sub-
scriber to receive and view incoming messages. All received
messages must be saved in the incoming folder. Depend-
ing on the supported operations related to structured data
(phone number, email), several optional scenarios can be
started (start a call, send an email, store phonebook data).

Display existing messages: mandatory scenario that al-
lows a subscriber to navigate in the message folders and
select an existing message for displaying its contents. After
selecting an existing message, other operations are available,
for example: edit the message contents, forward, remove, or
move the selected message to a user defined folder.

Configure composition mode: optional scenario that al-
lows a user to change the behavior of message composition
with DRM (Digital Rights Management) restrict contents.
If the restricted mode is selected, a message with restrict
contents could not be sent. On the other hand, if the warn-
ing mode is selected, a warning will be presented if the sub-
scriber tries to send a message with restricted content.

Structured Data Operations: optional scenario (zero or
more Structured Data Operations can be selected) that al-
lows a user to perform different operations from a displaying
message, if the body of the message includes some structured
data (like e-mail or phone number). Examples of such op-
erations are: store a number in address book and send a
message for a specific e-mail.

Based on the feature model depicted in Figure 3, and consid-
ering that the audio feature implies the image feature and
the video feature implies the audio feature, we are able to
derive more than one hundred members from MMS prod-
uct line. The implies relation means that, if a product was
configured with the audio feature, it must also be config-
ured with the image feature. As a brief introduction about
the feature model notation [7, 12], the relationships between
a parent feature and its children are categorized as: Op-
tional (features that might not be select in a specific prod-
uct; e.g. Composition Mode and Structured Data Opera-
tions), Mandatory (features that must be selected, if the
parent is also selected; e.g. Storage Size), Or (one or more
sub-features might be selected; e.g. Content Type), and Al-
ternative (exactly one sub-feature must be selected; e.g.
Composition Mode).

For simplicity, let us assume that three products (Table 1)
were defined in the SPL. This is required because some tags
in PLUC technique, which will be explained later, are com-
puted based on the specific members of the product line.

Table 1: Initial set of products

Product | Product Configuration

P1 Content Type (Image) and
Folder Management (Size (1000))
P2 Content Type (Image, Audio, Video) and

Structured Data Operations (Store) and
Folder Management (Size (1000))

P3 Content Type (Image, Audio, Video) and

Structured Data Operations (Store, Send Email) and
Composition Mode and

Folder Management (Size (1500), Multiple Folder)

The first configuration corresponds to a simple product, with
support only for image content, maximum number of mes-
sages equals to one thousand, and no support for structured
data operations and DRM composition mode. The second
one has support for all kinds of contents, the same maximum
number of messages (one thousand), and full support for
structured data operations. The later one also has support
for all kinds of contents, extended storage size (maximum
number of messages equals to one thousand and five hun-
dreds), full support for structured data operations, support
for DRM composition mode and Multiple Folders. Aiming
at generating the products showed in Table 1, it is necessary
to relate features to software artifacts. The configuration
knowledge [7, 20], one of the input models of our weaver, is
responsible for keeping this kind of relation. For instance,
considering the configurations described in Table 2, if the
feature Warning Mode Composition was selected for a spe-
cific product, the scenarios Include a Multimedia Content
(SC02) and Insert a DRM Restricted Content in Warning
Mode (SC14) would be assembled. In a similar way, if the
features Move Message and Multiple Folder were selected,
the scenario Move an Existing Message (SC09) would be
assembled.

Table 2: Segment of the Configuration Knowledge
Feature expression Selected artifacts
Warning Mode Composition — (SC02, SC14)
Move Message and Multiple Folder — SC09

‘ Structured Data Operations |

<

Folder Management

Content Type

Unrestricted | | Warning | | Restricted | | Store |

‘ Send Email | | Multiple Folder Support | | Storage Size |

| Image | | Audio | ‘ Video |

[Basic("1000"Int) | [Extended('1500%Int) |

Figure 3: MMS feature model

Next, we will present the specification of the Crate and
Send a Message use case using PLUC and PLUSS tech-
niques. The necessary description of both notations is also
presented.

3.1 Scenario specification in PLUC

Product Line Use Cases (PLUC) is a technique proposed for
representing SPL requirements [4]. For instance, Figure 4
presents the PLUC specification of Create and Send a Mes-
sage. This artifact is responsible for describing the behavior
related to create and send a message and all of its exten-
sions. In Figure 4, only two extensions are presented: In-
clude a Multimedia Content and Include a DRM Restricted
Content in Restricted Mode. Due to size constraints, other
scenarios are not depicted in Figure 4.

PLUC introduces special tags for representing variabilities
in use case scenarios. For example, Tag [VP3], in Step 6.al
of Figure 4, denotes a variation point that abstracts over the
supported content types. For each variation point used in
scenario specification, one tag must be defined. The actual
value of each tag is specified in the Variation Points section
and depends on each product specification. It is important
to notice that SPL members are also described using the
same tag notation (see the VP1 tag in Figure 4).

In PLUC, there is no specific artifact used to relate product
configurations to feature models. In the current example,
three products (Product 1, Product 2, and Product 3) are
defined based on the initial set of products (Table 1). Since
the values of alternative and optional variation points are
computed based on such products (as can be seen from the
case-of clause in Figure 4), instead of specific features, the
inclusion of a new member in the product line might re-
quire a deep review of all variation points. Moreover, since
the variation points and the product definitions are spread
among several PLUC artifacts, preserving the SPL consis-
tency is hard and time consuming. A systematic analysis of
such properties is described in Section 4

3.2 Scenario specification in PLUSS

PLUSS (Product Line Use case modeling for Systems and
Software engineering) is the other technique used in our com-
parative analysis. This approach presents a better separa-
tion between variability management and scenario specifica-
tion, since product definition is not tangled within use cases,
and the domain values of parameters (similar to PLUC tags)
are related to alternative features and are not embedded
in specifications [9]. However, according to PLUSS meta-
model [9], there is no specific artifact (such as configuration

Create and Send a Message
Goal: Create and send a multimedia message
Primary actor: Subscriber

Main Flow: The message box has not reached [VP2] messages.
The subscriber starts the message center application
The message center application is started

The subscriber selects Create New MMS option

The create a new MMS form is displayed

The subscriber fills in the message body

The subscriber selects the send message option

The recipient form is displayed

The subscriber fills in the recipient field

9. The recipient field is filled

10. The subscriber selects the confirm option

11. The message is sent to the recipient

12. The message is saved in the sent folder

13. The send message transient is displayed

14. The application returns to message center

NGO W e

Extensions

6 Include a multimedia content

6a.1.The subscriber selects the include a [VP3] content option
6a.2.The list of all [VP3] available resources is displayed
6a.3.The subscriber selects one specific resource

6a.4.The selected resource is attached to the multimedia message
6a.5.The application returns to step 6

6 Include a DRM restricted content in Restricted Mode
6b.1.The subscriber selects the include a [VP3] content option
6b.2.The list of all [VP3] available resources is displayed

6b.3.The subscriber selects one DRM restricted resource

6b.4.The system reports the DRM restriction

6b.5.The application returns to step 6

Other extensions should be described here
Variation points:

VP1: Alternative
0 : Product 1
1 : Product 2
2 : Product 3
VP2: Parametric
case VP1 of

0 : 1000
1 : 1000
2 : 1500

VP3: Parametric
case VP1 of

0 : (Image)

1 : (Image, Audio, Video)
2 : (Image, Audio, Video)

Figure 4: Create and Send a Message in PLUC

knowledge [7, 20]) used for relating features to optional use
cases, scenarios and steps. Another characteristic of PLUSS
is that all variant steps of a scenario specification are de-
fined in the same flow of events. For example, the third flow
presented in Figure 5 describes the behavior related to the
attachment of a DRM restricted content when a product is
configured in both restricted or warning mode. Steps 2(a)
and 2(b) are never performed together. They are alterna-
tive steps: Step 2(a) will be performed only if the feature
Restricted composition mode is selected; otherwise Step 2(b)
will be performed. Additionally, Step 3 is optional, and will
be performed only if the feature Warning composition mode
is selected. Therefore, based on PLUSS notation, features
must be directly related to the use case model.

In the current example, it is necessary to annotated the
PLUSS feature model in order to represent that the Storage
Size feature is related to the Size parameter; the Content
Type feature is related to the ContentType parameter; the
Restricted composition mode feature is related to the Step
2(a) of second extension; and the Warning composition mode
feature is related to steps 2(b) and 3 of the second extension.
Finally, notice that the behavior described in the second ex-
tension of Figure 5 might be required in other use cases,
like Selecting a Message to Forward - since it is possible to
attach a multimedia content while forwarding a message.
Hence, a feature behavior can be spread among several use
cases, resulting in maintainability issues: introducing a new
product variant might require changes in several artifacts.

Create and Send a Message

Goal: Create and send a multimedia message

Primary actor: Subscriber

Main Flow: The message box has not reached [SIZE] messages.

id Actor Action System Response

Starts the message center application

The message center application is
started

Selects Create New MMS option

The create a new MMS form is displayed

Fills in the message body and selects
the send message option

The recipient form is displayed

Fills in the recipient field

The recipient field is filled

Selects the confirm option

The message is sent to the recipient

and saved in the sent folder. The
application returns to message center

Extension Flow: Include a multimedia content

Id Actor Action System Response

1 In the third step, the subscriber se-
lects the include a [ContentType]
content option

The list of all [ContentType]
available resources is displayed

The selected resource is attached to
the multimedia message and the appli-
cation returns to step 6

2 Selects one specific resource

Extension Flow: Include a DRM restricted content

id Actor Action System Response
1 Selects the include a [Content- The list of all [ContentType]
Type] content option available resources is displayed

2(a) Selects one DRM restricted resource The system reports the DRM restric-
tion: the subscriber can not attach
the resource

2(b) Selects one DRM restricted resource The system asks the subscriber if he
(she) wants to send a DRM restricted
content

3) Confirms the attachment operation The selected resource is attached to

the multimedia message

Figure 5: Create and Send a Message in PLUSS

In what follows, we present a systematic evaluation of our
crosscutting approach by comparing it with the techniques
just presented.

4. EVALUATION

As briefly discussed in Section 3.1 and Section 3.2, both
PLUC and PLUSS approaches do not present a clear sepa-
ration between variability management concern and scenario
specification. This occurs because variants in PLUC are em-
bedded in use case specifications; and, although variants in
PLUSS are not tangled within use cases, such technique re-
quires a direct relation from features to use cases. As a result
of this kind of dependency, its is difficult to evolve both rep-
resentations independently. In this section, we apply Design
Structure Matrices (DSMs) [3] for better understanding the
effects of such dependences. DSMs is an interesting and
simple tool for visualizing dependences between design de-
cisions. Such decisions are distributed in both rows and
columns of a matrix.

We can identify which input data is required (a dependency)
by a design task by observing which columns are marked in
its corresponding row. However, DSMs do not offer sup-
port for quantifying relevant properties of scenario variabil-
ity management. Therefore, we also present an evaluation
based on modularity and complexity metrics. Finally, in
order to increase the confidence of our previously evalu-
ations, we analyze how the compared approaches support
some common SPL increments, such as introducing a new
feature variant and introducing a new product configuration.

4.1 DSMs analysis

In this work, we apply DSMs to visualize design depen-
dences in two levels: the first one presents a high level
view of dependences between variability management (fea-
ture model, SPL instances and configuration model) and
use cases; the second one presents how features are spread
among use cases. Observing the high level view of depen-
dences in PLUC (Figure 6(a)), we can realize that such
technique results in cyclical dependences between use cases
and variability management. First, use cases refer to tags
that are computed based on features and on specific SPL
instances (dependences illustrated in line 4 with columns 1,
2, and 3). On the other hand, the relationship between fea-
tures and artifacts and the definition of SPL instances are
embedded in the use cases (dependences illustrated in lines
1, 2, and 3 with column 4). This is an example of a non-
modular design, because, in PLUC, the Create and Send
a Message use case (Figure 4) specifies the space variabil-
ity for the Message Folder Size and the Supported Content
Types features. However, the same information is presented
in the Receive a Message use case. Additionally, the SPL
valid instances (products) and its configurations are spread
among several use cases. These dependences result in sev-
eral modularity issues, being difficult for: a) documenting
variability management and use case decisions in parallel;
and b) evolving both representations independently.

(a)
1 2 3 4
1 Feature model X
2 SPL instances X X
3 Configuration model x x X
4 Use case model X X X
(b)
1 2 3
1 Feature model X X
2 SPL instances X
3 Configuration model x X
4 Use case model X
(©)
1 2 3 4 5
1 Feature model
2 SPL instances X
3 Configuration model x b'e
4 Environment b'¢
5 Use case model X

Figure 6: High level view of dependences

PLUSS partially solves (see Figure 6(b)) the cyclical de-
pendences just presented, since SPL instances and feature

variants are not embedded in use cases. However, we can vi-
sualize a cyclical dependency between the feature model and
the configuration knowledge, since there is no independent
artifact used to relate features to use cases, Additionally,
it is not possible to independently evolve parameters in use
case specification and their domain values defined in fea-
ture models (resulting in the cyclical dependency between
use cases and features). Applying our approach results in a
better separation (Figure 6(c)) between variability manage-
ment and use cases, since the relationships between them
are specified in the configuration knowledge (they are not
established in the feature model, as in PLUSS).

As explained before, in PLUSS; it is necessary to introduce
some annotations in the feature model in order to define the
domain values of a scenario parameter. On the other hand,
in our approach, we introduced a third artifact (a map or
environment) responsible for this kind of relationship. Such
map is composed by pairs Parameter name x Feature id.
As a consequence of introducing such mapping, the name of
features can change without breaking the use cases (only the
environment should be updated). Because use cases do not
have explicit references to SPL instances and configurations,
introducing new features or SPL instances do not change the
use case model.

In the context of this work, DSMs were also applied for rep-
resenting the spreading of features into use cases. Such rep-
resentation was very useful for computing the metric Feature
Diffusion Over Use Cases [11] (explained in Section 4.2).
Due to space constraints, we do not present the PLUSS DSM
in this level of details. We can observe in the DSM of Fig-
ure 7(a) that, in PLUC, features are often spread among
several use cases. For example, feature Composition Mode
is relevant in the context of four use cases (labeled as the
design parameters 5 to 8). Other interesting characteristic,
which we can observe in the Figure 7(a), is that there is
no dependences between use cases, since each use case de-
scribes all of its extension points. However, it is not possible
to specify two use cases independently, since there is cycli-
cal dependences between use cases and features and these
features can be spread into several use cases.

In our approach, since one scenario can refer to steps spec-
ified in another use cases (either using step ids or annota-
tions), there are several dependences between use cases. For
example, in Figure 7(b), Structured Data Operation use case
depends on Select and Display a Message and on Receive a
Message use cases. However, features do not depend on use
cases anymore (the variability space is not represented in use
cases), there is no cyclical dependences, and use cases are
more concise (although the number of use cases is greater
than in PLUC). Two new use cases were created: Forward
a Message, that allows the reuse related to forward an ex-
isting message; and Structured Data Operations, responsible
for modularizing all specification related to the structured
data operation concern.

4.2 Quantitative analysis

Based on the scenario specifications and on the DSM analy-
sis (Section 4.1), we derived several metrics for quantifying
feature modularity and use case model complexity (related
to the size of specifications).

(&)

1 2 3 4 5 6 7 8
1 Composition mode X X X
2 Structured data operations X X
3 Folder management X X
4 Content type X X
5 Create and send a message X X X
6 Receive a message X X X X
7 Select and display a message x X
8 Configure composition mode x
9 Manage user defined folders X

(b)
1 2 3 4 5 6 7 8

1 Composition mode

2 Structured data operations
3 Folder management

4 Content type

5 Create and send a message X X
6 Receive a message X
7 Select and display a message X

8 Configure composition mode x

9 Manage user defined folders X

10 Forward a message X X
11 Structured data operation X X X

»

Figure 7: Features and use case dependences

Increasing levels of feature modularity implies better evolv-
ability, since SPL changes or increments can be performed
in a isolated way. Also, if a modular feature specification
could crosscut other specifications, it would be expected
more reusable assets.

Adapted from [13], the proposed modularity metrics quan-
tify two types of relations involving features and use cases.
First, Feature Diffusion over Use Cases (FDU) is used for
quantifying how many use cases are affected by a specific
feature. For instance, in PLUC we can realize (Figure 7(a))
that Folder Management feature affects Create and Send a
Message and Receive a Message use cases. So, the corre-
sponding FDU value is equal to two. On the other hand,
Number of Features per Use Case (NFU) is used for quan-
tifying how many features are tangled within a specific use
case. We assume that each use case should be interested in
its primary goal, although several features might be related
to the primary goal of a use case. For example, Content
Type and Storage Size features are part of the primary goal
of Create and Send a Message use case. However, Composi-
tion Mode and Structured Data Operations do not compose
its primary goal - actually, a specific product can be assem-
bled without such features. Therefore, NFU value for Create
and Send a Message PLUC is three. Moreover, we applied
the metric Feature Diffusion over Scenarios (FDS) in order
to quantify how many internal use case members (scenarios)
are necessary for the materialization of a specific feature.

Two metrics related to complexity were applied in this work.
The first one, vocabulary size, quantifies the number of use
cases (V.Sy) and scenarios (V' Sg) required by each of eval-
uated approaches. The second one, Steps of Specification
(SS), is related to the size of each scenario and identifies
how many pairs User action x System response compose a
specific scenario. Additionally, we also relate modularity to
complexity by applying Features and Steps of Specification
(FSS), which counts the number of steps of specification
whose main purpose is to describe the behavior of a feature.

Table 3 summarizes the evaluation of these metrics based on
the case study.

Table 3: Modularity and complexity metrics
PLUC PLUSS Crosscutting

Mean value of FDU 3.5 3.5 2
Mean value of FDS 6.25 5 4.25
Mean value of NFU 2 2 1
Mean value of FSS 12 11 10.25
VSU 5 5 7
VSS 27 24 23
SS 75 64 56

In Table 3 we present the average value of some metrics,
such as the mean value of Feature Diffusion over Use Cases
(FDU). Therefore, on the average, the running example points
that that each feature in PLUC is tangled within 3.5 use
cases. Notice that, since PLUC and PLUSS do not allow a
scenario to crosscut other scenarios in different use cases, it
is difficult to modularize features into a single use cases. The
result is that, when comparing to the crosscutting approach,
features are more diffused (FDU metric) and use cases are
less concise (NFU) in these approaches. The crosscutting
approach, in contrast, allows the composition of scenarios
through from steps and to steps clauses. Such mechanism,
although more expressive and formal, is similar to use case
extensions [15, 16, 17].

Another point is that vocabulary size metrics (such as VSU
and VSS) are better in the crosscutting and PLUSS ap-
proaches for different reasons. First, the number of sce-
narios in PLUSS is lower than in PLUC because a scenario
in PLUSS might be used for describing all related variants.
For instance, Include a DRM Restricted Content scenario
of Figure 5 describes the behavior for both Restricted and
Warning modes. This facility is not supported in PLUC
neither in crosscutting approach. However, in the crosscut-
ting approach the vocabulary size is lower than in other ap-
proaches for the reason that a scenario might be modularized
in such way that no duplications are required. For example,
in PLUC and PLUSS approaches, since forward an incoming
message operation can be started from Receive a Message
and from Select and Display a Message use cases, scenarios
related to DRM constraints are duplicated. This problem
can be avoided in our crosscutting approach by composing
scenarios of different use cases. Also related to vocabulary
size, the crosscutting approach presents more use cases than
PLUC and PLUSS. However, the number and complexity of
scenarios are lower. We discuss a bit more about these con-
clusions in Section 4.4. Next, we present the last evaluation
we performed in this work.

4.3 SPL evolution analysis

This section aims at evaluating how the results of DSMs
and quantitative analysis may be related to the flexibility,
which is quantified by introducing some common SPL incre-
ments. The new version of MMS product line introduces a
new structured data operation, allowing a subscriber to make
a call for a number embedded in a message; introduces a new
content type, allowing a subscriber to attach emotion icons
to messages; and defines a new product with the configura-
tion presented by Table 4.

Table 4: New MMS product line member
Product | Feature Configuration
Content Type (Image, Audio, Emotion icons)
P4 Data Operations (Store, Send Email, Place a call)
Composition Mode
Folder Management (Size (1000), Multiple Folder)

Table 5 summarizes the changes required by each SPL in-
crement. We evaluate, for each technique, the impact of
a given increment on the following SPL artifacts: feature
model (FM), configuration knowledge (CK), product con-
figurations (PC), and use case model (UC). Specifically for
the use case model, we present how many artifacts were
impacted. For the other ones, we present only if the ar-
tifact was modified or not. The main conclusion is that
defining domain values for parameters tangled within use
cases requires a lot of effort to make simple changes, such
as the inclusion of a new content type. In PLUC, this incre-
ment requires changes in all models. Additionally, each use
case that refers to the content type must be updated. Both
PLUSS and crosscutting approaches, which use feature mod-
els to define the domain values of parameters, require only
changes in feature models to introduce a new feature variant
(a new content type, in this case). Based on the increments
proposed, there is no significant difference between PLUSS
and the crosscutting approach. However, since the behavior
related to Strucure Data Operations are modularized in one
use case, in the first increment, the number of affected use
cases in the crosscutting approach is lower than in PLUSS.

4.4 Threats to conclusion validity

We have chosen the MMS product line because it offers the
opportunity of specifying different kinds of variability, such
as optional use cases and scenarios, parameterized scenar-
ios and crosscutting changes. However, we concluded that
some differences in the quantitative analysis might be ob-
served after evaluating other product lines. For instance,
besides some issues related to understandability, combining
different variants in a single scenario might reduce signifi-
cantly the specification’s vocabulary size. This character-
istic is only supported by the PLUSS approach. However,
in the running example, only one feature was suitable for
being specified using this technique. Additionally, we have
specified the PLUC and PLUSS scenarios based on a few
available examples. All scenario specifications are available
at [1]. However, the evaluation discussed in Section 4 is still
valid; once it can be used as a guide to perform other analy-
sis and to report the benefits of the SoC between variability
management and SPL assets.

5. RELATED WORK

Several approaches have been proposed for representing sce-
nario variability [16, 14, 9, 4]. However, in this paper we only
compare our crosscutting approach with PLUC and PLUSS
techniques because they encompass a broad range of SoC
between variability management and scenario specification.
PLUC presents the lowest level of modularity, since almost
all information related to variability is tangled within use
cases. Although PLUSS partially reduces such coupling, by
considering the importance of feature modeling, some de-
pendences from feature to use cases are still present. These
dependences are avoided in our approach.

Table 5: Changes required in SPL increments

PLUC PLUSS Crosscutting
Increment FM CK PC UC|FM CK PC UC|FM CK PC UC
New data operation X X X 2 X X 2 X X 1
New content type X b'e X 3 X 0 X 0
New product definition | x X X 3 X 0 X 0
Our weaver for scenario compositions relies on references to [6] P. Clements and L. Northrop. Software product lines:
step ids or step annotations. The use of annotations is an practices and patterns. Addison-Wesley Longman
attempt to reduce the problem of fragile pointcuts. A more Publishing Co., Inc., Boston, MA, USA, 2001.
reliable approach is presented in [5], which describes a com- [7] K. Czarnecki and U. Eisenecker. Generative
position mechanisms based on natural language processing. Programming: Methods, Tools, and Applications.
However, it is possible to introduce this technique by im- Addison-Wesley Professional, 2000.
plementing a new matching function that is used to retrieve [8] M. de Medeiros Ribeiro, P. M. Jr., P. Borba, and
steps referred by from steps and to steps clauses. I. Cardim. On the modularity of aspect-oriented and
other techniques for implementing product lines
Design Structure Matrices (DSMs) and crosscutting met- variabilities. In First LA-WASP, Joao Pessoa, Brazil,
rics have being applied for assessing modularity in aspect- oct 2007.
oriented systems [18, 11, 13]. In this work, we also applied [9] M. Eriksson, J. Borstler, and K. Borg. The pluss
DSMs in the context of scenario variability management. approach - domain modeling with features, use cases
Moreover., we customized a suite of metrics for quantifying and use case realizations. In SPLC’05, 2005.
feature dlﬁusmg and. tanglmg over use cases. To our knowl- [10] A. Fantechi, S. Gnesi, G. Lami, and E. Nesti. A
edge., our wo.rk 15 unique m ap ply me both D,SMS a?nd. Cross- methodology for the derivation and verification of use
cutting metrics for evaluating SoC in scenario variability. cases for product lines. In SPLC 04, 2004.
[11] A. Garcia, C. SantAnna, E. Figueiredo, U. Kulesza,
6. CONCLUDING REMARKS and C. Lucena. Modularizing design patterns with
Variability management is a common challenge in software aspects: A quantitative study. In Transactions on
product line adoption. Although several works have been Aspect-Oriented Software Development. Springer,
proposed for managing variabilities at scenario specification, 2005.
existing works focus on representing variation points at use [12] R. Gheyi, T. Massoni, and P. Borba. A theory for
case documentation. In this paper we reported that we also feature models in alloy. In First Alloy Workshop,
need to introduce a modular perspective in this domain. On pages 71-80, Portland, United States, nov 2006.
the reason that, if variability management is tangled within [13] P. Greenwood, T. Bartolomei, E. Figueiredo,
scenario specifications, it will be difficult to evolve both rep- M. Dosea, A. Garcia, N. Cacho, C. Santanna,
resentations . Our analysis were based on customizations of S. Soares, P. Borba, U. Kulesza, and A. Rashid. On
recent techniques for software modularity assessments, such the impact of aspectual decompositions on design
as Design Structure Matrices and crosscutting concerns met- stability: An empirical study. In ECOOP: Proceedings
rics. We showed that, in order to introduce common SPL of the European Conference on Object-Oriented
increments, a clear separation between variability manage- Programming, 2007.
ment and use case specifications is extremely valuable. As [14] M. L. Griss, J. Favaro, and M. d’ Alessandro.
future work, we aim at evaluating other product lines and Integrating feature modeling with the RSEB. In ICSR
improve the presented metric suite. ’98, page 76, Washington, DC, USA, 1998. IEEE
Computer Society.
7. REFERENCES [15] 1. Jacobson. Object-Oriented Software Engineering: A
[1] Software productivity group, online: Use Case Driven Approach. Addison-Wesley
http://www.cin.ufpe.br/spg (2007). Professional, 1992.
[2] V. Alves, A. C. Neto, S. Soares, G. Santos, [16] I. Jacobson, M. Griss, and P. Jonsson. Software reuse:
F. Calheiros, V. Nepomuceno, D. Pires, J. Leal, and architecture, process and organization for business
P. Borba. From conditional compilation to aspects: A success. ACM Press/Addison-Wesley Publishing Co.,
case study in software product lines migration. In New York, NY, USA, 1997.
GPCE’06, Portland, USA, 2006. [17] 1. Jacobson and P.-W. Ng. Aspect-Oriented Software
[3] C. Baldwin and K. Clark. Design Rules The Power of Development with Use Cases. Addison-Wesley
Modularity, volume 1. The MIT Press, first edition Professional, 2004.
edition, 2000. [18] C. V. Lopes and S. K. Bajracharya. An analysis of
[4] A. Bertolino and S. Gnesi. Use case-based testing of modularity in aspect oriented design. In AOSD 05,
product lines. In ESEC/FSE’03, pages 355-358, New pages 15-26, New York, NY, USA, 2005. ACM.
York, NY, USA, 2003. ACM Press. [19] H. Masuhara and G. Kiczales. Modeling crosscutting
[5] R. Chitchyan, A. Rashid, P. Rayson, and R. Waters. in aspect-oriented mechanisms. In ECOOP’03, 2003.
Semantics-based composition for aspect-oriented [20] K. Phol, G. Bocle, and F. Linden. Software Product

requirements engineering. In AOSD ’07, pages 36-48,
New York, NY, USA, 2007. ACM Press.

Line Engineering: Foundations, Principles and
Techniques. Springer, 2005.

