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“Here’s to the crazy ones, the misfits, the rebels, the troublemakers, the round pegs in the
square holes... the ones who see things differently – they’re not fond of rules... You can
quote them, disagree with them, glorify or vilify them, but the only thing you can’t do is
ignore them because they change things... they push the human race forward, and while

some may see them as the crazy ones, we see genius, because the ones who are crazy
enough to think that they can change the world, are the ones who do.

(Steve Jobs)



Abstract
In a collaborative software development environment, developers often implement their
contributions (or tasks) independently using local versions of the files of a system. However,
contributions from different developers need to be integrated (merged) to a central version of
the system, which may lead to different types of conflicts such as syntactic, static semantic
or even dynamic semantic conflicts. The first two types are more easily identifiable as
they lead to syntactically incorrect programs and to programs with compilations problems,
respectively. On the other hand, dynamic semantic conflicts, which may be caused by
subtle dependencies between contributions, may not be noticed during the integration
process. This type of conflict alters the expected behaviour of a system, leading to bugs.
Thus, failing to detect dynamic semantic conflicts may affect a system’s quality. Hence,
this work’s main goal is to understand if Information Flow Control (IFC), a security
technique used for discovering leaks in software, could be used to indicate the presence of
dynamic semantic conflicts between developers contributions in merge scenarios. However,
as defining if a dynamic semantic conflict exists involves understanding the expected
behaviour of a system, and as such behavioural specifications are often hard to capture,
formalize and reason about, we instead try to detect a code level adaptation of the notion of
interference from Goguen and Meseguer. Actually, we limit our scope to interference caused
by developers contributions on the same method. More specifically, we want to answer
if the existence of information flow between developers same-method contributions of a
merge scenario can be used to estimate the existence of interference. Therefore, we conduct
an evaluation to understand if information flow may be used to estimate interference.
In particular, we use Java Object-sensitive ANAlysis (JOANA) to do the IFC for Java
programs. JOANA does the IFC of Java programs by using a System Dependence Graph
(SDG), a directed graph representing the information flow through a program. As JOANA
accepts different options of SDG, we first establish which of these SDG options (instance
based without exceptions) is the most appropriate to our context. Additionally, we bring
evidence that information flow between developers same-method contributions occurred
for around 64% of the scenarios we evaluated. Finally, we conducted a manual analysis,
on 35 scenarios with information flow between developers same-method contributions,
to understand the limitations of using information flow to estimate interference between
same-method contributions. From the 35 analysed scenarios, for only 15 we considered
that an interference in fact existed. We found three different major reasons for detecting
information flow and no interference: cases related to the nature of changes, to excessive
annotation from our strategy and to the conservativeness of the flows identified by JOANA.
We conclude that information flow may be used to estimate interference, but, ideally, the
number of false positives should be reduced. In particular, we envisage room for solving
around three quarters of the obtained false positives.



Keywords: Software merging. Dynamic semantic conflict. Interference. Information flow.
System Dependence Graph (SDG)



Resumo
Em um ambiente de desenvolvimento colaborativo, desenvolvedores frequentemente imple-
mentam suas contribuições independentemente usando versões locais dos arquivos de um
sistema. No entanto, contribuições de diferentes desenvolvedores precisam ser integradas a
uma versão central do sistema, o que pode levar a diferentes tipos de conflitos de integração
como conflitos sintáticos, de semântica estática ou até de semântica dinâmica. Os dois
primeiros tipos são mais fáceis de identificar dado que levam a programas sintaticamente
incorretos e a erros de compilação, respectivamente. Por outro lado, conflitos de semântica
dinâmica, que são em geral causados por dependências sutis entre as contribuições, podem
passar despercebidos durante o processo de integração. Esse tipo de conflito altera o
comportamento esperado de um sistema, o que leva a bugs. Portanto, falhar em detectar
estes conflitos pode afetar negativamente a qualidade de um sistema. Tendo isso em mente,
o principal objetivo deste trabalho é entender se Information Flow Control (IFC), uma
técnica de segurança utilizada para descobrir vazamentos de segurança em software, pode
ser utilizado para indicar a presença de conflitos de semântica dinâmica entre contribuições
de cenários de integração. Porém, a definição da existência de um conflito de semântica
dinâmica envolve o entendimento do comportamento esperado de um sistema. Como
especificações desse tipo de comportamento são geralmente difíceis de capturar, formalizar
e entender, nós na realidade utilizamos uma adaptação a nível de código da noção de inter-
ferência de Goguen e Meseguer. Na verdade, nós limitamos o nosso escopo a interferência
causada por contribuições de desenvolvedores nos mesmos métodos. Especificamente, nós
desejamos responder se a existência de fluxo de informação entre duas contribuições no
mesmo método pode ser utilizada para estimar a existência de interferência. Portanto, nós
realizamos uma avaliação com o intuito de entender se fluxo de informação pode ser usado
para estimar interferência. Em particular, nós utilizamos o Java Object-sensitive ANAlysis
(JOANA) para fazer o IFC de programas Java. O JOANA faz IFC desses programas
usando uma estrutura chamada System Dependence Graph (SDG), um grafo direcionado
representando o fluxo de informação em um programa. Como o JOANA aceita diferentes
opções de SDG, primeiro nós estabelecemos qual destas é a mais apropriada para o nosso
contexto. Adicionalmente, trazemos evidência que fluxo de informação entre contribuições
de desenvolvedores no mesmo método aconteceram para cerca de 64% dos cenários que
avaliamos. Finalmente, realizamos uma análise manual, em 35 cenários de integração com
fluxo de informação entre contribuições no mesmo método, para entender as limitações de
utilizar fluxo de informação para estimar interferência entre contribuições. Dos 35 cenários
analisados, para apenas 15 consideramos que interferência existia de fato. Nós achamos
três razões principais para fluxo de informação ser detectado e não existir interferência:
casos relacionados a natureza das mudanças, a limitações da nossa estratégia de anotação
e a natureza conservadora dos fluxos identificados pelo JOANA. Nós concluímos que fluxo



de informação pode ser utilizado para estimar interferência, mas, idealmente, o número de
falsos positivos precisa ser reduzido. Em particular, nós enxergamos espaço para reduzir
até três quartos dos falsos positivos.

Palavras-chave: Integração de software. Conflito de semântica dinâmica. Interferência.
Fluxo de informação. System Dependence Graph (SDG)
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1 INTRODUCTION

In a collaborative development environment, developers often perform their con-
tributions (or tasks) independently, using individual copies of project files. Nevertheless,
generally, at some point, those contributions need to be integrated to a central repository
of a system. Furthermore, when two different developers modify system files in similar
periods of time (in parallel), it is necessary to merge the different contributions to generate
an integrated version of the system. This process of merging contributions may lead to
different types of conflicts. For instance, the merge may lead to a syntactically incorrect
program, to a program with compilation failures, or even cause changes on the expected
behaviour of a system. From these, we call the first conflict category as syntactic conflicts,
the second as static semantic conflicts, and, the third as dynamic semantic conflicts.

To learn about the occurrences of these conflicts created by merging different
parallel contributions, previous studies investigated how often each of these conflicts occur.
More precisely, although they use a different terminology, Kasi and Sarma [KASI; SARMA,
2013] found that, depending on the project, conflicts similar to syntactic conflicts (merge
conflicts identified by a merge tool that treats software artefacts as text) occurred for
between 7.6% and 19.3% of the merge scenarios (a set consisting of a common ancestor and
its derived revisions) evaluated by them. Furthermore, this study also found that conflicts
similar to static semantic conflicts (called by them build conflicts), in their sample, ranged
from 2.1% to 14.7% of the evaluated scenarios. Finally, they found indication that conflicts
similar to dynamic semantic conflicts (called by them test conflicts) ranged from 5.6%
to 35%. Similarly, Brun et al. [BRUN et al., 2013] found evidence of conflicts similar to
syntactic conflicts, static semantic conflicts and dynamic semantic conflicts ranging from
7% to 42%, from 0.1% to 10%, and from 3% to 28% of the merge scenarios, respectively.

Although these studies have some imprecisions and considered only a small number
of projects (Brun et. al considers nine projects for syntactic conflicts and three for semantic
conflicts categories, while Kasi and Sarma considers four projects), they indicate that the
three types of conflicts may occur in practice. Nevertheless, we argue that dynamic semantic
conflicts are harder to detect than the others. More specifically, while syntactic conflicts
lead to syntactically incorrect programs and static semantic conflicts to compilation issues,
dynamic semantic conflicts cause only variations on the runtime behaviour of a system.
As a result, they may pass unnoticed during the integration process, possibly leading to
the insertion of bugs on a system, affecting its quality. Furthermore, we argue that the
existing strategies have limitations to detect this type of conflict.

Thus, we investigate a new strategy for detecting dynamic semantic conflicts
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between developers contributions from merge scenarios. More specifically, our idea is
checking if Information Flow Control (IFC), a security technique used for discovering leaks
in software, could be used to indicate the presence of dynamic semantic conflicts. To be
more precise, given a merge scenario with contributions from two different developers, we
check if there is information flow between these contributions as an approximation to the
existence of interaction between these contributions. Our intuition is that if there is no
information flow, then there is no interaction, and, consequently, no dynamic semantic
conflict. In contrast, the existence of information flow indicates interactions between the
contributions, and, consequently, possible dynamic semantic conflicts. In particular, we use
Java Object-sensitive ANAlysis (JOANA) to do the IFC for Java programs. JOANA does
the IFC of Java programs by using a structure called System Dependence Graph (SDG).
Basically, a SDG is a directed graph representing information flow through a program.

However, defining if a dynamic semantic conflict actually exists involves knowledge
of a system’s expected behaviour, before and after integrating two developers contributions
from a merge scenario. Since such behavioural specifications are often hard to capture,
formalize and reason about, we instead try to detect a necessary but not sufficient condition
for dynamic semantic conflict: a code level adaptation of the simpler notion of interference,
first defined by Goguen and Meseguer [GOGUEN; MESEGUER, 1982]. In particular, to
reduce the scope of our problem, we focus in interference caused by developers same-method
contributions. More specifically, we focus in cases where both merge scenario contributions
edit the same (Java) methods.

Hence, we check if the existence of information flow between developers same-
method contributions (in merge scenarios) may be used to estimate interference. More
precisely, we want to check if when there is information flow there is also interference.
Nonetheless, as JOANA has different options to create SDGs, we also need to choose one.
In summary, we investigate the following research questions:

• Research Question 1 (RQ1) - Configuration: Which SDG option is the most
appropriate to identify information flow between merge scenario same-method con-
tributions?

• Research Question 2 (RQ2) - Severity: Is there direct information flow between
merge scenario same-method contributions? How often?

• Research Question 3 (RQ3) - Limitations: In which situations is there information
flow and no interference?

The first question (RQ1) establishes a SDG option to execute JOANA. The second
question (RQ2) helps us understand if, in practice, information flow occurs between same-
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method contributions. Finally, with the third question (RQ3) we aim to understand the
limitations of using information flow to estimate interference.

To answer those questions we conducted two different types of analysis: automatic
and manual. The first aims to answer which SDG configuration (option) is the most
appropriate to our context (RQ1) and to find the frequency of information flow between
developers same-method contributions (RQ2). Furthermore, we select, from this step,
cases containing information flow, to manually analyse in order to answer if there is also
interference, and, if not, for what reasons (RQ3). More precisely, our manual analysis
focuses in information flow true/false positives of interference. In contrast, we do not
analyse true/false negatives. More specifically, we are aware that our analysis may miss
valid cases of interference, however, evaluating true/false negatives is out of our scope and
is left as future work.

The remainder of this work is organised as follows:

• Chapter 2 reviews the main concepts used to understand this dissertation, including
two different contexts: Version Control System (VCS) and static program analysis;

• Chapter 3 presents our motivation, discusses theoretical foundation and details our
strategy;

• Chapter 4 details the evaluation of our strategy;

• Chapter 5 draws our conclusions, summarises the contributions of this work, and
discusses related and future work.
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2 BACKGROUND

2.1 Version control systems
Collaborative software development is only possible because of Software Configura-

tion Management (SCM) and the consequent use of Version Control Systems (VCSs). In
particular, SCM manages the evolution of large and complex software systems [TICHY,
1988]. More precisely, it provides techniques and tools to assist developers in performing
coordinated changes to software products. These techniques include version control mech-
anisms to deal with the evolution of a software product into many parallel versions and
variants that need to be kept consistent and from which new versions may be derived via
software merging [CONRADI; WESTFECHTEL, 1998]. This becomes necessary when
there are several developers working together in projects, as a standardized way of keeping
track of changes is needed. In particular, if there would be no control, the developers
would overwrite each other’s changes and lose track of their changes [ESTUBLIER et al.,
2002]. In practice, VCSs allow developers to download and modify files locally, and then,
when desired, synchronize their local files with a shared repository containing the main
version of the files.

When two different developers (we call them here left and right) modify files in
common in similar periods of time, it is necessary to merge the different contributions
to generate an integrated revision. For example, Figure 2.1 shows a situation where left
and right change the same file in similar periods of time. In particular, left and right do
different modifications to the base revision from class Member. More specifically, left adds
the field username (line 2 from Left), while right adds the field email (line 4 from Right).
Once left and right finish their contributions, they checkout their changes to the shared
repository. However, as they modify the same file in similar periods, it is necessary to
integrate their contributions to generate an integrated revision. The triple formed by base,
left and right is called a merge scenario. The process of merging left and right generates
an integrated revision, which, ideally, should contain the contributions from both left and
right. As it may be noticed in Figure 2.1, this is the case for our example, where both left
and right contributions are present in the integrated revision (left added line is line 2 from
Integrated and right added line is line 5 from Integrated).

2.1.1 Conflict types

The example from Figure 2.1 shows a situation where the contributions from left
and right may be automatically integrated without problems. However, there are situations
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Figure 2.1 – Merge scenario and its integrated version

where the contributions from left and right are conflicting, and further action is necessary.
We discuss here different conflict types that may occur when merging two contributions.
Additionally, different works use different terminologies and some of them are discussed
here.

2.1.1.1 Conflicts categorised by technical cause

Mens [MENS, 2002] classifies conflicts by their technical cause. Mens mentions four
conflicts categories: syntactic conflicts, structural conflicts, static semantic conflicts, and
dynamic semantic conflicts. Three of them are further explained here.

Syntactic conflicts

Syntactic conflicts are conflicts where the syntax of the integrated version is unclear
or incorrect. Figure 2.2 shows an example of such situation. In this extension from the
example from Figure 2.1, there is also a method toString. Initially, on base, this method
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Figure 2.2 – Merge scenario with syntactic conflict

returns the name field. However, both left and right feel that the fields added by them
(username and email, respectively) are more appropriate to be returned in the method
toString (as names may be equivalent, but username and email are unique). Therefore, left
changes toString to return the username (line 6 from Left), while right changes toString
to return the email (line 6 from Right). As it may be noticed in Figure 2.2, the return of
toString is unclear in such a situation (line 7 from Integrated). Hence, there is a syntactic
conflict in line 7 from Integrated, as the syntax in unclear for this line.
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1 c l cB l ( ) {
2 // . . .
3 }
4 generateReport ( ) {
5 // . . .
6 }

(a) Base

1 c a l c u l a t e B i l l ( ) {
2 // . . .
3 }
4 generateReport ( ) {
5 // . . .
6 }

(b) Left

1 c l cB l ( ) {
2 // . . .
3 }
4 generateReport ( ) {
5 c l cB l ( ) ;
6 // . . .
7 }

(c) Right

1 c a l c u l a t e B i l l ( ) {
2 // . . .
3 }
4 generateReport ( ) {
5 c l cB l ( ) ;
6 // . . .
7 }

(d) Integrated

Figure 2.3 – Merge scenario containing static semantic conflict

Static semantic conflicts

There are situations where the syntax of the final version is both clear and correct,
but the integrated revision does not compile. For instance, Figure 2.3 shows such a situation.
More specifically, in this example, left notices that the name of the method clcBl is not
intuitive and decides to rename it to calculateBill (line 1 from Figure 2.3b). More precisely,
imagine left does a refactoring and updates all existing calls to this method to call the
new signature (calculateBill). Nevertheless, while left does this refactoring, right feels the
need to add an extra call to this method inside the method generateReport. Nonetheless,
in right’s revision, the method’s name is still the old one (clcBl); as a result, right adds a
call to clcBl (line 5 from Figure 2.3c). Hence, in the integrated revision, the call added by
right to clcBl (line 5 from Figure 2.3d) will generate a compilation issue, as this method
was renamed to calculateBill by left and does not exist with that name in the integrated
revision any more. In summary, the integrated program is syntactically correct, but has a
compilation issue, as the method clcBl does not exist.

Dynamic semantic conflicts

There are other situations where the integrated revision is both syntactically correct
and successfully compiling, but due to subtle dependencies between the contributions, there
is unexpected behaviour. To illustrate this situation, consider Figure 2.4. In particular,
initially, there is a method generateBill that sums the prices of a list of items and places
the result in a variable total (Figure 2.4a). Left changes the initial calculation to add a
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1 g en e r a t eB i l l ( L i s t<Item> items ) {
2 double t o t a l = 0 ;
3 for ( Item item : items ) {
4 t o t a l += item . ge tPr i c e ( ) ;
5 }
6
7 // . . .
8 }

(a) Base

1 g en e r a t eB i l l ( L i s t<Item> items ) {
2 double t o t a l = 0 ;
3 for ( Item item : items ) {
4 t o t a l += item . ge tPr i c e ( ) ;
5 i f ( item . ge tPr i c e ( ) > 100)
6 t o t a l −= item . ge tPr i c e ( ) ∗ 0 . 1 ;
7 }
8
9 // . . .
10 }

(b) Left

1 g en e r a t eB i l l ( L i s t<Item> items ) {
2 double t o t a l = 0 ;
3 for ( Item item : items ) {
4 t o t a l += item . ge tPr i c e ( ) ;
5 }
6
7 pricesMean = items . s i z e ( ) > 0 ? t o t a l / items . s i z e ( ) : 0 ;
8 // . . .
9 }

(c) Right

1 g en e r a t eB i l l ( L i s t<Item> items ) {
2 double t o t a l = 0 ;
3 for ( Item item : items ) {
4 t o t a l += item . ge tPr i c e ( ) ;
5 i f ( item . ge tPr i c e ( ) > 100)
6 t o t a l −= item . ge tPr i c e ( ) ∗ 0 . 1 ;
7 }
8
9 pricesMean = items . s i z e ( ) > 0 ? t o t a l / items . s i z e ( ) : 0 ;
10 // . . .
11 }

(d) Integrated

Figure 2.4 – Merge scenario containing dynamic semantic conflict
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discount of 10% of the price of items costing more than 100 (lines 5 and 6 from Figure 2.4b
and Figure 2.4d), while right adds code to calculate the mean of the prices of the items
(line 7 from Figure 2.4c and 9 from Figure 2.4d).

In the example in question, there is a difference in behaviour after integrating left
and right. Specifically, left changed the calculation of the sum of the prices to include
the discounts, while right uses the result of this calculation to calculate the mean of the
prices. In particular, left changes total, and right uses total. For instance, consider that
the list of items has 3 items, with the following prices: 10, 50 and 300. In right’s revision
(Figure 2.4c), the calculated pricesMean for this case would be 120 ((10 + 50 + 300)/3).
However, in the integrated revision, the pricesMean would be 110, due to the discount
inserted by left. In particular, in the integrated revision, total would contain the value 330
(10 + 50 + 300− 300× 0.1) after the for execution (lines 3-7 from Figure 2.4d), while, in
right’s revision, total would contain 360 (10 + 50 + 300) in the same point. As pricesMean
is calculated based on the value of total, the value of pricesMean is different in right and
integrated.

In our example, as just discussed, there is a difference in the behaviour of pricesMean
after integrating left and right. Nonetheless, defining if a dynamic semantic conflict actually
exists involves understanding a system’s expected behaviour before and after integration of
contributions from a merge scenario. Specifically, in the example in question, the expected
behaviour for pricesMean could be that the mean of prices should consider the actual
prices of the items, not considering discounts. If this is the case, then there is a dynamic
semantic conflict in this example, as the calculated pricesMean includes discounts. In
contrast, the expected behaviour could be that pricesMean should indeed include the
discounts. In that case, there is no dynamic semantic conflict.

2.1.1.2 Conflicts categorised by tool type

A number of works [KASI; SARMA, 2013; BRUN et al., 2013] classify conflicts by
the tool type that identifies them.

Merge conflicts

Merge conflicts are conflicts identified by the merging tool. As discussed later in
Section 2.1.2, different merge strategies (tools) exist, and as a result a merge conflict
identified by one strategy (tool) may or not be identified by a different one. Considering
Mens terminology, depending on the used merge tool, a merge conflict may be any one of
Mens categories. Nonetheless, merge tools used in practice use textual strategies (explained
in Section 2.1.2). In particular, such type of merge tool (textual) is focused on the syntactic
conflicts.
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Build conflicts

Build conflicts are a type of conflict for cases where there are no merge conflicts,
but the build of integrated revision fails. Considering Mens categories, there is a strong
correspondence between conflicts identified in this category and static semantic conflicts.
In particular, in general, static semantic conflicts lead to build failures.

Test conflicts

Test conflicts are conflicts identified by test failures in the integrated revision.
In particular, there are no merge conflicts, no build failures, but there are test failures.
Considering Mens terminology, there is a strong correspondence between conflicts identified
in this category and dynamic semantic conflicts. In particular, test failures indicate potential
dynamic semantic conflicts.

2.1.2 Merge strategies

As discussed by Mens [MENS, 2002], there are different existing merge strategies.
Each of these merges the contributions on a merge scenario differently. More precisely,
different merge strategies represent software artefacts differently. A small subset of the
available strategies is discussed here.

Textual merging

The most widely-used software merging tools are textual. That is, software artefacts
are treated as text files. Popular examples include the tools diff and merge of Unix, used
in VCS such as CVS,1 Subversion,2 and Git.3 The most common approach for merge
tools in this strategy is to use line-based merging. More precisely, lines are considered as
indivisible units, and changes to similar areas of a file lead to a conflict. Specifically, Git
merge, generally, issues conflicts when there is less than two lines separating changes from
left and right. For instance, if in a hypothetical situation, left edits line 1 and right edits
line 4, then no conflict is identified as there are two lines separating the changes (lines
2 and 3). On the other hand, if left edits line 1 and right edits line 3, then a conflict is
issued, as left and right edited the same area.

The benefits of textual merging tools are their generality and performance. More
specifically, as they can be applied to every file that can be represented as text, they
may be applied regardless of the programming language used. Furthermore, since they
interpret the artefacts as text and deal only with text lines, they have no knowledge of
1 CVS - <http://savannah.nongnu.org/projects/cvs/>
2 Subversion - <https://subversion.apache.org>
3 Git - <https://git-scm.com>

http://savannah.nongnu.org/projects/cvs/
https://subversion.apache.org
https://git-scm.com


Chapter 2. BACKGROUND 27

the underlying structure of the files, making the merge process fast, even for large files.
Nevertheless, since this type of merge has no knowledge of the underlying structure of the
files, they may miss conflicts and report spurious ones.

In particular, from the three examples of conflicts previously shown in this chapter
(Figures 2.2 to 2.4), only in the example from Figure 2.2 a conflict would be found by a
textual tool. To be more specific, a conflict would be issued in this example, because both
left and right changed a common line (line 7 from the Integrated revision).

Additionally, to illustrate a case of spurious conflict, consider a hypothetical merge
scenario of a Java program, where left and right add different methods on the same line.
In such a situation, although there is no actual conflict, a textual strategy would detect a
conflict, as the same line was edited.

In summary, textual merging tools tend to be fast and general, but imprecise.

Structured merging

Structured merging exploits the artefacts syntactic structure to both avoid spurious
conflicts and detect actual conflicts missed by a textual strategy. Different structured tools
use different underlying data structures to represent a software artefact. In general, these
tools use graphs or trees (parse trees or abstract syntax trees) as underlying data structure.
Basically, the merge process is done using these underlying structures instead of the plain
text used in textual approaches.

To illustrate how a structured strategy works, reconsider again the recently given
example of spurious conflict from a textual strategy, where two different methods are added
to the same part of a Java program. Due to its knowledge of the program syntactic structure,
a structured strategy would (correctly) not detect a conflict in such a situation and would
generate an integrated revision with both added methods. In contrast, as previously
mentioned, a textual tool would detect a spurious conflict, as it has no knowledge of the
program underlying structure.

Compared to textual tools, structured merging strategies tend to gain in precision.
Nevertheless, as these tools need information of the underlying syntactic structure of a
program, they are language-specific. Furthermore, as they incorporate information on
the structure of the artefacts being merged, severe performance penalties may occur. To
address the performance issues, Apel et al. [APEL; LESSENICH; LENGAUER, 2012]
proposed a strategy of structured-merge with auto-tuning, where structured merge is only
executed when textual merging finds a conflict. Such strategy reduces the performances
issues and solves part of the spurious conflicts from the textual strategy. Nevertheless, this
strategy would still miss the conflicts missed by a textual strategy.
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Semi-structured merging

Semi-structured merging is a different approach for dealing with the performance
issues of structured merging tools, while still gaining in precision compared to textual tools.
This type of tool works on simplified structures, instead of full structures in structured
merging. Basically, the parts not covered by the simplified structure are merged using
textual merging.

To illustrate how a semi-structured tool works, consider FSTMerge, a tool proposed
by Apel et al. [APEL et al., 2011]. As a semi-structured merge tool, FSTMerge works
on simplified parse trees. For Java, for instance, classes, methods and fields are nodes of
the tree. However, methods are represented as leaves of the tree and as a consequence
statements and expressions inside them are hidden in the leaves as plain text. As a result,
method bodies are merged using textual merge.

As structured strategies, FSTMerge also does not detect the spurious conflict of
addition of different methods in the same area of a Java program. Furthermore, FSTMerge
is also able to detect some static semantic conflicts, which would not be detected by a
textual strategy. For example, consider a hypothetical merge scenario of a Java program,
where both left and right add a method with the same signature, but in different areas of
the file. A textual merge strategy would not detect a conflict in such a situation, as left and
right changed different areas of the file. Nevertheless, the integration of the contributions
from this example results in a static semantic conflict, as a Java program can not have
two methods with the same signature. FSTMerge identifies this type of static semantic
conflict, because it notices two conflicting versions of the method in question on its tree.

As structured strategies, semi-structured strategies are also language-specific, as
they also have knowledge of the underlying program syntactic structure. Furthermore,
these tools tend to be between textual and structured tools with respect to precision and
performance. That is, they tend to be more precise and less efficient than textual tools,
and, less precise and more efficient than structured tools.

Semantic merging

Semantic merging tools focus on a type of conflict not focused by the other strategies,
dynamic semantic conflict. In particular, none of the strategies discussed so far detects
dynamic semantic conflicts. In that sense, the three previously discussed merge strategies
may be seen as syntactic strategies. In contrast, semantic merging focus on dynamic
semantic conflicts. Tools for detecting such kind of conflict, generally, rely on program
analysis elements such as System Dependence Graphs (SDGs) and slicing (both are later
explained in Section 2.2.1). In particular, Horwitz, Prins and Reps [HORWITZ; PRINS;
REPS, 1989] were the first to propose an algorithm for merging program versions without
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dynamic semantic conflicts for a very simple assignment-based programming language.
To be more specific, this work merges the program using Procedure Dependence Graphs
(PDGs) (later explained in Section 2.2.1.1).

Compared to the other strategies, tools from this group have severe performance
issues. In fact, to our knowledge, full semantic merging is still theoretical and there are no
tools of such kind available (although some structured/syntactic tools claim to be semantic).
Additionally, as structured tools, semantic tools also are, generally, language-dependent,
as they also have knowledge of the programs being merged.

2.2 Static program analysis
Static program analysis is the analysis of software programs without actually

executing them. The basic idea behind this main concept is computing approximations
of the actual set of values or behaviours which may occur at run-time when executing a
program [NIELSON; NIELSON; HANKIN, 2005].

There is a number of static analysis techniques available and different techniques
deal with different types of analysis on a program. One of these techniques is Information
Flow Control (IFC), a technique used for discovering security leaks in software. More
specifically, this technique has two main goals: checking if secret data can leak to public
channels (confidentiality) and check if critical computations may be influenced from outside
(integrity) [HAMMER; SNELTING, 2009].

2.2.1 JOANA

Java Object-sensitive ANAlysis (JOANA)4 [GRAF; HECKER; MOHR, 2013;
SNELTING et al., 2014; GRAF et al., 2015] is an open-source tool which does IFC
of Java programs. More precisely, JOANA analyses Java programs and checks for security
leaks on them. In particular, JOANA does IFC by first creating a SDG, a directed graph
representing the information flow through a program, and then allowing the execution of
IFC analyses on this SDG. This structure allows analysing programs via graph traversal.

Furthermore, JOANA is built on top of T.J. Watson Libraries for Analysis
(WALA),5 an open-source framework initially developed at IBM T.J. Watson Research
Center,6 which includes Java libraries for static and dynamic program analysis. In particu-
lar, JOANA uses WALA’s elements such as call graph and points-to-analysis (or pointer
analysis) to create its SDGs [GRAF, 2010]. The first of these is a directed graph, commonly
used in static program analysis, to represent calling relationships between procedures
4 JOANA website - <http://pp.ipd.kit.edu/projects/joana/>
5 WALA website - <http://wala.sourceforge.net>
6 IBM T. J. Watson Research Center website - <http://www.research.ibm.com/labs/watson/>

http://pp.ipd.kit.edu/projects/joana/
http://wala.sourceforge.net
http://www.research.ibm.com/labs/watson/


Chapter 2. BACKGROUND 30

1 public stat ic void main ( St r ing [ ] a rgs )
2 {
3 int s e c r e t = getSecretData ( ) ;
4 p r i n t ( s e c r e t ) ; // d i r e c t l e a k
5 int aux = s e c r e t ;
6 p r i n t ( aux ) ; /∗ d i r e c t l e a k through
7 i n t e rmed ia t e s t r u c t u r e ∗/
8 A a = new A( ) ;
9 a . setX ( s e c r e t ) ;
10 p r i n t ( a . getX ( ) ) ; /∗ d i r e c t l e a k through
11 i n t e rmed ia t e s t r u c t u r e ∗/
12 i f ( s e c r e t % 2 == 0)
13 p r i n t ( " s e c r e t ␣ i s ␣ even " ) ; // i n d i r e c t l e a k
14 aux = 0 ;
15 p r i n t ( aux ) ; /∗ no leak , but
16 f low−i n s e n s i t i v e ana l y s e s w i l l f i n d l e a k ∗/
17 a = new A( ) ;
18 a . setX ( aux ) ;
19 p r i n t ( a . getX ( ) ) ; /∗ no leak , but
20 contex t−i n s e n s i t i v e ana l y s e s w i l l f i n d l e a k ∗/
21 }

Figure 2.5 – Example of leaks identified by JOANA

(or methods in Java) in a program [RYDER, 1979; GROVE; CHAMBERS, 2001]. More
precisely, each node from a call graph represents a procedure and an edge from p1 to p2
represents an invocation to p2 from p1. The second one, the pointer analysis, is necessary
for program languages involving objects (such as Java) and has the goal of determining for
every object reference the set of objects it may (transitively) point to. This second concept
is necessary and used in the construction of call graphs and SDGs of object-oriented
programming languages to try to approximate as much as possible the calculated set of
objects pointed by a reference to the actual set of objects pointed by it. We further detail
these concepts later.

To illustrate how JOANA may be used, consider the example in Figure 2.5. In this
example, there is a secret value (line 3) which cannot be leaked to public channels and
six print statements (lines 4, 6, 10, 13, 15 and 19) which may potentially be outputting
this value. More specifically, JOANA may be executed to check if some of these print
statements leak the secret value (from line 3). In particular, to execute JOANA, first it
is necessary to create a SDG representing a program’s information flow. Once the SDG
is created, different IFC analyses may be executed on it. An IFC analysis is formed by
two stages: annotation and execution. The annotation corresponds to the part of marking
which parts are secret information (sources/high) and which parts are public and can not
be trusted (sinks/low). In our example, we could mark secret = getSecretData() (line 3)
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as source (high) and the print statements as sink (low).

Then, after the annotation part, the IFC analysis is executed to check if there are
any leaks between the annotated sources and sinks. More precisely, the annotation part
marks some nodes of the SDG as sources or sinks, while the execution part uses slicing
[HORWITZ; REPS; BINKLEY, 1990] to check if there are paths from source nodes to
sink nodes. If there is a path, then there is information flow (a leak) from the statement of
the source node to the statement of the sink node. On the other hand, if there is no path
between two nodes from the SDG, then there is no information flow (there is no leak). For
our example, there are four leaks, but depending of the configuration used by JOANA a
fifth one may also be identified. In fact, other types of IFC (different from JOANA) may
even detect six leaks.

First, there is a direct leak from the secret (line 3) to the first print (line 4) because
the secret value is being directly printed. In particular, JOANA finds a data dependence
from line 3 to line 4 in that case because the value of secret defined in line 3 is used in
line 4. Similarly, there are also direct leaks from the secret to the second and third prints
(lines 6 and 10), because the actual value of the secret is being printed through the use of
intermediate structures (the variable aux for line 6 and the field x from the object a for
line 10).

Differently, there is a different type of leak from the secret to the fourth print (line
13) called indirect leak. In this situation, the direct value of the secret is not being printed.
Nonetheless, the printed information “secret is even” brings information about the secret.
More precisely, in this situation, there is a data dependence from line 3 to line 12 (because
the value of secret defined in line 3 is used in line 12), and a control dependence from
line 12 to line 13 because the value of line 12 may affect the execution of line 13. That
is, if the secret is odd this print will not be executed as the conditional from line 12 will
evaluate to false and as a result an attacker gains information about the secret value with
this print.

Moving on to the fifth print (line 15), there is no leak involving it. More precisely,
as JOANA is flow-sensitive (considers the order of the statements) it is able to understand
that the value being printed at this point is the assignment from line 14 (and not the
secret as assigned in line 5). Finally, there is no leak from secret to the last print (line 19)
but, if JOANA uses a context-insensitive (does not distinguish different calls to the same
method) configuration, it will find a leak. Context-insensitive configurations detect a leak
for this situation, because while context-sensitive configurations distinguish the calling
context for the two a.setX calls (lines 9 and 18), context-insensitive analysis merge them
and as one of them (in line 9) involved the secret, a leak from secret to the last print (line
19) is erroneously detected.

Although we focus here in IFC, it is important to mention that this technique
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is closely related to other more elementary static analysis concept called tainting. As
IFC, a taint analysis may also be used to look for security leaks. To be more specific,
for our motivation example from Figure 2.5, a taint analysis would suffice to find the
leaks in question using the security level we discussed (high/low). In particular, a taint
analysis would mark the nodes we marked as high as tainted and use data and control
dependences to also automatically mark as tainted elements with dependences from the
tainted elements. So, if in Figure 2.5, line 3 is initially marked as tainted, than lines 4, 6,
10 and 13 would also be tainted after the analysis. Nonetheless, IFC is more advanced than
tainting. For instance, while tainting deals with a single security level (tainted/untainted),
JOANA’s IFC works with an arbitrary number of security levels (not necessarily just one)
[HAMMER; SNELTING, 2009].

2.2.1.1 System Dependence Graph

Obtaining the SDG is the core part to execute IFC analysis using JOANA, as
the SDG represents the information flow through a program [HAMMER; SNELTING,
2009]. Hence, this stage is actually the performance bottleneck of JOANA. In fact, the
time of executing an IFC analysis after the SDG is obtained is irrelevant compared to the
necessary time to create it. However, it is important to mention that once a SDG is created
JOANA allows saving the resultant SDG for future analyses. With that feature, future
analysis of a version with a saved SDG may load it instead of creating it from scratch.
Additionally, to create a SDG representation of a Java program, JOANA needs a path to
the .class files of the system. More specifically, before creating a SDG for a program, it is
necessary to compile it as the SDG is created based on the program .class files.

As a graph, a SDG is formed by nodes and edges. In particular, the nodes represent
program statements or expressions, while the edges represent data or control dependences
between those nodes. A data dependence from node n1 to n2 means that node n1 defines
a value used by n2. For instance, n1 could be a variable assignment of a variable x and
n2 a use of this variable (without any reassignment in the middle). In contrast, a control
dependence represents a situation where the execution of n2 directly depends of the value
after the execution of n1. For example, a typical situation is if n1 is a condition in an if
(or while) statement and n2 is in the body of the conditional.

As an example, consider a small program and its SDG in Figure 2.6. In this
example, control dependences are represented with solid edges, while data dependences
are represented with dashed edges. Furthermore, in this example the node’s numbers in
Figure 2.6b are represented using the line’s numbers from Figure 2.6a. As it may be noticed
in Figure 2.6b, there are control dependences from node 4 to nodes 5 and 7 as node 4 is
the condition from a conditional and those nodes (5 and 7) depend on the value of its
execution to be executed. More precisely, if x > 0 evaluates to true node 5 is executed,
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1 a = u ( ) ;
2 while ( f ( ) ) {
3 x = v ( ) ;
4 i f ( x > 0)
5 b = a ;
6 else
7 c = b ;
8 }
9 z = c ;

(a) Small program (b) Simplified view of the SDG from (a)

Figure 2.6 – Small program (a) and its corresponding SDG (b) - taken from
[HAMMER; SNELTING, 2009]

while if it evaluates to false node 7 is executed. For a similar reason, there are control
dependences from node 2 to nodes 3 and 4. In contrast, there is a data dependence from
node 1 to node 5, because while the first assigns a value to variable a the second uses this
value (assigns it to variable b). Similarly, there is a data dependence from node 5 to 7 as
node 5 assigns a value to variable b and 7 may read this value if the while is executed
more than once. Finally, it is possible to notice that there is information flow from node 1
to node 9 as there is a path between those nodes (1 -> 5 -> 7 -> 9), while there is no
information flow from 1 to 4 as there is no path between these nodes. To conclude, it is
important to mention that the SDG presented is actually a simplification of the actual
SDG that would be created by JOANA, which is far more complex than the described. In
fact, the SDGs created by JOANA may contain millions of edges. As a matter of fact, for
some cases, depending of the size of the program and the options used (JOANA allows
different options to create a SDG), the SDG may even be too heavy to be computed.

As just mentioned, JOANA’s process of SDG creation involves complex compu-
tations. We give an overview of such process in Figure 2.7. First, this process involves
creating a class hierarchy from the program’s compiled classes. This hierarchy takes in
consideration the relation between the classes in the system. For example, considering
inheritance, a subclass is related to its superclass. The class hierarchy is used as an
auxiliary structure during the construction of the other structures. Then, the call graph is
created. As previously mentioned, JOANA uses WALA’s call graphs. Subsequently, for
each node from the call graph JOANA creates a PDG, a graph structure similar to a SDG
which models single procedures, obtaining then a SDG partitioned in PDGs [GRAF, 2010].
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Figure 2.7 – Overview of SDG construction

Finally, after obtaining an initial partitioned version of the SDG, JOANA does a series of
calculations, to add relations (edges) in this SDG, before finishing creating the SDG.

The process of SDG creation in JOANA includes a set of options. One of these,
which was just is the entry-point, which represents the starting point of the analysis.
Additionally, there are other aspects to be considered such as inclusion of exceptions (and
concurrency), which type of pointer analysis should be used and information regarding
the program’s dependencies. Those aspects more relevant to this work are detailed now.

Entry-point

As it may be observed in Figure 2.7, to create the call graph (and then the SDG) of
a program, JOANA (and WALA) requires the definition of an entry-point for that program.
An entry-point is basically a method representing the starting point for the analysis. For
Java programs this entry-point will typically be the main method. For instance, consider
Figure 2.8. This example, shows a small program in Figure 2.8a and its corresponding call
graph in Figure 2.8b. The creation of a call graph starts by the entry-point. In particular,
the main method in our example. This method, calls 3 methods (foo and bar in line 3 and
print in line 4) and as a result there are edges from main to each of them in Figure 2.8b.
Furthermore, as there is a call in bar to bar2, there is also an edge between these methods.
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1 class Example {
2 main ( ){
3 aux = foo ( ) + bar ( ) ;
4 p r i n t ( aux ) ;
5 }
6
7 foo ( ) {/∗ . . . ∗/}
8
9 bar ( ) {
10 bar2 ( ) ;
11 }
12
13 bar2 ( ) { /∗ . . . ∗/}
14
15 p r i n t ( arg ){ /∗ . . . ∗/}
16
17 }

(a) Small program (b) Call graph from (a)

Figure 2.8 – Small program (a) and its corresponding call graph (b)

Exceptions

As discussed by Hammer and Snelting [HAMMER; SNELTING, 2009], dynamic
runtime exceptions can alter the control flow of a program and thus lead to implicit flow,
in case the exception is caught by some handler on the call-stack. Alternatively, exceptions
may create a covert channel in case the exception is propagated to the top of the stack,
yielding a program termination with stack trace.

Hence, JOANA has options to integrate exceptions. To do that, basically, JOANA
adds control flow edges from instructions that may throw exceptions to an appropriate
exception handler. In particular, JOANA has 4 options regarding exceptions:

• Ignore exceptions - Misses implicit information flow related to exceptions

• Integrate exceptions without optimizations - Also considers impossible exceptions.
For instance, every field access is treated as it may cause NullPointerException.

• Integrate exceptions, optimize intraprocedurally - Intraprocedural optimization of
impossible exceptions.

• Integrate exceptions, optimize interprocedurally - Interprocedural optimization of
impossible exceptions.

As illustrated in Figure 2.7, the options of exceptions (and pointer analysis) affect
the process of construction of the call graph, the PDGs and ultimately the SDG. That is,
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different options of exceptions (and of pointer analysis) lead to variations in the obtained
SDG.

Pointer analysis

In case a Java program creates objects, any precise program analysis (such as
JOANA) must run a pointer analysis (or points-to-analysis) [SMARAGDAKIS; BALAT-
SOURAS et al., 2015] first. The goal of pointer analysis is to compute an approximation
of the set of program objects a pointer variable or expression can refer to during runtime.

JOANA has eight different pointer analyses, which are detailed in Table 2.1.
Basically, more precise pointer analyses compute smaller sets, closer to the real set of
objects pointed by a variable or expression. In contrast, less precise analyses compute over-
approximations, which means that they contain more spurious (false positives) references.
Nevertheless, although less precise analyses lose in precision, they tend to be more efficient
with respect to performance. As it may be noticed in Table 2.1, each pointer analysis
involves two aspects: heap model and method call context.

Pointer analysis Head model Method call context
Type Based Class based None

Instance Based Allocation site None
N1 Object Sensitive N1 Object Sensitive N1 Call Stack
Object Sensitive Object Sensitive N1 Call Stack

Unlimited Object Sensitive Unlimited Object Sensitive N1 Call Stack
N1 Call Stack Allocation site N1 Call Stack
N2 Call Stack Allocation site N2 Call Stack
N3 Call Stack Allocation site N3 Call Stack
Table 2.1 – JOANA’s available pointer analyses and their characteristics

The first of them, the heap model, deals with how object allocation is treated/dif-
fered. The most basic type is class based, which is used by the type based pointer analysis.
The class based model differs objects by their classes. Hence, all instantiations from the
same class are “merged” and considered as a single object. In contrast, allocation site
differs objects by the allocation site, that is, by their allocations points/positions. Finally,
object sensitivity analyses are the more advanced in this dimension, they consider the
actual objects. In particular, N1 object sensitive has 1 level of object sensitivity, object
sensitive has unlimited object sensitivity for application code and 1 level for library code,
and unlimited object sensitive has unlimited object sensitivity.

The other aspect is the calling context. Basically, no calling context means that
all calls to a method are “merged” and considered as a single one. In contrast, N1, N2
and N3 Call Stack differentiate the calls using 1, 2 or 3 levels of context, respectively.
To be more specific, as previously explained, in the example from Figure 2.5, although
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there is no actual leak, a context-insensitive analysis detects a leak from secret to line
19. In particular, as explained, this occurs because a context-insensitive analysis does
not distinguish the two calls to a.setX (lines 9 and 18). In summary, as the first of these
calls (the one from line 9, specifically) has access to secret, a context-insensitive analysis
considers that both calls has access to secret and as a consequence finds a leak from secret
to line 19 (even though the call from line 18 does not involve secret).

Dependencies

Finally, the last important aspect to take in consideration when creating a SDG is
the dependencies. As illustrated in Figure 2.7, similarly to system compiled classes, classes
from dependencies are also added to the class hierarchy created by JOANA. Basically, there
are two types of dependencies to take in consideration: external and native dependencies.

By external dependencies, we refer to external systems/libraries which a system
relies on. More precisely, these external dependencies are not part of the source code of a
system, but without them the system does not work. To be able to perform a complete
analysis, JOANA accepts jar files with dependencies code. Nonetheless, it is important
to mention that, generally, JOANA is able to perform the analysis without external
dependencies. However, in that case, the analysis is incomplete, as it does not consider
the dependencies code.

In addition, JOANA accepts stubs for different Java Runtime Environments (JREs).
Basically, these stubs include predefined models of native methods deep down in the Java
standard library. There are stubs for JRE 1.4 and 1.5. Additionally, it is also possible to
opt for a configuration without stubs. As in the case of external dependencies, in general,
JOANA is able to create the SDG without stubs, but the analysis in question would be
incomplete.
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3 RUNNING INFORMATION FLOW CON-
TROL TO ESTIMATE SAME-METHOD
INTERFERENCE

Previous studies bring evidence about the occurrence of dynamic semantic conflicts,
and from other types of conflicts such as syntactic and static semantic [KASI; SARMA,
2013; BRUN et al., 2013]. In particular, these studies use tests to detect this type of conflict,
finding occurrences ranging from 3% to 35% of the evaluated merge scenarios depending
on the project. Nevertheless, we argue, in Section 3.1, that the currently available merge
tools and strategies contain limitations to detect this type of conflict. Hence, we investigate
a new strategy. As discussed in Section 3.2, deciding if a dynamic semantic conflict exists
involves understanding a system’s expected behaviour before and after integration of
merge scenario contributions from different developers. So, we actually use the concept of
interference, first defined by Goguen and Meseguer [GOGUEN; MESEGUER, 1982], to
predict dynamic semantic conflicts. Additionally, to reduce the scope of our problem, we
focus on interference caused by developers same-method contributions. More specifically,
we focus on cases where both merge scenario contributions edit the same (Java) methods.
Finally, as interference itself is in general not computable, in Section 3.3, we detail our
strategy of using Java Object-sensitive ANAlysis (JOANA) to check for information flow
between developers same-method contributions of merge scenarios to estimate interference.

3.1 The problem of detecting dynamic semantic conflicts
As pointed out by previous studies [KASI; SARMA, 2013; BRUN et al., 2013]

dynamic semantic conflicts (discussed in Section 2.1.1.1) may occur when different con-
tributions from merge scenarios are integrated. Furthermore, failing to detect a dynamic
semantic conflict may affect a system’s quality, as this type of conflict inserts unexpected
behaviour on a system, possibly causing the insertion of bugs. Moreover, we argue that
the current existing strategies have limitations to detect this type of conflict.

3.1.1 Limitations of existing strategies

We divide the existing strategies in two groups with respect to how they deal
with dynamic semantic conflicts: unaware and aware. In the first group, we put strategies
such as textual and structured (semi-structured) merge tools. As previously discussed in
Section 2.1.2, in that sense, such merge strategies are syntactic, as they have no knowledge



Chapter 3. RUNNING INFORMATION FLOW CONTROL TO ESTIMATE SAME-METHOD
INTERFERENCE 39

1 g en e r a t eB i l l ( L i s t<Item> items ) {
2 double t o t a l = 0 ;
3 for ( Item item : items ) {
4 t o t a l += item . ge tPr i c e ( ) ;
5 }
6
7 // . . .
8 }

(a) Base

1 g en e r a t eB i l l ( L i s t<Item> items ) {
2 double t o t a l = 0 ;
3 for ( Item item : items ) {
4 t o t a l += item . ge tPr i c e ( ) ;
5 i f ( item . ge tPr i c e ( ) > 100)
6 t o t a l −= item . ge tPr i c e ( ) ∗ 0 . 1 ;
7 }
8
9 pricesMean = items . s i z e ( ) > 0 ? t o t a l / items . s i z e ( ) : 0 ;
10 // . . .
11 }

(b) Integrated

Figure 3.1 – Merge scenario containing dynamic semantic conflict

of the behaviour of a program. Hence, they do not detect dynamic semantic conflicts,
which may lead this type of conflict to pass unnoticed during the integration process,
possibly causing the insertion of bugs in a system. For instance, consider again the example
of Figure 3.1 (also shown in Figure 2.4 from Chapter 2). None of these tools would identify
the dynamic semantic conflict discussed in pricesMean. For this case, a textual tool would
not be able to identify the conflict, because left and right changed different areas of the text
(left changed lines 5 and 6 and right line 9 from Figure 3.1b). Similarly, a structured tool
would not identify the conflict because different elements were edited. To be more specific,
left included an if statement (in lines 5 and 6 from Figure 3.1b) while right included an
assignment to pricesMean (line 9 from Figure 3.1b), which is a different statement from
the if added by left.

In the second group, we place strategies such as code review, tests and semantic
merging, discussed below.
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Code review

The first of these, code review, although useful for detecting some dynamic semantic
conflicts, is time-consuming and error-prone, specially for large software. Particularly, it is a
good strategy to be used as a complement to other strategies, but may miss a considerable
number of conflicts if used as the only strategy for detecting dynamic semantic conflicts.

Tests

Similarly, tests are useful for detecting dynamic semantic conflicts, but the amount
of conflicts detected depends on the test suite quality and coverage. More precisely, projects
with good test suites will tend to detect more conflicts than projects using tests with
bad coverage and/or quality. For example, consider again Figure 3.1. For this case, the
detection of the dynamic semantic conflict in question depends on the existence of a test
which checks not only the pricesMean, but which checks it with at least one item from
the list with the price above 100. To be more specific, the modified behaviour caused by
the conflict manifests only when there are items with prices higher than 100. Therefore, a
test which checks the pricesMean only for items with prices equal or less than 100, will
pass and, as a consequence, will not be able to detect the conflict. So, only a test which
includes items above 100 will be able to detect the conflict from this example.

Semantic merging

Finally, semantic merging tools exist specifically to detect this kind of conflict.
Nonetheless, these tools are still theoretical, and to the best of our knowledge there is
no existing merging tool of such kind available (although some syntactic ones claim to
be semantic). Specifically, most tools of such kind have scalability issues [MENS, 2002].
For instance, one of the problems from strategies such as the one first proposed by
Horwitz, Prins and Reps [HORWITZ; PRINS; REPS, 1989] and later extended by Binkley,
Horwitz and Reps [BINKLEY; HORWITZ; REPS, 1995] is to scale the structure proposed
by them (Procedure Dependence Graph (PDG) and System Dependence Graph (SDG),
respectively), specially because in their case they propose to create a full program SDG
for each revision of the merge scenario (base, left and right) and then merge the SDGs to
generate a fourth one (the integrated one).

3.2 Using interference to predict dynamic semantic conflicts
In the previous section we argued that dynamic semantic conflicts occur and that

the existing strategies contain limitations to detect them. Furthermore, as previously
discussed in Section 2.1.1, a dynamic semantic conflict occurs when part of a program’s
behaviour was correct before integrating a merge scenario and it is not correct any more in
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the integrated revision. Therefore, it is necessary to understand the expected behaviour of
a system and the code resulting from a merge scenario contributions in order to establish
if a dynamic semantic conflict exists. As such behavioural specifications are often hard to
capture, formalize and reason about, we instead try to detect a necessary but not sufficient
condition for dynamic semantic conflicts: a code level adaptation of the simpler notion of
interference, first defined by Goguen and Meseguer, where

“one group of users, using a certain set of commands, is noninterfering with another
group of users if what the first group does with those commands has no effect on
what the second group of users can see.” [GOGUEN; MESEGUER, 1982]

We chose that definition because dynamic semantic conflicts are precisely caused by
unplanned interference between contributions from different developers. In fact, interference
among developers tasks might be desired and planned, but, when it is not, we have dynamic
semantic conflicts. So, detecting interference might be a good predictor for detecting
dynamic semantic conflicts. We adapt this notion to our context by considering that a
merge scenario has always two “groups of users”: left and right. Additionally, we consider
that the “set of commands” used by each group corresponds to the contributions from
each of them on the merge scenario. In summary, we want to check if there is interference
between the two sets of merge scenario contributions and use this information as a predictor
of dynamic semantic conflicts. In particular, we consider that left interferes with right if
left’s contribution affects or changes the behaviour of right’s contribution. Similarly, right
interferes with left if right’s contribution affects the behaviour of left’s contribution. In
a more general way, the notion of interference identifies situations of side effects on the
behaviour of the integrated revision of a merge scenario caused by the interaction between
the contributions.

Since interference is itself non-computable, the general idea of this work is using
program analysis [NIELSON; NIELSON; HANKIN, 2005] techniques to estimate interfer-
ence and therefore predict dynamic semantic conflicts. With the goal of using interference
to predict dynamic semantic conflicts in mind, it is necessary to better understand the
relation between interference and dynamic semantic conflicts, and then establish the types
of interference we focus and their characteristics.

3.2.1 The connection between interference and dynamic semantic conflicts

The notion of interference represents side effects on the behaviour of the integrated
revision of a merge scenario caused by the interaction between the contributions, while
dynamic semantic conflicts represent situations of side effects on the behaviour of the
integrated revision that causes it to diverge from the expected behaviour. In summary,
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1 stat ic boolean dominates ( State th i sS ta t e , State other ) {
2 // Multi−s t a t e − no domination f o r d i f f e r e n t s t a t e s
3 i f ( t h i s S t a t e . i sB ikeRent ing ( ) != other . i sB ikeRent ing ( ) )
4 return fa l se ;
5 i f ( t h i s S t a t e . isCarParked ( ) != other . isCarParked ( ) )
6 return fa l se ;
7 // . . .
8
9 return o ldCa l cu l a t i on ( th i sS ta t e , other ) ;
10 }

(a) Base

1 stat ic boolean dominates ( State th i sS ta t e , State other ) {
2 // Multi−s t a t e − no domination f o r d i f f e r e n t s t a t e s
3 i f ( t h i s S t a t e . i sB ikeRent ing ( ) != other . i sB ikeRent ing ( ) )
4 return fa l se ;
5 i f ( t h i s S t a t e . isCarParked ( ) != other . isCarParked ( ) )
6 return fa l se ;
7 i f ( t h i s S t a t e . i sBikeParked ( ) != other . i sBikeParked ( ) )
8 return fa l se ;
9 // . . .
10
11 return updatedCalcu lat ion ( th i sS ta t e , other ) ;
12 }

(b) Integrated

Figure 3.2 – Merge scenario containing interference, but not necessarily
dynamic semantic conflicts

we argue that every dynamic semantic conflict involves an interference, but not every
interference necessarily leads to a dynamic semantic conflict.

We name these situations of interference with no dynamic semantic conflict as
desired interference and the situations where interference and dynamic semantic conflicts
coincide as undesired interference. More specifically, if an interference occurs on a merge
scenario, but the integrated revision behaves as expected, then there is no dynamic semantic
conflict associated and the interference is desired. On the other hand, if an interference
occurs and the integrated revision behaviour diverges from the expected, then a dynamic
semantic conflict also occurred and the interference is undesired.

For instance, Figure 3.2 illustrates a situation, inspired on a merge commit from
OpenTripPlanner,1 where there is interference, but not necessarily a dynamic semantic
1 OpenTripPlanner GitHub page - <http://github.com/opentripplanner/opentripplanner>

http://github.com/opentripplanner/opentripplanner


Chapter 3. RUNNING INFORMATION FLOW CONTROL TO ESTIMATE SAME-METHOD
INTERFERENCE 43

conflict. In this example, there is a method called dominates, which compares two states
(thisState and other) and returns a boolean informing if one of them dominates the other.
In the illustrated scenario, left added a conditional with return false (lines 7 and 8 from
Figure 3.2b), while right updated the final domination calculation by calling a new method
(line 9 from Figure 3.2a and 11 from Figure 3.2b).

In this example, there is interference from left on right, because left’s control
flow interferes with right’s. In particular, when the return false added by left (line 8
from Figure 3.2b) is executed, the method returns and right’s contribution (line 11 from
Figure 3.2b) is not executed. In other words, there are situations where the method call
modified by right (updatedCalculation) was executed before the integration with left, and
is not executed after the integration with left’s contribution.

Nonetheless, if the overall method requirement (expected behaviour) is that there
is no domination calculation for different states, then, even though there is a side effect
on the method’s behaviour (there is interference), there is no dynamic semantic conflict
(the interference is desired), as left’s contribution conforms to this requirement. More
precisely, there were two tests of different states (lines 3-4 and 5-6 from Figure 3.2a for
fields isBikeRenting and isCarParked respectively), and left only added a third test for
a new field (isBikeParked).

Alternatively, the method requirement could be that for the added field
(isBikeParked), domination calculation should be done even for different states. In
that case, left would be inappropriately affecting right’s contribution, as the method
call changed by right to do the updated calculation (updatedCalculation in line 11 from
Figure 3.2b) is not executed for different states due to the conditional added by left (lines
7 and 8 from Figure 3.2b).

To conclude, given an interference exists, defining if there is also a dynamic semantic
conflict (if it is a desired or undesired interference) requires knowledge of the expected
behaviour of the system being evaluated, its requirements, and the specification of the
developers tasks that will create contributions to be later integrated. Since such behavioural
specification are often hard to capture, formalize and reason about, we only focus on
detecting interference to predict the existence of dynamic semantic conflicts, but we do not
evaluate if an interference is desired or undesired. In other words, we detect interference,
but we do not check if it actually leads to a dynamic semantic conflict, as this information
requires knowledge of the requirements for each system being evaluated. However, we argue
that existing automatic strategies of dynamic semantic conflicts detection, work similarly.
In particular, tests and semantic merge detect interference, not dynamic semantic conflicts
directly. More precisely, both of these strategies may also detect desired interference.
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3.2.2 Selecting same-method interference from different interference patterns

As previously discussed, we focus on detecting interference instead of dynamic
semantic conflicts. Nevertheless, we expect the existence of different patterns of interference
for different program languages. For example, for Java, we expect at least two patterns:

• Same-method - Both contributions edit the same method.

• Dependency of modified method - One contribution, directly or indirectly, depends
on a method edited by the other. For instance, left adds a call to a method modified
by right.

Figures 2.4 and 3.2 illustrate situations where both contributions edited the same method
(generateBill and dominates, respectively). An example of the second pattern may be
illustrated in a situation where left adds a call to a method foo inside method bar, while
right modifies the calculation of the value returned by foo. More specifically, imagine a
situation where the value returned by foo used to be 1 and is changed to 2 due to right’s
modification. In such a situation there is an interference from right on left, as the value
returned by foo used to be 1, for this situation, when left added the call to foo and is
changed to 2 after the integration.

It is important to notice that the described patterns occurrences do not represent
the actual cause of an interference. More specifically, the described patterns only represent
general situations which may lead to an interference. In fact, both patterns may include
more specific situations as the actual cause that leads to interference. For instance, both
patterns may actually happen because left’s contribution reads a value from a variable (or
field) modified by right or because right overwrites a value also modified by left. More
precisely, the first situation may occur when left changes the value of a variable, x for
instance, while right uses the modified value after the integration. There is interference
in such a situation because the value expected by right was changed by left. The second
may occur when left changes the value of a variable on a point 1 of the integrated revision
used by a statement on point 3, while right modifies the value of the same variable on a
point 2 between left modification from point 1 and the statement from point 3. There is
interference in such a situation because right overwrites the value also modified by left
affecting the value of the variable on point 3. Similarly, interference may also happen due
to different situations such as editions to annotations or modifiers.

To prioritize and reduce the scope of our problem of detecting interference, we
decided to individually search for occurrences of one of these patterns instead of trying to
deal with the concept as a whole. In particular, we here focus on the same-method pattern
to try to detect interference arising from developers contributions to Java programs.
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We decided to start with this pattern for a number of reasons. Firstly, it was the
simpler one to automatically identify. It requires only identifying the methods edited by
each contribution and then checking for methods edited by both contributions. In contrast,
the second pattern would require not only identifying methods edited by each contribution,
but also checking the call graph (see Section 2.2.1) of these methods. That is, the second
pattern involves checking if a method edited by one contribution is in the call graph from
the other. Secondly, each same-method pattern occurrence involves only a single method,
which may be easily isolated from the rest of a system. More precisely, it only requires a
single method as the starting point for performing interference detection. This aspect is
important to reduce the scope of our analysis. Lastly, Accioly [ACCIOLY, 2016] provided
evidence that this pattern (same-method contributions) occurs in practice. That is, using
a sample of 128 Java projects, this study found considerable occurrences of same-method
contributions.

Nonetheless, Accioly also shows, using a semi-structured tool, that same-method
contributions occur on around 80% of merge conflicts in Java files [ACCIOLY, 2016].
Because this is a high frequency and also because we are interested in detecting dynamic
semantic conflicts, which are not included in those merge conflicts detected by a typical
merge tool (such as a textual or structured/semi-structured tool), we decided to check if
there was also a considerable number of this pattern occurrences without merge conflicts
detected by a typical merge tool.

Thus, with the purpose of better understanding the selected pattern, we estimated
the percentage of scenarios with merge conflicts, identified by a semi-structured tool,
when there are same-method contributions. Using a sample of 64128 scenarios from 119
GitHub Java projects (used sample is detailed in Section 4.2.1) we found the pattern (both
contributions edited one method in common) in 4239 scenarios. From these scenarios with
occurrence of the pattern, 3028 contained merge conflicts due to editions on the same
areas of the same method (syntactical conflicts), which represents around 71% of the
scenarios found with the pattern (3028 from 4239). Therefore, although editions to the
same method with syntactical conflicts are frequent, a considerable number of scenarios
with the pattern occurrence (1211 from 4239 or 29%) have no syntactical conflicts but
could have dynamic semantic conflicts and interference. More precisely, those scenarios
with no merge conflicts identified by a typical tool are potential candidates for our analysis
of interference between same-method contributions. It is important to mention that we
did not count non-conflicting occurrences of the pattern in conflicting scenarios with other
patterns of merge conflicts. More specifically, there are situations where left and right
edit the same method foo and there is no merge conflict identified by a typical tool on
this method, but the tool may identify other merge conflicts outside the method for the
scenario in question. We did not count these situations as occurrences of the pattern and,
as a result, the obtained percentage of 71% may be viewed as a ceiling of the percentage
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of merge conflicts detected by typical tools on scenarios with the same-method pattern.

3.2.3 Perspective of interference: open-world vs closed-world

As just explained, with the intention of reducing the scope of our problem of
detecting interference, we focus on same-method interference. Nevertheless, while Goguen
and Meseguer’s notion of interference is focused on side effects on the global behaviour
of a system, there are also situations of local side effects that do not affect the global
behaviour of a system. For instance, consider the example from Figure 3.3 inspired on a
merge scenario from Netty.2 For this example, there is no interference according to Goguen
and Meseguer’s notion, but there is a possible local side effect on the behaviour of method
decode (lines 7-13 from Figure 3.3a and lines 12-21 from Figure 3.3b).

First, considering only method decode, left inserted a conditional (line 14 from
Figure 3.3b) around an existing command (line 9 from Figure 3.3a and 15 from Figure 3.3b).
Since the command was moved to inside the conditional body, the effect of this change
from left will affect the behaviour of variable frameLength when the conditional body is
not executed, as the assignment on frameLength was always executed on the code from
Figure 3.3a. Therefore, left’s change affects variable frameLength when lengthIncluded
is true. On the other hand, right added a method call (line 19 from Figure 3.3b) inside
the body of a different conditional that uses frameLength on its condition (line 17 from
Figure 3.3b). Therefore, when lengthIncluded is true left’s change affects the value of
variable frameLength and as a result may affect right’s change, as right’s change depends
on the value of the affected variable (frameLength). Hence, from the local perspective of
method decode, left interferes on right’s change.

However, from a global perspective, as in Goguen and Meseguer’s notion, there
is no interference. For this example, we consider that the global behaviour of the system
is established by the main method (lines 14-16 from Figure 3.3a and lines 22-24 from
Figure 3.3b). Analysing the complete class Decoder from Figure 3.3, we note that left
changes were not only restricted to method decode. Actually, left also added the field
lengthIncluded (line 3 from Figure 3.3b), a new constructor with an extra boolean parameter
to initialize the extra field (lines 7-11 from Figure 3.3b) and made the existent signature
of the constructor (lines 3-6 in Figure 3.3a and 4-6 in Figure 3.3b) invoke the new version
with false as the default value for the new field (line 5 in Figure 3.3b).

Method’s decode local perspective considers that left interferes on right because
when the field lengthIncluded is true there is a potential side effect on the method behaviour.
On the other hand, according to Goguen and Meseguer’s notion, an interference only
occurs if the caused side effect affects the global behaviour of the system. In fact, according
to this notion, there is no interference as lengthIncluded is always false for this program,
2 Netty GitHub page - <http://github.com/netty/netty>

http://github.com/netty/netty
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1 class Decoder {
2 int lengthAdjustment , maxLength ;
3 Decoder ( int lenAdj , int maxLen) {
4 this . lengthAdjustment = lenAdj ;
5 this . maxLength = maxLen ;
6 }
7 Object decode ( ) {
8 // . . .
9 frameLength += lengthAdjustment ;
10 i f ( frameLength > maxLength ) {
11 // . . .
12 }
13 }
14 stat ic void main ( St r ing [ ] a rgs ) {
15 new Decoder (100 , 200 ) . decode ( ) ;
16 }
17 }

(a) Base

1 class Decoder {
2 int lengthAdjustment , maxLength ;
3 boolean l ength Inc luded ;
4 Decoder ( int lenAdj , int maxLen) {
5 this ( lenAdj , maxLen , fa l se ) ;
6 }
7 Decoder ( int lenAdj , int maxLen , boolean l e n Inc lud ) {
8 this . lengthAdjustment = lenAdj ;
9 this . maxLength = maxLen ;
10 this . l ength Inc luded = l en Inc lud ;
11 }
12 Object decode ( ) {
13 // . . .
14 i f ( ! l ength Inc luded ) {
15 frameLength += lengthAdjustment ;
16 }
17 i f ( frameLength > maxLength ) {
18 // . . .
19 f a i l I f N e c e s s a r y ( ) ;
20 }
21 }
22 stat ic void main ( St r ing [ ] a rgs ) {
23 new Decoder (100 , 200 ) . decode ( ) ;
24 }
25 }

(b) Integrated

Figure 3.3 – Interference from open-world perspective, but not from
closed-world
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as the main invokes the existent version of the constructor from Decoder (line 15 from
Figure 3.3a and 23 from Figure 3.3b) and the new version (with lenInclud as parameter)
is invoked passing false as parameter to lenInclud and consequently to lengthIncluded
(as lengthIncluded receives the value from lenInclud in line 10 from Figure 3.3b). So the
body of the conditional added by left will always be executed, as it was before the change,
not effectively interfering with changes made by right. In summary, although the changes
made to decode have the potential to interfere with each other, the global context defined
by the main method and class constructors guarantees that interference will not effectively
happen. Looking locally only at decode, we conclude that the changes interfere. But looking
globally, we conclude otherwise.

Hence, with the view of also covering these local situations, we associate the
notion of interference with the concept of perspective of the analysis. More precisely,
we present two different perspectives of interference: open-world and closed-world. The
first perspective assumes the changed method might be called in arbitrary contexts, not
restricted to the calling context of an specific system. It is viewed as part of an Application
Programming Interface (API), an open-world, not of a single system and the closed-world
it imposes. On the other hand, the second perspective is restricted to the calling context
of the system being evaluated. In summary, an open-world perspective considers every
side effect on the behaviour of a method as interference, while a closed-world, as Goguen
and Meseguer’s notion, considers only side effects that affect behaviour on the system
level. Therefore, for our example, from an open-world perspective there is interference,
while from a closed-world there is no interference. In particular, while an open-world
perspective would consider interference because of potential side effects on the behaviour
of method decode when lengthAdjustment is true, a closed-world perspective would not
consider interference as lengthAjustment is always false in the calling context of this
program and consequently there will never be any actual side effect on global behaviour.

To conclude, a closed-world perspective requires a deeper analysis and establishing
the expected behaviour of a system, while an open-world perspective classifies every
side effect on a method’s behaviour as interference. Given the fact that a closed-world
perspective is more expensive (computationally speaking), as it considers the global
behaviour of a system, we detect interference using an open-world perspective even though
it has the potential of also identifying local side effects on behaviour that might be not
actually relevant.
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3.3 Executing Information Flow Control to estimate same-method
interference
As discussed in the previous section, we want to check for same-method interference

using an open-world perspective. However, as interference itself is in general not computable,
we need a way to estimate interference. Our general strategy is to use Information
Flow Control (IFC) to check for information flow between merge scenario same-method
contributions, and use this information to estimate interference between the contributions.
Our intuition is that the existence of information flow indicates interactions between the
contributions, and, consequently, possible interference.

To illustrate our strategy, in Figure 3.3b, as method decode was edited by left and
right, we want to check if there is information flow between these contributions (between
lines 14 and 16, and line 19). More specifically, we check if left (lines 14 and 16) has
information flow to right (line 19) and also if right (line 19) has information flow to left
(lines 14 and 16). In this example, we detect one flow between left and right (from line 14
to line 19) and as a result we establish that this method contains information flow between
its contributions and a possible interference.

We use JOANA to do the IFC of Java programs. As a tool from a security context,
JOANA is conservative and tries to avoid false negatives as much as possible by presenting
some false positives. JOANA is interprocedural, which means that methods calls are
taken in account when analysing a program. That type of analysis is more advanced
than an intraprocedural analysis, which considers only a single method/procedure and
does not take in account methods/procedures called from it. Additionally, as explained in
Section 2.2.1, JOANA considers data and control flow in its SDGs. We could use more
basic approaches, such as doing only intraprocedural analysis or considering only data
flow (instead of also considering control flow). However, we would tend to present more
false negatives using such simplified approaches. That is, we would miss more valid cases
of information flow. Furthermore, JOANA is able to handle full Java programs of up
to 100KLOC with arbitrary threads (without reflection). In addition, it is important to
mention that a taint analysis is probably more appropriate to describe the type of analysis
that we do here as we only deal with one security level (high/low, or, more precisely,
left/right). Nevertheless, as we use JOANA and as JOANA does the IFC of Java programs,
we reefer in this work to IFC.

3.3.1 Strategy

Given a merge scenario with no merge conflicts identified by a syntactical merge
tool and a group of methods edited by both merge scenario contributions, we run JOANA
to check if there is information flow between contributions and use the result to estimate
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Figure 3.4 – Strategy order

the existence of interference. In summary, if JOANA detects information flow between
contributions of a merge scenario we consider that there is interference between them, as
information flow between the contributions indicates that they interact. In other words,
the existence of information flow between contributions indicates that one contribution
may affect the other. In contrast, if JOANA does not detect any information flow then we
conclude that there is no interference between the contributions.

More precisely, JOANA is executed as an approximation of the actual set of infor-
mation flow existence. In particular, JOANA may present false positives (and negatives)
with respect to information flow existence. As a matter of fact, as a conservative tool,
JOANA tends to present more false positives than false negatives. That is, in general,
if there is information flow, JOANA is usually able to detect it. Nevertheless, to do so,
JOANA also finds a number of spurious cases that are not information flow. Furthermore,
as previously discussed, our intention is using the existence of information flow to estimate
the existence of interference, which may or may not represent a dynamic semantic conflict.

As can be noticed in Figure 3.4, our strategy is divided in three parts: a merge
and contribution identification step, a build step and an IFC step. The first is responsible
for merging the scenario and generating an integrated revision, which may contain merge
conflicts. For instance, in the example from Figure 3.3, this step obtains Figure 3.3b after
merging the scenario (after integrating base, left and right). The second step compiles the
integrated revision because it is necessary to build (compile) the system since JOANA
needs the resultant class files to run. As a result, when the compilation fails, the final step
is not executed. Lastly, the third step executes JOANA (IFC) on the integrated revision
with the objective of estimating the occurrence of interference.

In practice, we envisage our strategy as a complementary verification that would be
activated in the merge process. That is, for each merge scenario integrated with no conflicts,
our strategy could be automatically executed in a server to check for information flow. After
the verification was completed, an email would be sent detailing if any information flow was
identified between the contributions of the scenario and if so, detailing the obtained flows.
Given information flow is reported, a developer could review the code looking specifically
the points where information flow was identified to reason if the identified flows lead or
not to dynamic semantic conflicts (unexpected variations on the system behaviour).



Chapter 3. RUNNING INFORMATION FLOW CONTROL TO ESTIMATE SAME-METHOD
INTERFERENCE 51

3.3.1.1 Merge and contribution identification step

The merge and contribution identification step merges contributions using a non-
semantic strategy, for example textual or semi-structured/structured. We choose a non-
semantical approach at this stage because the semantic part is checked at the IFC step. In
particular, we use FSTMerge [APEL et al., 2011] as our merge tool. As any merge tool, this
tool is responsible for integrating contributions from a merge scenario and checking if they
conflict. Additionally, previous work [CAVALCANTI, 2016] has found advantages on using
semi-structured merge tools, such as FSTMerge, when compared to textual merging. For
instance, this work shows that semi-structured merge tends to detect less false positives
and negatives of merge conflicts. Additionally, due to our focus on methods edited by both
contributions, we also need to know the methods in which this situation occurs. FSTMerge
is able to find these methods, because it is a semi-structured tool and thus understands
the program structure and represents each method as a node in the parse tree.

Nevertheless, in order to execute our IFC analysis we also need to know which
lines, from methods modified by both contributions, were edited by each of the merge
scenario contributions. To obtain these lines, for each method edited by left and right, we
modified FSTMerge to call a routine which executes Git Blame3 on the integrated revision
and checks for each method line if the last commit that edited it was left or right. More
precisely, for each method line our invocation of Git Blame returns the last commit that
edited it. For example, for the method decode from Figure 3.3b, lines 14 and 16 were last
edited by left, line 19 by right and the rest by base or previous commits. Next, if the last
commit associated to a line is left (or right) our routine will associate this line to a list of
lines edited by left (right). Consequently, after the execution of this routine, we obtain the
list of lines edited by left and the list of lines modified by right for a specific method. For
instance, continuing our example from Figure 3.3b, the left list of lines would contain lines
14 and 16, while the right list would contain line 19.

It is important to notice that this approach of using Git Blame on the integrated
revision to identify the edited lines has limitations. The main one is that, because we
check the integrated revision, removed lines are not present any more. They were already
removed and as a result we do not identify them. Additionally, there are situations of
identical lines added by both left and right in the exact same place. These situations of
identical lines are a corner case of this approach, as Git Blame typically blames one of
them, either left or right. However, as both left and right added the line, blaming only
one of them is incorrect and may affect the analysis. Hence, we also specifically check for
situations of identical lines and when they occur we do not include those lines in the lists
of edited lines. We are aware that the more intuitive possibility would be considering lines
on this situation on both lists of edited lines. Nevertheless, as we check for information
3 Git Blame documentation - <http://git-scm.com/docs/git-blame>

http://git-scm.com/docs/git-blame
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flow between source code lines, this would not make sense. More specifically, information
flow checks for flows between high and low elements, and, marking a line as edited by
left and right would lead to marking it as both high and low, which is not possible. In
particular, this would correspond to checking for information flow from the line in question
to itself. In summary, a line can only be on the list of edited lines of left or right but not
both. Consequently, we decided to not include lines on this situation on the lists. For
instance, consider a hypothetical example where left added a new line on line 2 of the
integrated revision, right changed line 6, and both added line 4. In this situation, we do
not consider line 4, as both contributions added an identical line on the same position.
We assume both developers are aware of flows between 4 and the other lines, not causing
interference. As a result, we consider that left edited only line 2 and right only line 6.

At the end of this phase, the merge scenario is integrated, existing merge conflicts
are reported, and methods edited by both left and right, as well as the respective edited
lines, listed. For instance, considering Figure 3.3, Figure 3.3b is obtained, no merge conflicts
exist, and method decode was edited by left and right (left edited lines 14 and 16, and
right line 19).

3.3.1.2 Build step

As already explained, JOANA needs a system’s class files to execute. Thus, at this
step, we build the scenario integrated revision, to compile and generate the class files from
the source files.

Nevertheless, this step is only executed when the merge and contribution identifica-
tion step identifies that the scenario being analysed has no merge conflicts but has methods
edited by left and right. We only execute this step for scenarios without merge conflicts,
because we are interested in verifying situations which are not identified by traditional
merging strategies. That is, as previously explained, our final goal is detecting dynamic
semantic conflicts. In other words, we focus on analysing if cases which are integrated
with no problems may contain interference. Furthermore, since we focus on detecting
same-method interference, we only try to build (and later run the IFC step) the integrated
revision when the merge scenario contains methods edited by both contributions

3.3.1.3 IFC step

The IFC step is only executed when the build step is able to successfully compile
the integrated revision of the scenario. More precisely, the integrated revision class files are
necessary because JOANA needs them for its analysis and, as a result, when the integrated
revision compilation fails, it is not possible to execute this step.

As illustrated in Figure 3.5, first, when the integrated revision is successfully
compiled, its SDG representation is created or loaded. Since the SDG is the representation
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Figure 3.5 – IFC step order

of the program information flow, when it is not successfully created/loaded our process is
interrupted. Then, when the SDG is successfully obtained, for each method edited by left
and right, we execute the IFC analyses. Finally, when information flow exists it is necessary
to translate the obtained flows between elements of JOANA’s internal representation to
flows between source code lines.

3.3.1.3.1 Create/load SDG

As previously discussed in Section 2.2.1, before executing any IFC analysis with
JOANA it is necessary to create a SDG representing the program information flow and as
a matter of fact this phase is the performance bottleneck of our strategy. Therefore, for
each integrated revision of a merge scenario, we work with a single SDG and run different
IFC analyses on it. Moreover, as we previously mentioned, there are cases where the SDG
representation of a program may fail to be created. This may happen for a number of
reasons, but the most common of them is when the SDG being created is too heavy, with
respect to memory or time, to be computed. These situations are a limitation of our
approach, since, when they occur, the corresponding scenario can not be analysed as there
is no SDG representing its information flow.

Semantic merging using SDGs tend to deal with four SDGs (for base, left, right
and integrated) [HORWITZ; PRINS; REPS, 1989; BINKLEY; HORWITZ; REPS, 1995].
However, as this approach is too heavy, we chose to only create a single SDG: for the
integrated revision. For this reason, our analysis may miss cases potentially identified by a
semantic merging. For example, removed behaviour, that is, situations where instructions
and their associated behaviour are removed, may also cause interference because it may
cause difference on the information flow. For instance, removing a variable increment affects
future uses of the variable. Nevertheless, since we only create a SDG for the integrated
revision and since every removed instruction is not present any more at that point, we do
not identify this type of situation.
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As mentioned in Section 2.2.1.1, to create a SDG using JOANA, a group of options
needs to be defined such as use of concurrency, use of exceptions, pointer analysis and entry-
points. For performance reasons we do not use concurrency, as using it is computationally
expensive [HAMMER; SNELTING, 2009]. The positive side of this decision is that we
avoid excessively increasing the size of the SDG. The negative one is that we may miss
some cases which would be identified using this option. Additionally, we decided to use
SDGs without exceptions and with an instance based pointer analysis. The reasons for
these decisions are later detailed in Chapter 4.

Finally, the natural entry-point of a Java program is its main method. Nevertheless,
for some programs a main does not exist or multiple mains exist. For these cases, a
different approach is necessary. As discussed in Section 3.2.2, we are initially focused on
same-method interference, and therefore, we select all methods edited by both contributions
as entry-points, even when a single main exists. This option solves the problem of the
main existence and also helps to limit the scope of the analysis, more specifically the SDG
size. More precisely, we focus on same-method information flow to detect same-method
interference, which means that we may miss cases of information flow, and consequently of
interference, which are not caused by editions to the same method. In particular, if on a
merge scenario a method foo is edited by both left and right, while left also edits method
bar and right edits method bar2, we only consider the editions to method foo as it was the
only method edited by both. Consequently, we do not identify information flow involving
left’s edition on bar or right’s edition on bar2. Hence, our strategy tends to be incomplete,
but more scalable compared to analysing the whole program.

Furthermore, most of the scenarios with occurrences of same-method editions
contain a single method on this situation. Nevertheless, some of the scenarios contain more
than one occurrence of this pattern. Given a scenario with n methods with occurrences of
this pattern, there are two possibilities: passing all the n occurrences of the pattern on a
scenario to create a single SDG with n entry-points (one for each method) or creating n
SDGs with a single entry-point each (each SDG with a different method as entry-point).

The advantage of the first approach is that it is simpler and more intuitive, since
every scenario is always associated to a single, richer, SDG representing its information
flow. On the other hand, the advantage of the second approach is that, because a different
SDG is created for each method with the pattern, if one method’s SDG is too heavy to
be computed, other SDGs may still be computed for other methods and interference may
be detected on them. In contrast, with the first approach the single SDG would not be
computed because of the method in question. Nonetheless, cases where all n methods have
SDGs too heavy to be computed will tend to take more time to fail to create than failing
to create a single SDG as in the first approach. For instance, if we consider that the SDG’s
creation fails after reaching a timeout the first approach would fail after the timeout, while
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Figure 3.6 – IFC analyses order

the second would fail after n× timeout as it tries to create n SDGs. Additionally, the first
approach is more easily extensible for analysing other patterns as it works with a single
richer SDG. To keep the correspondence between scenario and SDGs created and facilitate
future extensions to analyse different patterns, we decided to adopt the first approach.

3.3.1.3.2 IFC analyses

After the SDG is created, or loaded from a previously saved one, we start running
the actual IFC analyses. In particular, different IFC analyses are individually executed
for each method edited by both contributions of a merge scenario. Figure 3.6 depicts the
order of the IFC analyses. For each method edited by both contributions, first we execute
IFC analyses to check for direct information flow between contributions, from left to right
and from right to left. Then, when there is no direct information flow, we also execute
IFC analyses to check for indirect information flow from the contributions to common
target points. In other words, we want to check if there are points (instructions) with
information flow from (affected by) both left and right. In particular, the indirect part
first executes an analysis from left to base, then from right to base, and finally checks for
common target points between the flows of information identified by those analyses.

Direct IFC analyses between contributions

The intention of the analyses at this stage is to check if there is information flow
from left to right and/or from right to left. To obtain these answers, we execute two ifc
analyses: one checks information flow from left to right, and the other from right to left.

As mentioned in Section 2.2.1, after a SDG is created, an IFC analysis is formed
by two stages: annotation and execution. The first corresponds to the part of defining high
(sources) and low (sinks) nodes on the SDG, while the second looks for paths between
high and low nodes.
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Starting by the left to right analysis, the annotation part takes as input the created
SDG and a method edited by left and right (with the line numbers edited by each). For
instance, for Figure 3.3, a SDG representation of Figure 3.3b and in method decode left
edited lines 14 and 16, and right line 19. We use the fact that each SDG node is associated
to a source code line to annotate the SDG nodes. For each SDG node from the method
being analysed, we check if the line associated to the current node was edited by left,
right or none. Nodes from lines edited by left are marked as high, while nodes from lines
edited by right are marked as low and nodes from the rest of the lines are not marked.
For the example from Figure 3.3b, nodes associated to lines 14 and 16 are marked as high
and nodes associated to line 19 as low. Finally, after the annotation part is concluded,
the execution part looks for information flow from left to right. In the example from
Figure 3.3b, a flow is detected between a node associated to line 14 and a node associated
to line 19.

Once the left to right analysis execution finishes, the annotation part from the
right to left analysis just needs to invert the nodes classification from the previous one. In
particular, high nodes of the first analysis are marked as low on the second, and similarly
low nodes of the first become high on the second. For the example from Figure 3.3b,
nodes associated to lines 14 and 16 are now marked as low, while nodes from line 19 are
marked as high. After the inversion on the annotation part, the execution part looks for
information flow from right to left. Considering the example from Figure 3.3b, there is no
information flow in this way (from right to left).

Indirect IFC analyses from contributions to common target points

When there is no direct information flow between the contributions, we also check
if the contributions flow to common target points. To illustrate this situation, consider
the example from Figure 3.7, which was inspired on a merge scenario from Jsoup.4 In this
example, left added a second condition to the if from line 4 (&& a2), while right added a
second condition to the if from line 8 (|| b2). There is no direct information flow between
those contributions. However, both of them affect line 11. More specifically, left directly
affects variable html on line 5, right affects the method parameter accum on line 9 and
both html and accum are used on line 11. In particular, there is a common target point
(accum) which is affected by both left and right. In other words, there is no direct side
effect on behaviour from left on right, or from right on left, but the integration of left and
right may cause a side effect on the behaviour of a common target point (accum). That
is, left and right may indirectly interfere with each other. We call situations of flows to
common target points as potential indirect interference, because the common points have
potentially different behaviour on left, on right and after the integration.
4 Jsoup GitHub page - <http://github.com/jhy/jsoup>

http://github.com/jhy/jsoup
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1 public void outherHtmlHead ( S t r i ngBu i l d e r accum) {
2 St r ing html = getWholeText ( ) ;
3 // . . .
4 i f ( a ) {
5 html = normal iseWhitespace ( html ) ;
6 }
7 // . . .
8 i f (b) {
9 accum . append (x ) ;
10 }
11 accum . append ( html ) ;
12 }

(a) Base

1 public void outherHtmlHead ( S t r i ngBu i l d e r accum) {
2 St r ing html = getWholeText ( ) ;
3 // . . .
4 i f ( a && a2 ) {
5 html = normal iseWhitespace ( html ) ;
6 }
7 // . . .
8 i f (b | | b2 ) {
9 accum . append (x ) ;
10 }
11 accum . append ( html ) ; // Af f e c t ed by both
12 }

(b) Integrated

Figure 3.7 – Merge scenario with indirect information flow

To be able to check this situation we need to execute two extra IFC analyses
and then check for common target points in the flows identified by each. Firstly, we
check for information flow between instructions from left and base instructions. Base
corresponds to instructions from lines not edited by left or right in the analysed scenario.
For instance, in Figure 3.7b, we classify instructions from line 4 as from left, from line 8
as from right and from the other lines as from base. For our example, the IFC analysis
from left to base identifies flows from instructions on line 4 to instructions on lines 5 and
eleven respectively. Secondly, we check for information flow between instructions from
right and base. Considering our example, this second IFC analysis would identify flows
from instructions on line 8 to instructions on lines 9 and 11. Finally, we check if there are
instructions affected by both IFC analyses. In our example, the instruction from line 11
has flows on both analyses. Hence, line 11 is a common target point.



Chapter 3. RUNNING INFORMATION FLOW CONTROL TO ESTIMATE SAME-METHOD
INTERFERENCE 58

3.3.1.3.3 Translating identified flows

Given the IFC analyses were executed, when there is information flow, those flows
are between SDG nodes. For instance, in Figure 3.3b something like “Illicit flow from
SDGNode 15951 (v35 = lengthIncluded) At SDGNode 16121 (this.failIfNecessary())”.
The final step consists of translating the flows between SDG nodes to flows between source
code lines in order to give the exact location at the source code that caused an information
flow. For the example from Figure 3.3b the previous flow between SDG nodes is translated
to something like “Illegal flow from Decoder.decode() (line 14) to Decoder.decode() (line
19)”.

Defining if a scenario contains information flow between contributions

After we execute our strategy for a specific merge scenario, JOANA returns all
flows identified between source code lines of methods with same-method contributions.
In particular, a scenario contains information flow between the contributions if JOANA
identifies at least one flow between source code lines. On the other hand, if no flow is
identified, then there is no information flow between the contributions of this scenario.

Implementation

The basis for performing the described steps is already supported by JOANA’s
API. Nevertheless, some implementation extensions were necessary. The first was due to
the fact that JOANA initially only accepted a single entry-point on the SDG creation,
while we wanted to pass all the methods edited by both left and right as entry-points.
The second was necessary because JOANA’s API representation used to annotate SDG
nodes (SDGProgramPart) has no association (link) with their originating source code
lines and we needed this association as our strategy identifies the source code lines affected
by left and right and use this information to annotate the SDG nodes. Given both of the
necessary implementations extensions are included in T.J. Watson Libraries for Analysis
(WALA), and given JOANA is built on top of WALA, we were able to extend JOANA to
also include them.

Since JOANA uses WALA’s (JOANA is built on top of WALA) call graphs to
create its SDGs (as previously mentioned in Section 2.2.1) and since WALA’s accepts
multiple entry-points on its call graphs, almost the entire infrastructure for making JOANA
accept multiple entry-points was already implemented by WALA and it was only necessary
to establish a link between this implementation (in the bottom of the architecture) and
the part directly used by JOANA (in the top). Similarly, JOANA API had no association
between its representation of SDG nodes used to annotate and source code lines, while
WALA already had. However, this implementation required more than just establishing
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a link between WALA’s and JOANA’s representations. By establishing this link, it was
possible to map from source code line numbers to JOANA’s API representation when the
SDG was created, but not when the SDG was loaded. This occurred because when JOANA
saves a SDG, for being used/loaded in the future, it only saves its internal representation,
it does not save WALA’s. In other words, the link between JOANA and WALA was lost
for cases where the SDG was loaded and consequently the mapping between source code
line numbers and the internal representation was also lost.

To solve this additional problem without modifying the way JOANA saves its SDGs,
we decided to save an extra file with the mappings between source code line numbers and
the internal representation. When the SDG is created, we still directly use the WALA
representation to consult the mappings between source code lines and JOANA’s internal
representation. Additionally, we save a file with the mappings for those cases. On the other
hand, for cases where the SDG is loaded, instead of created, we indirectly use WALA’s
representation by loading the previously saved file with the mappings.
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4 EVALUATION

Given the strategy proposed in Chapter 3, it is necessary to evaluate it to understand
if information flow may be used to estimate interference. This chapter details such
evaluation. First, we reproduce merge scenarios from the development history of different
projects hosted on GitHub and execute Java Object-sensitive ANAlysis (JOANA), with
different options, on their integrated revisions, to measure performance and check for
information flow between the contributions. Then, we manually analyse part of the scenarios
with information flow to establish if there is also interference.

4.1 Research Questions
Considering the motivation and strategy described in Chapter 3, we need to

understand the frequency of information flow between contributions from merge scenarios,
and when the existence of information flow is not related to interference. However, as
JOANA has different options to create a System Dependence Graph (SDG), we also need
to choose one. In summary, the following research questions are investigated:

• Research Question 1 (RQ1) - Configuration: Which SDG option is the most
appropriate to identify information flow between merge scenario same-method con-
tributions?

– Research Question 1A (RQ1A) - Exceptions: Should the SDG include
exceptions analysis?

– Research Question 1B (RQ1B) - Pointer analysis: Which pointer analysis
should be used?

• Research Question 2 (RQ2) - Severity: Is there direct information flow between
merge scenario same-method contributions? How often?

• Research Question 3 (RQ3) - Limitations: In which situations is there information
flow and no interference?

The answer to the first question (RQ1) will give us a SDG configuration to execute
JOANA. Since a SDG configuration involves different aspects, we focus on two of them,
exceptions and pointer analysis, and consequently split the original question in two parts
(RQ1A and RQ1B). The first part (RQ1A) aims to answer if SDGs will include exceptions.
The second (RQ1B) establishes which pointer analysis should be used. Furthermore, as
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previously mentioned in Section 3.3.1.3, concurrency is not included for performance
reasons.

The second question (RQ2) aims to check if direct information flow between same-
method contributions actually occurs. For this question, high frequencies of information
flow between contributions indicate that it is common to detect direct information flow
between merge scenario contributions. In contrast, low frequencies indicate that this
situation does not generally occur and, as a result, our strategy would identify fewer
cases and be less relevant. It is important to mention that we focus in cases of direct
information flow only, because the detection of indirect flows to common target points
was only implemented at a later stage of the work. Hence, the cases of flows to common
target points (explained in Section 3.3.1) are classified as without information flow here.

Finally, the third question (RQ3) aims to understand the relation between the
existence of information flow and interference. We want to check if when there is in-
formation flow there is also interference, and, in particular, in which situations there
is information flow and no interference. More precisely, we focus on information flow
true/false positives of interference. In contrast, we do not cover true/false negatives. More
specifically, we are aware that our analysis may miss valid cases of interference, however,
we are interested in first understanding if information flow existence indicates interference
existence. Additionally, we are interested in the reasons for information flow existence
without interference (false positives).

4.2 Design
Our study involves two different types of analysis: automatic and manual. The first

aims to answer which SDG configuration should be used (RQ1) and find out the frequency
of information flow between contributions (RQ2). Furthermore, the first generates cases
to the second which analyses a subset of the cases with information flow from the first
to check if there is interference when there is information flow. Additionally, the manual
analysis also checks in which cases there is information flow and no interference (RQ3).

4.2.1 Sample

In order to select subjects to our sample, we initially selected the 128 Java projects
from a previous work [ACCIOLY, 2016]. This work’s selection criterion involved only
selecting Java projects with more than 500 stars on GitHub, which helps to avoid the
selection of toy projects as each star is given by a different GitHub user. In particular,
a project with 500 stars is “stared” (or considered interesting) by 500 different GitHub
users. Additionally, this sample also contains projects from different domains such as
databases, search engines and frameworks. Furthermore, the selected projects also have
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varying sizes and number of collaborators. More precisely, there are projects with sizes
varying from 4KLOC (SimianArmy1) to 1653KLOC (Elasticsearch2) and with the number
of collaborators varying from 10 (droidparts)3 to 403 (tachyon).4

Nevertheless, as we need to compile the integrated revisions in order to run JOANA,
we filtered the initial 128 projects sample to contain only projects with a build script
of specific types, with the goal of making the process of compilation automatic. More
specifically, we filtered this initial list to contain only projects with Ant,5 Gradle6 or
Maven7 build scripts, as these three build systems were the more common in the sample
and the ones that were familiar to us. This step reduced our projects list from 128 to 119
(OG-Platform8 was actually discontinued).

Furthermore, we looked for merge scenarios in those 119 projects with same-
method contributions and no merge conflicts identified by FSTMerge (as explained in
Section 3.3.1.1 we use this tool as our merge tool). As previously mentioned, we do not
consider scenarios with merge conflicts identified by FSTMerge, because we are interested
in verifying situations which are not identified by typical merging strategies. Specifically,
we only check scenarios that are free of conflicts according to FSTMerge. Hence, we look
for scenarios without merge conflicts according to FSTMerge from 2006 to 2016 (a period
of almost eleven years, as the selection was realised on 2016). All of the 119 projects had
merge scenarios in the selected period (total of 64128 scenarios), but only 97 had scenarios
with occurrences of the same-method contributions pattern and no merge conflicts (other
14 projects only had scenarios with occurrences of the pattern with merge conflicts).

Finally, from 97 projects containing scenarios with occurrences of the pattern
and no merge conflicts identified by FSTMerge, for 52 projects at least one scenario was
successfully compiled. As it can be noticed, it was not possible to successfully compile any
scenario for a significant number of projects (45 of 97). This situation may occur for a
number of reasons. The more direct one is when the integrated code is in fact wrong and can
not be compiled. This may occur because some of the contributions introduced code that
caused the compilation problem, but also because of a static semantic conflict as described
in Section 2.1.1. Furthermore, we also noticed some cases where the compilation problems
were actually caused by the used merge tool (FSTMerge). More precisely, FSTMerge
only fully works for Java 5 resources and, as a result, files with newer elements (such
as the diamond operator) fail during the parse and are not included in the integrated
1 SimianArmy GitHub page - <http://github.com/Netflix/SimianArmy>
2 Elasticsearch GitHub page - <http://github.com/elastic/elasticsearch>
3 droiodparts GitHub page - <http://github.com/droidparts/droidparts>
4 tachyon GitHub page - <http://github.com/amplab/tachyon>
5 Ant website - <http://ant.apache.org>
6 Gradle website - <http://gradle.org>
7 Maven website - <http://maven.apache.org>
8 OG-Platform GitHub page - <http://github.com/OpenGamma/OG-Platform>

http://github.com/Netflix/SimianArmy
http://github.com/elastic/elasticsearch
http://github.com/droidparts/droidparts
http://github.com/amplab/tachyon
http://ant.apache.org
http://gradle.org
http://maven.apache.org
http://github.com/OpenGamma/OG-Platform
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Figure 4.1 – Project list selection

revision, which leads to compilation problems. However, there are other reasons for a
compilation failure different than the integrated code being incorrect, such as when it is
necessary to manually download additional tools to execute a build. For example, multiple
projects required specific versions of the Android SDK to run a build. Another common
reason was failing to download the dependencies specified in the build script, which could
happen due to outdated links to the dependencies for instance. These cases require manual
intervention in the compilation process, for instance by manually downloading the required
tools (dependencies) and, as a result, we decided to not consider them because it would
be excessively time-consuming.

A summary of the applied reductions on the project list is illustrated in Figure 4.1,
and the final sample is detailed in Table 4.1. For each project, the number of stars and
collaborators were collected from GitHub in January of 2017, while the size (in KLOC) was
collected from OpenHub9 in February of 2017. Projects having an asterisk in the KLOC
column do not have this information in OpenHub, so we retrieved it from a previous work
[ACCIOLY, 2016] (collected in September of 2015).

So far, we focused on discussing how our project list was selected. Nonetheless,
one project may have multiple scenarios satisfying our requirements, scenarios which were
successfully compiled and contain same-method editions without merge conflicts identified
by FSTMerge. In fact, we analyse more than one scenario from the same project, but we
avoid analysing too many scenarios from the same project as this could bias our results.
For example, if we had 100 scenarios from 52 projects, but 40 were from a single project,
this could bias our data towards this project’s characteristics. More specifically, we avoided
running JOANA for more than 7 scenarios from the same project. The only exception
to this rule, was the project orientdb,10 which we ran 11 scenarios because for 3 of them
9 OpenHub website - <http://www.openhub.net>
10 orientdb GitHub page - <http://github.com/orientechnologies/orientdb>

http://www.openhub.net
http://github.com/orientechnologies/orientdb
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Partial GitHub URL Stars KLOC Collaborators
Scenarios
executed
JOANA

Scenarios with
at least a SDG

Activiti/Activiti 1711 427 123 7 6
antlr/antlr4 2058 210 91 2 1
Netflix/astyanax 905 55.6 50 3 0
AsyncHttpClient/async-http-client 3359 35.3 118 1 1
aws/aws-sdk-java 1736 1261 113 2 2
Atmosphere/atmosphere 2774 43.6 93 1 1
BroadleafCommerce/BroadleafCommerce 859 225 46 7 3
apache/cassandra 3206 321 198 7 4
cucumber/cucumber-jvm 1391 40.7 155 1 1
apache/curator 510 92.4 54 2 2
square/dagger 5850 11 36 2 1
droidparts/droidparts 760 11.2 10 1 1
dropwizard/dropwizard 5310 89.2 271 2 2
druid-io/druid 4256 320 153 5 4
elastic/elasticsearch 20204 1653 762 2 2
richardwilly98/elasticsearch-river-mongodb 972 10.3 18 4 4
twitter/elephant-bird 1018 26 52 1 1
Netflix/eureka 2716 46.3 47 4 3
unclebob/fitnesse 893 113 90 6 5
go-lang-plugin-org/go-lang-idea-plugin 4131 53.3* 28 1 0
Graylog2/graylog2-server 2641 143 66 2 1
groovy/groovy-core 1484 311 137 3 0
hector-client/hector 673 32.9 69 6 6
brettwooldridge/HikariCP 3851 8.91 52 1 1
apache/hive 1172 1436 97 1 0
Netflix/Hystrix 8118 14.7 95 1 1
FasterXML/jackson-databind 1126 102 102 1 1
xetorthio/jedis 4540 28.1 120 3 3
jenkinsci/jenkins 7550 1086 442 7 4
jmxtrans/jmxtrans 1089 28.7 81 1 1
jhy/jsoup 3803 23.7 49 3 3
junit-team/junit 5594 31.4 133 1 1
qos-ch/logback 856 100 81 1 1
dropwizard/metrics 4552 19.7 131 2 2
mongodb/mongo-java-driver 1663 25.5 88 2 2
spullara/mustache.java 1037 12.3 37 1 1
netty/netty 8779 193 238 1 1
nutzam/nutz 1237 33.1* 37 4 2
square/okhttp 16789 52.3 127 4 3
OpenRefine/OpenRefine 4156 61.7* 32 1 1
opentripplanner/opentripplanner 923 128 88 3 3
orientechnologies/orientdb 2781 334 104 11 8
realm/realm-java 6781 74 63 1 1
square/retrofit 18114 14.4 104 1 1
ReactiveX/RxJava 20339 67 132 1 1
Netflix/SimianArmy 4958 4.08 45 2 2
spring-projects/spring-boot 9506 245 317 4 3
amplab/tachyon 2796 204 403 7 5
thinkaurelius/titan 4189 98.6* 35 5 5
voldemort/voldemort 1826 199 60 7 7
yui/yuicompressor 2334 6.9* 36 7 7
webbit/webbit 733 8.1* 24 1 1
Total - - - 157 123

Table 4.1 – Sample project list and characteristics

no SDG was successfully created, and for other 5 the SDG was successfully created for a
single configuration. So, if a project contains too many scenarios satisfying our criteria,
we prioritise the scenarios by date (the more recent ones) and by the methods matching
the pattern (was the method with the pattern already analysed in a different scenario?).
Therefore, if a project has more scenarios than we intend to analyse, we select the more
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recent scenarios and also avoid selecting scenarios with the same methods with the pattern
as analysing the same method multiple times in different scenarios may also bias our
data with the method characteristics. On the other hand, if a project has only a few
scenarios satisfying the compilation and pattern existence with no merge conflicts criteria,
we do not look for date or repetition. For each project in Table 4.1 we detail the total
number of scenarios executed and the number of scenarios where it was possible to create
a SDG with at least one configuration. In particular, it was not possible to create SDGs
for four projects (astyanax, go-lang-idea-plugin, groovy-core and hive), independently of
the configuration used.

4.2.2 Automatic analysis

This part of the analysis involved executing JOANA with different configurations
for 157 merge scenarios integrated revisions from 52 projects. This is done reproducing
the merge scenarios from the development history of those projects, and then executing
JOANA with different configurations on the integrated revisions to check for information
flow between same-method contributions of those scenarios.

As just mentioned, we compare different configurations of JOANA. More specifically,
these configurations vary with respect to two aspects: use of exceptions (RQ1A) and pointer
analysis (RQ1B). Regarding exceptions, we consider JOANA’s most precise option of
exceptions (integrate exceptions with interprocedural optimizations), and, the option that
ignores exceptions. Basically, here, we consider them as include or not exceptions. We
use the most precise exceptions option as our option of including exceptions, because,
this option, when possible, does not consider impossible exceptions. Regarding pointer
analysis, we consider the eight pointer analyses available in JOANA. Thus, considering
the eight pointer analysis, and the use or not of exceptions (2 options), there is a total of
16 (8× 2 = 16) possible configurations to be analysed.

We could select JOANA’s default configuration and avoid the effort involved in
selecting a proper configuration to execute JOANA. Nevertheless, as we considered that the
configuration is important to check the applicability of our strategy and as we considered
that this decision may affect our conclusions, we decided to first select the most appropriate
configuration to our context.

To establish which SDG configuration should be used (RQ1) we executed JOANA
with different configurations and compared the results with respect to quantity of direct
information flow, size of the created SDG, and also with respect to the number of successful
SDG creations. In summary, we want a configuration that is precise (has few false positives
of information flow), but with an acceptable size and, more importantly, with a reasonable
number of successful creations.
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First, we consider the number of direct flows identified between the contributions
source code lines and, more importantly, the existence of direct information flow between
the scenarios contributions. In other words, for each configuration, we consider the quantity
of direct flows identified and if at least one flow was identified, since at least one flow needs to
be detected to classify a scenario as with direct information flow between the contributions.
Additionally, for the exceptions part (RQ1A), as SDGs without exceptions may miss
information flow [HAMMER; SNELTING, 2009], we further investigate scenarios that
contain information flow with exceptions and do not contain without. This is important to
understand if cases of information flow due to exceptions are relevant to detect interference.
We do not do the same for the pointer analysis part (RQ1B), as a more precise pointer
analysis is designed to avoid spurious cases of information flow detected by a less precise
one, not to detect extra cases missed by the other, as with exceptions. In other words, the
inclusion of exceptions has the goal of reducing information flow false negatives, while
more precise pointer analyses have the goal of reducing false positives. Thus, due to the
fact that more precise pointer analyses focus on minimizing false positives, when for a
given scenario one pointer analysis finds information flow and other does not, we consider
that the one which did not find information flow is the correct one.

Then, we consider that the SDG size is defined by the number of nodes, and
by the number of edges. Lastly, we consider the number of successful creations of each
configuration. This last aspect is important, because there are scenarios that lead to
successful SDG creation with one configuration but not with another. More precisely,
JOANA may take too long, or even break for some configurations. In particular, we
consider a SDG is too heavy if it takes more than one day to create (timeout), if it needs
more than 120 GB of heap to compute (out of memory), or if it exceeds the stack natural
limit of calls (8192 KB) during its construction (stack overflow). All the configurations were
executed on a machine with 40 Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz processors,
251 GB of RAM memory, running Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-79-generic
x86_64) as operating system.

Because all combinations of pointer analysis (8 possibilities) and use of exceptions
(2 possibilities) involve 16 (8 × 2 = 16) different configurations, and because creating
a SDG is expensive, we divided our automatic analysis in iterations. The basic idea is
to progressively increase the sample and remove some configurations at each iteration
until only one (the selected configuration) is left. This idea is illustrated in Figure 4.2. In
particular, we answer which configuration should be used (RQ1) after three iterations.
First, after iteration 1 we answer if exceptions should be included (RQ1A) and remove
one pointer analysis, leaving 7 possible configurations. Then, after iteration 2 we remove
other 4 configurations, leaving 3 possibilities. Finally, after iteration 3 we answer which
pointer analysis should be used (RQ1B), finishing answering RQ1.
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Figure 4.2 – Study iterations

Furthermore, as iteration 1 involves 16 configurations and including external
dependencies tend to increase the SDG size, SDGs are created without the dependencies
(external jars) at this iteration, while iterations 2 and 3 also include the dependencies
(as they involve fewer configurations). Additionally, iteration 1, and 20 scenarios from
iteration 2, were executed using stubs for the Java Runtime Environment (JRE) 1.4 (the
default), while the rest of the scenarios were executed using stubs for the JRE 1.5 as
we realised at this point this option is more appropriate because it is more updated.
Thus, once we select a configuration to be used (RQ1), we rerun, in iteration 4, the
scenarios from iteration 1 and those from iteration 2 which used stubs for JRE 1.4,
passing their correspondent dependencies and using stubs for JRE 1.5 to obtain the
appropriate frequency of direct information flow between merge scenario contributions
(RQ2). Additionally, it is important to mention that although we varied passing or not
the dependencies and the stubs version (for JRE 1.4 or 1.5) between the scenarios, we
never varied these between different configurations from the same scenario as this would
harm our comparison. In summary, for each scenario the configurations only vary with
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respect to use of exceptions (RQ1A) and pointer analysis (RQ1B) and aspects such as use
of dependencies and stubs version are the same, although different scenarios varied with
respect to use of dependencies and stubs version.

In addition, it is important to notice that the data used at each iteration is
incremental. For example, iteration 1 includes 83 scenarios from 34 projects, iteration 2
uses those scenarios and adds 36 scenarios to the initial data (from projects with scenarios
in iteration 1 and also from 16 new projects). Similarly, iteration 3 increments the data
from iteration 2 by adding 38 scenarios. A part of these scenarios is from two new projects,
but another one is from projects with scenarios in iteration 2.

Finally, all the iterations from the automatic analysis generate possible cases to
be analysed by the manual analysis, which aims to answer in which situations there is
information flow and no interference (RQ3).

4.2.2.1 Infrastructure

The built infrastructure, as Figure 4.3 shows, can be divided in four parts: mining,
build, IFC and data analysis. The first is responsible for finding merge scenarios with
the occurrence of same-method contributions, the second for finding which of these
scenarios may be compiled, the third for detecting information flow between the scenarios
contributions, and finally the last for handling the data and generating plots and reports.

Mining

Our mining step is similar to the ones used in previous work [ACCIOLY, 2016;
KASI; SARMA, 2013; CAVALCANTI, 2016]. First, we use GitMiner,11 which converts the
history from a GitHub project into a Neo4j12 graph database. GitMiner receives a GitHub
project (or a particular user), connects to GitHub via GitHub’s Application Programming
Interface (API) and loads all the metadata available about the project (or user) and stores
it in a Neo4j database.

Subsequently, we implemented scripts that query the Neo4j database to retrieve a
list of merge commits ids, and their parent ids, ordered by the date of the merge. Our
scripts uses Gremlin,13 a graph traversal language to perform the queries. Basically, the
graph database represents commits as nodes with a isMerge field to indicate if a commit
is a merge commit. To identify merge scenarios we traverse the commits and query which
commits have the isMerge field with a true value. Then, we use JGit,14 a Java library
implementing the Git version control system, to clone the project locally and, for each
11 GitMiner GitHub page - <http://github.com/pridkett/gitminer>
12 Neo4j website - <http://www.neo4j.org/>
13 Gremlin GitHub page - <http://github.com/tinkerpop/gremlin/>
14 JGit page - <http://www.eclipse.org/jgit/>

http://github.com/pridkett/gitminer
http://www.neo4j.org/
http://github.com/tinkerpop/gremlin/
http://www.eclipse.org/jgit/
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Figure 4.3 – Infrastructure overview

merge commit, we checkout and copy the revisions involved in the merge scenario (left,
base and right, see Section 2.1).

Next, after obtaining the merge scenarios, we merge the revisions using
FSTMerge, check which of the scenarios contain occurrences of the same-method
contributions pattern, and save these in a Comma-Separated Values (CSV) file.
The saved file contains information related to the scenario, the method signa-
ture in the format expected by JOANA, and the list of lines edited by left and
right. In particular, JOANA expects a fully qualified format similar to the follow-
ing fullPackageReturnType.ReturnTypeClass fullPackageName.ClassName.methodName
(fullPackageParam1.ClassParam1, fullPackageParam2.ClassParam2, ...). In particular,
most of the necessary information to translate the signature to the format ex-
pected by JOANA is available in the tree created by FSTMerge (fullPackageName,
ClassName, methodName, ReturnTypeClass and ClassParamN). However, the pack-
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age names corresponding to the parameters (fullPackageParamN) and return type
(fullPackageReturnType) were not directly available in the hierarchy. Hence, it was
necessary to approximate as much as possible the method signature to the format expected
by JOANA. More precisely, when possible we passed the fully qualified names by creating
logic to look in the list of imports of the method’s class. Nonetheless, there were cases
where it was not possible to find the package corresponding to an element (return type
or parameter) with this strategy. For example, if the element in question is part of the
Java standard library, like the class String (java.lang.String), then it is not necessary to
import the element (it is actually auto-imported by Java) and as a result the package does
not appear in the list of imports. Similarly, classes in the same package as the method’s
class are also not in the list of imports. Therefore, for cases in this situation, we pass only
the class names (without the corresponding packages) and in the JOANA extension we
implemented extra logic to match a method with potentially partial names for return
types and parameters.

It is important to notice that before calling FSTMerge, we pre-process the revisions
by removing all files that were not edited by both left and right revisions. This pre-process
step has the purpose of optimizing FSTMerge’s performance, without compromising our
results. In particular, we already copy files modified by a single revision to the integrated
revision instead of passing them to be merged by FSTMerge. More specifically, if only one
revision (left or right) modified an existent file, then the resultant file after the merge is
the modified file itself. Similarly, if left removes a file not modified by right, then the file is
also removed after the merge.

Build

Subsequently, before running JOANA on a scenario, it is necessary to compile this
scenario. Therefore, we check which of the merge scenarios with the pattern occurrence
are successfully compiled on the build step. With the goal of doing this verification, we
implemented a python15 script which runs the build process (Ant, Maven or Gradle) for
every scenario with the pattern of a specific project. It writes a CSV file specifying for each
scenario if the build was successful or not. If the build was successful, it also writes which
build system was used (Ant, Maven or Gradle). For projects with Maven as the build
system, running the build process for compilation is more straightforward than the others
(Ant and Gradle) as there is the command mvn compile to perform such task. However,
for projects with Ant and Gradle build systems, there is no equivalent default command
and the commands (targets in Ant and tasks in Gradle) are different for each project.
Hence, each project requires a manual analysis on its build script in order to define which
“compilation command” should be used by our python script.
15 python website - <http://www.python.org>

http://www.python.org
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IFC

Then, we run JOANA to check for information flow between the contributions. As
we run JOANA with different configurations, we implemented a python script to iterate
through the desired configurations and invoke JOANA with the appropriate arguments.
We decided to invoke each different configuration from a python script, instead of also
doing this logic in Java, to avoid problems of one configuration using elements from another
one due to shared resources in the same Java Virtual Machine (JVM) execution. Hence,
for each desired configuration from a scenario, our python script invokes JOANA (forcing
a different JVM execution) and waits for JOANA’s execution to finish to call the next
configuration. We established a timeout of 24 hours, in our python script, as the limit
for waiting for JOANA’s execution, as JOANA’s computation may become too expensive
computationally. If this timeout is reached and JOANA’s computation with the specific
configuration is not finished, this configuration is considered too expensive for the particular
case and the script tries the next configuration. For each scenario, this step produces a
CSV file containing data informing for which configurations the SDG was successfully
created and which of them contained information flow between the contributions.

It is important to mention that cases of indirect flows to common target points
(see Section 3.3.1.3) were only identified and implemented at a later stage of the work
and, therefore, they are not included in the generated CSV files. Hence, although our
JOANA implementation also checks for indirect flows, those cases are not saved in the
generated CSV files and, as a result, they are not considered by the automatic analysis.
More precisely, the automatic analysis only considers that there is information flow if there
is a direct information flow between the contributions. In contrast, in the manual analysis
we also know if an indirect flow to a common target point is identified as, every time we
execute JOANA, we save txt files with the detailed execution.

Data Analysis

Finally, we implemented a R16 script to analyse our results. With this script, we
read the CSV files generated after JOANA’s execution of each scenario and generate the
necessary plots and reports. In summary, we are able to manipulate (and summarise) the
data generated after the different executions of JOANA to obtain information such as
information flow frequency and number of successful SDG creations for different SDG
configurations.
16 R project website - <http://www.r-project.org/>

http://www.r-project.org/
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4.2.3 Manual analysis

A manual analysis was also conducted to understand the limitations of using
information flow to estimate interference between contributions in order to answer our
third question (RQ3).

Since we are interested in understanding if there is interference when there is
information flow, our analysis focus on methods, from the automatic analysis, that have
direct information flow between the contributions. Thus, we do not cover interference
true/false negatives. More specifically, we are aware that our strategy may miss valid
cases of interference, however, we are interested in first understanding if information flow
existence indicates interference existence. That is, we first want to check if our strategy
may help to detect some cases of interference.

Furthermore, we prioritised methods with less than 100 lines, in our manual
analysis, as bigger methods have more information and as a result tend to take more time
to manually analyse.

Additionally, we do not analyse test code in our manual analysis. More precisely,
we consider main source code more important than test code. Thus, we focus in main
source code and do not manually analyse test code.

Lastly, we only manually analyse one method per scenario to avoid biasing our data
with information from a single scenario. Similarly, we avoid selecting too many scenarios
from a single project. In particular, we only manually analysed at most three scenarios
from the same project.

In summary, given a method selected to be manually analysed we know it contains
information flow between its contributions and we manually analyse it using an open-world
perspective to establish if there is also interference. If there is also interference, then
information flow and interference coincide for the given method. On the other hand, if
there is no interference, we need to understand why there is information flow but no
interference.

Basically, we use the location of the identified information flow in the source code to
guide our manual analysis. That is, the identified flows show possible points of interference.
We manually analyse those points in order to establish if there is interference involving
them.

Using these criteria, from 57 methods (from 48 scenarios and 28 projects) with
information flow, we manually analysed 35 methods (from 35 scenarios and 24 projects).
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4.3 Results and discussion
As previously mentioned in Section 4.1 we aim to understand which SDG configu-

ration is the most appropriate for identifying information flow between merge scenario
contributions (RQ1), what is the frequency of information flow between same-method
contributions on merge scenarios (RQ2) and in which situations there is information flow
between the contributions and no interference (RQ3). We detail here the obtained results
from both the automatic and manual analysis and discuss their implications.

4.3.1 Automatic Analysis

As previously mentioned in Section 4.2.2 we divided our automatic analysis in itera-
tions, we show here the results for each iteration. Full results are available on Appendix A.

4.3.1.1 Iteration 1

As already illustrated in Figure 4.2, iteration 1 data corresponds to JOANA’s
execution of 83 scenarios from 34 projects. For all 83 scenarios, the SDGs were created
without passing dependencies and with stubs for JRE 1.4. From the 83 executed scenarios,
the SDG was successfully created for at least one configuration for 71 scenarios from 34
projects. Additionally, the SDG was created for all configurations for 62 scenarios from 33
projects. Furthermore, from these 62 scenarios, it was possible to identify instructions for
lines edited by left and right on 40 scenarios from 26 projects. Because these reductions
are significant, we further investigated the reasons for their occurrence and discuss it later
in this section.

It is important to mention that, depending on the aspect being analysed, we might
use a subsample of the 83 scenarios. For example, to check for the number of times the
SDG was successfully created for each configuration we consider the complete sample from
iteration 1 (83 scenarios). However, to compare SDG nodes and edges, we consider only the
62 scenarios where a SDG was created for all configurations. More specifically, including
cases where a SDG was created only for some cases could bias our data. Similarly, to
compare number of flows and information flow frequency, we consider only the 40 scenarios
where a SDG was created for all configurations and there are instructions corresponding
to left and right contributions. Thus, iteration 1 data involves 83, 62 or 40 scenarios
depending on the aspect being analysed: number of SDG creations, number of nodes/edges
and information flow, respectively.

This iteration considered all the possible configurations derived from combining
exceptions use (2 possibilities) and pointer analysis (8 possibilities), leading to 16 possible
configurations. At the end of this iteration, we answered if exceptions should be included,
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(a) Original (b) Amplified

Figure 4.4 – Original (a) and amplified (b) boxplots of number of flows
(violations) identified between source code lines for Instance Based
SDGs with (left boxes labeled as “Yes”) and without (right boxes

labeled with “No”) exceptions

discarding 8 possible configurations, and also discarded one of the 8 existing pointer
analyses.

4.3.1.1.1 RQ1A - Should the SDG include exceptions analysis?

To answer this question (RQ1A), first we noticed, as expected, that SDGs with
exceptions tend to have more information flow between the contributions than SDGs
without exceptions. Then, we noticed that although SDGs with exceptions had more
information flow their size was only slightly bigger. Finally, we investigated scenarios that
contain information flow between the contributions only when considering SDGs with
exceptions, to understand if those “extra” cases are relevant to estimate interference.

SDGs with exceptions contain more information flow

First, we compared the quantity of flows identified by SDGs with and without
exceptions as illustrated in Figure 4.4. Figure 4.4a shows the original boxplots, but as it
can be noticed it is difficult to visualize the tendencies of the boxplots in this figure due to
extreme outliers. Therefore, we also generated an amplified version in Figure 4.4b, which
uses the same data as Figure 4.4a, but only shows values up to 15 on the y-axis. More
precisely, Figure 4.4b may be seen as the result of cropping and zooming in Figure 4.4a
from 0 to 15 on the y-axis. As it may be noticed in Figure 4.4b, SDGs with exceptions
(labeled with “Yes”) contain more flows (violations) than SDGs without exceptions (labeled
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(a) Type Based (b) Instance Based (c) N1 Object
Sensitive

(d) Object Sensitive

(e) Unlimited Object
Sensitive

(f) N1 Call Stack (g) N2 Call Stack (h) N3 Call Stack

Figure 4.5 – Amplified boxplots of number of flows identified between source
code lines for SDGs with (left boxes) and without (right boxes)

exceptions for all precisions

with “No”). In fact, the first quartile from the former is higher than the median from the
latter, and the median from the former is close to the third quartile from the latter.

Figure 4.4 shows that for instance based SDGs, SDGs with exceptions contained
more flows (violations) than SDG without exceptions. Indeed, as it may be noticed in
Figure 4.5, this tendency is maintained for all pointer analyses. Although for some pointer
analyses the difference is bigger, all the pointer analyses contain more flows for SDGs
with exceptions. More specifically, for every pointer analysis in Figure 4.5 the left box
(SDGs with exceptions) has a median close to the third quartile from the right one (SDGs
without exceptions) and a first quartile greater than or equal to the median from the right
one.

To confirm that this tendency is in fact statistically relevant, we performed a
hypothesis test. First, we tested our data for normality using Shapiro-Wilk Normality
Test [SHAPIRO; WILK, 1965].17 This test has the null hypothesis that the data is normal.
Since the obtained p-value was of the order of 10−30, considering a significance level of
0.05, we can not accept the null hypothesis that the data is normal and consequently we
need to consider that our data is not normal.

Then, we performed a one-sided paired Wilcoxon Signed-Rank Test [WILCOXON,
17 Shapiro-Wilk test on R - <http://stat.ethz.ch/R-manual/R-devel/library/stats/html/shapiro.test.

html>

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/shapiro.test.html
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/shapiro.test.html
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1945]18 with the null hypothesis that the two groups (with and without exceptions) have
the same quantity of flows and the alternative hypothesis that SDGs with exceptions have
more flows. The obtained p-value was lower than 2.2× 10−16. Thus, at a significance level
of 0.05, we can not accept the null hypothesis that the groups have the same amount of
flows. As a result, the alternative hypothesis that SDGs with exceptions have more flows
is accepted.

Exceptions
Po

in
te
r
A
na

ly
sis

Yes No
Type Based 87.5 62.5

Instance Based 85 60
N1 Object Sensitive 85 55
Object Sensitive 85 52.5

Unlimited Object Sensitive 85 50
N1 Call Stack 85 60
N2 Call Stack 85 57.5
N3 Call Stack 85 52.5

Table 4.2 – Percentages (%) of scenarios with direct information flow
occurrence, for all combinations of configurations, in iteration 1

Once we established that SDGs with exceptions contain more flows between source
code lines than SDGs without exceptions, we also compared the frequencies of scenarios
with information flow between contributions (considering only the existence of flow instead
of the quantity) to check if SDGs with exceptions contain information flow in more
scenarios than SDGs without exceptions. More specifically, if for a given scenario a SDG
with exceptions of a specific pointer analysis has eight flows and another one, of the same
pointer analysis, without exceptions, has one flow, then both SDGs contain information
flow for the given scenario. On the other hand, if a SDG with exceptions has one flow,
while a SDG without exceptions does not have any flow, then the SDG with exceptions
contains information flow on the scenario, while the one without exceptions does not. The
obtained frequencies of information flow of the scenarios from iteration 1 are detailed in
Table 4.2 for all possible combinations of configurations. As it may be observed, SDGs
with exceptions tend to contain information flow in more scenarios. In particular, for
every pointer analysis, the value on the “Yes” column is higher than the value on the
“No” column. More precisely, the differences between the columns vary from 25 (Type
Based, Instance Based and N1 Call Stack) to 35 (Unlimited Object Sensitive) percent.
In summary, SDGs with exceptions contain more flows and also more scenarios
with information flow than SDGs without exceptions.
18 Wilcoxon Signed-Rank test on R - <http://stat.ethz.ch/R-manual/R-devel/library/stats/html/wilcox.

test.html>

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/wilcox.test.html
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/wilcox.test.html
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(a) SDG Nodes (b) SDG Edges

Figure 4.6 – Boxplots of SDG Nodes (a) and Edges (b) for instance based
SDGs with (left boxes labeled as “Yes”) and without (right boxes

labeled with “No”) exceptions

Exceptions use did not significantly change SDG size

SDGs with and without exceptions were also compared with respect to their size,
as illustrated in Figure 4.6, for instance based SDGs. Figure 4.6a shows the comparison
between the number of nodes of the SDG, while Figure 4.6b compares the number of
edges. With respect to the number of nodes, SDGs with and without exceptions are almost
identical. That is, their boxplots are in the exact same position in Figure 4.6a. On the
other hand, with respect to the number of edges, there is a slight difference. Although not
easily noticeable in Figure 4.6b because the y-axis is in log scale, SDGs with exceptions
(left box) had a median around 5% higher than SDGs without exceptions (right box),
meaning they generally contain a number of edges slightly bigger. Both tendencies were
kept for all pointer analyses: the number of nodes for SDGs with and without exceptions
were very similar, while SDGs with exceptions had a number of edges slightly higher (see
Appendix A). In particular, for the number of nodes the median was always the same
and the mean varied from 0% (type based) to 0.0019% (n2 call stack). In contrast, for the
number of edges the median was from 1.08% (n3 call stack) to 6.13% (type based) higher
for SDGs with exceptions and the mean from 2.20% (unlimited object sensitive) to 6.14%
(n1 call stack).

Exceptions tend to be irrelevant for estimating interference

Once we established that SDGs with exceptions contained more information flow,
we decided to manually investigate a few cases where only SDGs with exceptions contained
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1 Fi l t e rNutConf ig ( F i l t e rCon f i g c on f i g )
2 {
3 super ( c on f i g . getServContext ( ) ) ;
4 // . . . //AFFECTED by excep t i on
5 }

(a) Example of flows due to accidental exception

1 i f ( Nat ives . runningAsRoot ( ) )
2 {
3 i f ( Boolean . parseBoolean (
4 getProperty ( " a l low . root " ) ) ) {
5 // . . .
6 } else {
7 throw new RunTimeException ( "Don ’ t ␣run␣as ␣ root " ) ;
8 }
9 }
10 // . . . //AFFECTED by excep t i on

(b) Example of flows due to intentional exception

Figure 4.7 – Examples of flows caused by exceptions

information flow, to understand if those cases are relevant for estimating interference.
One of the reasons we observed that led SDGs with exceptions to have more flows than
SDGs without exceptions is that a line containing a statement that may raise an exception
leads to flows to all lines that could be executed after this line. More specifically, if for a
method of 100 lines, there is a statement that may raise an exception in line 2, a SDG
with exceptions leads to flows from line 2 to all lines from 3 to 100 with instructions that
may be executed if the exception is not raised. Moreover, as illustrated in Figure 4.7, we
observed two types of flows caused by exceptions: accidental and intentional.

The first represents situations where there is the possibility of an exception being
implicitly raised due to an unexpected situation. For instance, in Figure 4.7a a NullPoint-
erException is raised in line 3 if the argument config is null, which potentially affects
every line that could be executed after this line (represented by line 4 in the example).
In particular, using a SDG with exceptions JOANA finds information flow from line 3 to
line 4, considering line 4 has instructions. Additionally, it is important to mention that a
SDG with exceptions may include exceptions that never actually occur in practice. More
precisely, if in the example from Figure 4.7a, FilterNutConfig is never instantiated with
null as parameter, then a NullPointerException will never actually occur.

In contrast, the second represents situations where an exception may be explic-
itly raised because of a predicted situation. In other words, while in the first case an
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exception may be raised because of an unexpected situation, here an intentional excep-
tion is explicitly raised by introducing a throw new. For instance, in Figure 4.7b if
Natives.runningAsRoot() evaluates to false (line 1) and allow. root is false (lines 3 and
4), then an intentional exception is raised at line 7 (throw new RunTimeException(...)).
In particular, a SDG with exceptions will have information flow from line 7 to line 10,
considering line 10 has instructions.

In the original security context from JOANA, it is important to consider exceptions,
as the implicit flows caused by them may lead to information leak. Nevertheless, we use
JOANA in a different context. More specifically, our intention is estimating interference
between the contributions of a merge scenario. In this context, we claim that information
flow caused by accidental exceptions is less relevant for estimating interference between
contributions of a merge scenario than information flow caused by intentional exceptions
(and than information flow not involving exceptions). More specifically, accidental excep-
tions identify flows due to possibly incorrect code of one of the contributions, not due
to actual intentional behaviour changes of the contribution itself. To be more precise,
while intentional exceptions capture intentional modification of the system behaviour,
accidental exceptions capture possible flaws of one of the contributions that, in practice,
are identified too often by JOANA but may not even occur. In summary, we argue that
including accidental exceptions significantly increases the number of interference false
positives. Thus, we consider this type of exception less relevant for estimating interference.
In contrast, intentional exceptions are relevant, as they capture intentional behaviour
change.

In summary, as we consider accidental exceptions less relevant to our context,
we would like to detect intentional exceptions, but not the accidental ones. Nonetheless,
JOANA does not provide an option to include intentional exceptions and ignore accidental,
it does only provide options including both or ignoring both. Although is possible to
modify JOANA to include only the intentional exceptions, we decided to use one of the
available options. Hence, if we include exceptions in our SDGs we identify both, while if
we do not, we miss both. Therefore, we need to decide if it is better to avoid accidental
exceptions and miss the intentional ones, or if it is better to consider intentional exceptions
and as a result also include accidental ones.

We expect accidental exceptions to happen considerably more than intentional
exceptions, as the latter requires explicit code to raise an exception in the application,
while the former may be potentially identified in any statement of a program. To confirm
this, we analysed 10 scenarios (from 9 different projects) which have information flow only
with exceptions and looked for the types of exceptions contained in each. Only 2 of the 10
scenarios contained intentional exceptions, while at least 9 of the 10 scenarios contained
accidental. Therefore, as expected, these numbers suggest that accidental exceptions tend
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to happen significantly more than intentional exceptions. As a result, we conclude that
extra flows contained only in SDGs with exceptions tend to be less relevant
for estimating interference, as they are generally due to accidental exceptions,
and we consider flows due to accidental exceptions less relevant.

SDGs should not include exceptions

To conclude, we observed that, depending of the pointer analysis, for 25 to 35
percent of the analysed scenarios, SDGs with exceptions had information flow while
SDGs without exceptions did not. Then, we further investigated some cases that contain
information flow between contributions only when considering exceptions, to understand if
exceptions are relevant to estimate interference. The conclusion was that, in general, they
tend to be irrelevant (as they tend to be accidental exceptions). Hence, we decided to
not include exceptions analysis in our SDGs. That way, we focus on reducing the
number of irrelevant cases (due to accidental exceptions) with the drawback of missing
some actually relevant cases (such as cases of intentional exceptions).

4.3.1.1.2 RQ1B - Which pointer analysis should be used?

Regarding the pointer analysis, our first finding at iteration 1 was that the pointer
analysis has more effect on information flow occurrence for SDGs without exceptions. Then,
we discarded one of the pointer analysis (unlimited object sensitive) as we considered it
too heavy, leaving 7 remaining pointer analyses for iteration 2.

Pointer analysis had more effect on information flow occurrence for SDGs without exceptions

As detailed in Table 4.2, in our sample, the frequencies of information flow occur-
rence varied more in the pointer analyses for SDGs without exceptions. More precisely, for
SDGs with exceptions (“Yes” column) only the frequency of Type Based SDGs was slightly
different (87.5%), while the rest of the pointer analyses converged to the same frequency
(85%), with a maximum difference of 2.5% (87.5% - 85%) and standard deviation of 0.88.
On the other hand, for SDGs without exceptions (“No” column) the results varied more,
from 62.5% (on type based) to 50%(on Unlimited Object Sensitive), with a maximum
difference of 12.5% (62.5% - 50%) and standard deviation of 4.43. The intuition is that
the results of the pointer analyses for SDGs with exceptions vary less because SDGs
with exceptions, independently of the pointer analysis, already have a high frequency of
information flow due to possible exceptions. In contrast, SDGs without exceptions do
not identify those extra flows and thus the differences between the pointer analyses are
augmented.
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(a) SDG Nodes (b) SDG Edges

Figure 4.8 – Boxplots of SDG Nodes (a) and Edges (b) for SDGs without
exceptions of all pointer analyses

These numbers indicate that, if we had decided to use SDGs with exceptions, a
basic pointer analysis, such as instance based, would be a good candidate as it had no extra
scenarios with false positives of information flow compared to more precise analysis such as
object sensitive and n1-3 call stack. In fact, the least precise pointer analysis (type based)
identified only 2.5% more scenarios. Nonetheless, as we use SDGs without exceptions, we
need more data before deciding which pointer analysis to use.

Unlimited Object Sensitive was too heavy and added little extra precision

As previously discussed, the pointer analysis affected the frequency of information
flow occurrence, using SDGs without exceptions, for 12.5% of the scenarios from iteration
1. In particular, unlimited object sensitive SDGs contained information flow in 12.5% less
scenarios than type based SDGs (50% vs 62.5%). In other words, the increased precision
of unlimited object sensitive SDGs avoided false positives in 12.5% of the scenarios.
Nonetheless, we also need to understand how this gain in precision affects the SDG size.
With that goal, Figure 4.8 compares the SDG sizes of all pointer analyses for SDGs without
exceptions. More specifically, Figure 4.8a compares the number of nodes and Figure 4.8b
the number of edges.

As it may be noticed in Figure 4.8, SDGs with unlimited object sensitive pointer
analysis (unl_obj_sens) are considerably heavier than the other pointer analyses. In
particular, their median numbers of nodes and edges are 15093 and 265458 respectively,
which is 22.96% and 46.33% bigger than the number of nodes and edges of the second
heavier pointer analysis (n3 call stack), and 117% and 490% bigger than the lightest
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(a) Number of SDGs Created (b) Boxplots with percentages (%) of SDGs
created per project

Figure 4.9 – Different views of SDGs created by each pointer analysis

pointer analysis (type based), respectively. More precisely, unlimited object sensitive SDGs
are 12.5% more precise than type based SDGs, but at the cost of a SDG with 117% more
nodes and 490% more edges.

Additionally, we considered not only the size of successfully created SDGs, but
also for the number of times JOANA failed to create the SDG for each pointer analysis,
as illustrated in Figure 4.9. Figure 4.9a shows the total number of successful creations
for each pointer analysis, and Figure 4.9b shows boxplots, for each pointer analysis, with
the percentages of successful creations per project. As it can be viewed in Figure 4.9a,
unlimited object sensitive was the pointer analysis with the smallest number of successful
SDG creations. Moreover, this smaller number of successful creations is true for multiple
projects from iteration 1 sample, as the first quartile of the unlimited object sensitive
boxplot from Figure 4.9b is noticeably lower than the first quartile from the other boxplots,
indicating a lower percentage of successful creations for 25% of the projects.

In summary, unlimited object sensitive SDGs are considerably heavier
(22.96% to 117% on the number of nodes and 46.33% to 490% on the number
of edges) than the other pointer analyses and in some cases this leads to SDGs
too heavy to be computed. Given the precision gains of this pointer analysis
only varied from 2.5% (compared to object sensitive and n3 call stack) to
12.5% (compared to type based), we decided to discard it as it is too heavy. In
particular, compared to other pointer analyses, the precision gains of this pointer analysis
affected the result for between 1 (1/40 = 2.5%) and 5 (5/40 = 12.5%) scenarios (from 5
different projects).
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Figure 4.10 – Summary of SDG failures

Failures to create SDG and their reasons

As previously discussed, there are situations where the SDG is not successfully
created for some configurations, or even for all. As illustrated in Figure 4.10, there are
different reasons for that. The scenarios were divided according to if a SDG was created
for some configuration, but not for others (9 scenarios) or if the SDG failed to be created
for all configurations (12). As it can be noticed, when the SDG was not created only for
some configurations, the reason was always because the SDG was too heavy (or big). This
may be identified by an out of memory or stack overflow errors or by a timeout of 24
hours.

On the other hand, only 2 of the 12 scenarios which the SDG was not created for
all configurations failed because the SDG was too heavy. More specifically, most of these
scenarios (10 out of 12) failed because one class necessary to create the SDG was not found
in the class hierarchy created by JOANA. In particular, as mentioned in Section 2.2.1.1,
JOANA’s process of SDG computation involves creating a class hierarchy. Ideally, this
class hierarchy contains the compiled classes from a system and also the classes from
external dependencies and native classes. As detailed in Figure 4.10, the first reason for
failing to locate a class in this class hierarchy is when a necessary external dependency,
represented by a class from a jar file, is missing. Similarly, the second reason is when a
necessary native class is missing. More precisely, JOANA only analyses up to Java 1.5
and its default is version 1.4. As a result, classes from more recent Java versions raise this
problem.
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Figure 4.11 – Summary of reasons for not identifying instructions (no source
and/or sink)

Finally, the last reason is when the method passed as entry point is actually from
a test and as a result it would be also necessary to compile test code, which is not always
the case in our infrastructure. Regarding these failures due to lack of test compilation, as
previously discussed (in Section 4.2.2.1), the build commands used to compile projects
vary depending on the project used and its build system. In particular, projects compiled
with Maven are the exception. In the case of these projects, the compilation command
used by us (mvn compile) does not compile tests and a different command is necessary
to also compile them (mvn test−compile). In contrast, for projects compiled with Ant or
Gradle, the used commands were project specific, and, as a result, they may or may not
include test compilation, depending on the command itself.

Reasons for not identifying instructions

Similarly, as mentioned in the beginning of this iteration, we also found situations,
where, although left and right edited a method, we were not able to identify instructions
corresponding to those editions for at least one of these contributions (left or right). In
particular, for 26 methods from 22 scenarios that had changes from both left and right,
we were not able to identify instructions corresponding to those editions for at least one of
the contributions (left or right).

As detailed in Figure 4.11, this may occur for a number of reasons. For example,
in 10 of the 26 methods there was no actual source code line edited by left (or right). As
discussed in Section 3.3.1.1, one explanation for these cases is: left (or right) only removes
lines, since the removed lines (and equivalent instructions) will not exist any more in the
integrated revision. Another one is when all the editions done by left (or right) were also
identically edited by right (or left), as we do not consider identical lines in the list of edited
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1 public Subsc r ibe r c a l l ( f ina l Subsc r ibe r ch i l d ) {
2 f ina l AtomicLong reques ted = new AtomicLong ( ) ;
3 return new Subscr iber<T>( ch i l d ) {
4 // . . .
5 @Override
6 public void onStart ( ) {
7 r eque s t (Long .MAX_VALUE) ;
8 }
9 // . . .
10 @Override
11 public void onNext (T t ) {
12 i f ( r eques ted . get ( ) > 0) {
13 ch i l d . onNext ( t ) ;
14 reques ted . decrementAndGet ( ) ;
15 } else {
16 i f ( onDrop != null ) {
17 onDrop . c a l l ( t ) ;
18 }
19 }
20 }
21 } ;
22 }

(a) Method with anonymous class example

1 rx.Subscriber rx.internal.operators.OnBackpressureDrop.call(rx.Subscriber)
2 LINE 2: (<Method>:0) v4 = new java.util.concurrent.atomic.AtomicLong
3 LINE 2: (<Method>:4) v4.<init>()
4 LINE 3: (<Method>:9) v6 = new rx.internal.operators.

OnBackpressureDrop$1
5 LINE 3: (<Method>:15) v6.<init>(this, v4)
6 LINE 3: (<Method>:18) return v6

(b) Corresponding instructions from (a)

Figure 4.12 – Example of method with anonymous class (a) and its
corresponding instructions (b)

lines (as discussed in Section 3.3.1.1). Nevertheless, for 16 of the 26 methods there were
source code lines edited by left and right, but no corresponding instructions were found
for at least one of the contributions (left or right).

For 5 methods, there was no instructions associated to the edited lines. One of
the explanations for this is: the edited line corresponds to a comment (comments have no
instructions associated to them). Similarly, this might also happen to lines corresponding
to a method signature or annotation.
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Additionally, for other 5 methods, the edited lines were inside inner structures such
as local inner classes and anonymous classes. The problem with these inner structures
is that, generally, only the inner element instantiation is directly included in the list of
instructions from the method, while its internal code is not included. To illustrate this
situation, consider Figure 4.12. More specifically, in Figure 4.12a, there is an example of a
method with an anonymous class (lines 3 to 21) instanced at line 3. As it can be noticed
in Figure 4.12b, the method has no instruction relative to the anonymous class code (lines
4 to 20 from Figure 4.12a), only to its instantiation (lines 4 and 5 from Figure 4.12b and 3
from Figure 4.12a). More precisely, the anonymous class code appears as code of a different
class (OnBackpressureDrop$1 in our example), not as code from the method where it was
defined (call in our example). It is possible to go after this code and annotate it. However,
for simplicity, we do not do that. Thus, if left or right edit one of those lines (lines 4 to 20
from Figure 4.12a) no correspondent instruction is found using our current annotation
strategy.

Furthermore, for other 5 methods the reason is that, sometimes, all the instructions
from statements broken in multiple lines are associated to the first line; as a result other
lines from the statement have no instruction directly associated. More precisely, one of the
occurrences of this situation was an inline if statement broken in three lines: one for the
condition, one to be executed if the condition is true and other with the else part. For this
case, although the statement was broken in three lines, all the instructions corresponding
to this statement were associated to the first line (line 1), as if the statement was written
in a single line. Hence, if lines 2 and 3 are edited but line 1 is not changed, no instructions
are identified as all the instructions were associated to line 1. As in the case of the inner
structures, we could specifically look for these situations (we could mark line 1 in our
example). However, for simplicity, we also do not do that.

Finally, for one of the methods, the problem was actually that the signature passed
to JOANA was different from expected. More specifically, JOANA expects inner classes
in the format OutterClass$InnerClass and we passed OutterClass.InnerClass. This
problem was actually fixed for later iterations.

4.3.1.2 Iteration 2

This iteration involved the addition of 36 new scenarios to what was analysed in
iteration 1, resulting in a total of 119 scenarios where we executed JOANA. Compared to
iteration 1 data, 16 new projects were also included, giving a total of 50 analysed projects.
For all the 36 added scenarios, the SDGs were created considering external dependencies.
Furthermore, for the first 20 of the 36 added scenarios, we passed stubs for the JRE 1.4.
However, after executing the scenarios from iteration 1 and those 20 scenarios we realised
the more appropriate option was using stubs for the JRE 1.5, as it considers a more recent
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version. Thus, the last 16 scenarios were executed with this option. Additionally, of the
119 scenarios (from 50 projects), the SDG was created for at least one configuration in 98
scenarios (from 47 projects) and for all configurations, from iteration 2, in 84 scenarios
(from 47 projects). Furthermore, from the 84 scenarios, 54 scenarios (from 36 projects)
had instructions to annotate from left and right. Thus, iteration 2 data involves 119, 84 or
54 scenarios depending on the aspect being analysed: number of SDG creations, number
of nodes/edges and information flow, respectively.

4.3.1.2.1 RQ1B - Which pointer analysis should be used?

Regarding the pointer analysis, iteration 1 discarded one possibility leaving 7
possible pointer analyses to be considered by iteration 2. This iteration discards 4 other
pointer analyses, leaving 3 possibilities to iteration 3.

Grouping pointer analyses by similarity and selecting one pointer analysis from each group

Group Pointer Analysis Percentages (%) for SDGs
without exceptions

G1 Type Based 62.96
G1 Instance Based 61.11
G2 N1 Object Sensitive 55.56
G2 Object Sensitive 53.70
G3 N1 Call Stack 61.11
G3 N2 Call Stack 59.26
G3 N3 Call Stack 53.70

Table 4.3 – Percentages (%) of scenarios with direct information flow
occurrence, for the 7 remaining pointer analyses on SDGs without

exceptions, in iteration 2

After analysing the data from iteration 2, we decided to divide the pointer analyses
in three groups: Basic (G1), Object Sensitivity (G2) and Nx Call Stack (G3). This division
is explicit in Table 4.3 and Figure 4.13. As it may be noticed in Figure 4.13, pointer
analyses in the same group have similar numbers of nodes and edges, with more precise
pointer analyses tending to have more nodes and edges. For example in the Nx Call Stack
group (G3), N1 Call Stack tends to contain fewer nodes and edges than N2 which tends
to contain fewer than N3. In contrast, the numbers of nodes and edges tend to vary more
for pointer analyses in different groups. Similarly, as it can be viewed in Table 4.3, in our
sample, the frequencies of scenarios with information flow tended to be close for pointer
analyses in the same group. For instance, the difference between instance based and type
based in group 1 (G1), and object sensitive and n1 object sensitive in group 2 (G2), is less
than 2% (62.96 - 61.11 and 55.56 - 53.70).
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(a) SDG Nodes (b) SDG Edges

Figure 4.13 – Grouped boxplots of SDG Nodes (a) and Edges (b) for Instance
Based SDGs without exceptions of iteration 2 pointer analyses

After dividing the pointer analyses in three groups, we select one pointer
analysis to represent each group. As a result, after iteration 2, three pointer analyses
are passed as input to iteration 3. Since the differences were small within each group, the
selection of a pointer analysis within each group did not indicate significant changes on
the results compared to other pointer analyses from the same group. However, to reduce
false positives, we decided to select the more precise pointer analysis from each group. So,
we select instance based from group 1, object sensitive from group 2 and n3
call stack from group 3 as these are the ones that contained information flow
in less scenarios in their respective groups.

4.3.1.3 Iteration 3

Finally, iteration 3 contains the complete sample. Compared to iteration 2, 38 new
scenarios are executed, and there are two new projects, giving a total of 157 executed
scenarios from 52 projects. From the 157 executed scenarios, the SDG is created for at
least one configuration in 123 scenarios (from 48 projects) and for all the configurations
of iteration 3, in 91 scenarios (from 48 projects). Additionally, only 58 scenarios (from
36 projects) had instructions to annotate. Thus, iteration 3 data involves 157, 91 or 58
scenarios depending on the aspect being analysed: number of SDG creations, number of
nodes/edges and information flow, respectively.



Chapter 4. EVALUATION 89

4.3.1.3.1 RQ1B - Which pointer analysis should be used?

After discarding one pointer analysis from the initial eight in iteration 1 and
discarding other four in iteration 2, we select the pointer analysis to be used to detect
information flow between contributions from merge scenarios in iteration 3.

Instance Based SDGs were only slightly less precise

Pointer Analysis Percentages (%) for SDGs
without exceptions

Instance Based 58.62
Object Sensitive 51.72
N3 Call Stack 51.72
Table 4.4 – Percentages (%) of scenarios with direct information flow

occurrence, for the 3 remaining pointer analyses on SDGs without
exceptions, in iteration 3

As it can be noticed in Table 4.4, instance based SDGs were about 7% (58.62
- 51.72 = 6.9) less precise than object sensitive and n3 call stack SDGs. In
other words, in around 7% of the scenarios an instance based SDG contained information
flow, while the more precise ones, object sensitive and n3 call stack, did not. It is important
to mention here that, as expected, there were no scenarios where the instance based pointer
analysis did not contain information flow while one of the others did. This is expected,
because as a less precise analysis compared to the others, an instance based analysis is
expected to contain information flow for more cases, not less (see Pointer analysis in
Section 2.2.1.1).

In contrast, although object sensitive and n3 call stack present the same final
percentage (51.72%), there were scenarios where they differed with respect to the existence
of information flow. More precisely, there were two scenarios where a n3 call stack contained
information flow while an object sensitive did not, and also two scenarios where n3 call stack
did not contain information flow and object sensitive did. In particular, the percentages
matched because the occurrences of the former and the latter manifested in the exact same
quantities (two of each). Therefore, although object sensitive and n3 call stack differed for
some scenarios, their final percentage of frequency of information flow was the same.

Instance Based SDGs were successfully created more often

As we can view in Figure 4.14, using an instance based pointer analysis,
JOANA successfully created the SDG for more scenarios than with the others
(object sensitive and n3 call stack). In particular, the instance based approach created
the SDG for 118 scenarios, the object sensitive for 105 and n3 call stack for 93. Moreover,
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(a) Number of SDGs created (b) Boxplots with percentages (%) of SDGs
created per project

Figure 4.14 – Different views of SDGs created by each, iteration 3, pointer
analysis

this tendency was kept across the project list as demonstrated in Figure 4.14b. More
specifically, the first quartile from instance based is close to 80%, while from object sensitive
and n3 call stack are below 60%.

Although Instance Based SDGs have less precision, they bring the potential of analysing more
scenarios

As just discussed instance based SDGs are less precise, but were created more often.
More precisely, we showed that instance based SDGs had about 7% more scenarios with
information flow. In contrast, we also showed that instance based SDGs were successfully
created more times. In particular, instance based SDGs were successfully created for
around 75.16% (118/157) of the executed scenarios, object sensitive for around 66.88%
(105 / 157) and n3 call stack for around 59.24% (93 / 157). Thus, instance based SDGs
are around 7% less precise, but are successfully created for around 8% more scenarios
compared to object sensitive (75.16 - 66.88 = 8.28) and 16% more scenarios compared to
n3 call stack (75.16 - 59.24 = 15.92).

Considering the percentage of creations and precision, n3 call stack is the worst
option from the remaining pointer analyses, as it showed the same precision as object
sensitive (51.72%), but with a lower rate of successful creations (about 8% lower than
object sensitive and 16% than instance based).

Finally, between instance based and object sensitive, we decided to
select instance based as the 7% of scenarios which JOANA is less precise
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with an instance based analysis, in our opinion, are compensated by about
8% of scenarios which only with this approach JOANA is able to create a
SDG. Nonetheless, for those who value more precision, object sensitive may
also be selected, as with this pointer analysis, compared to instance based,
JOANA was more precise for around 7% of the scenarios (although JOANA
failed to create the SDG for 8% more scenarios with this pointer analysis).
Alternatively, n1 call stack or n1 object sensitive could also be used as alternative options
in the precision/creations scale between instance based and object sensitive. To be more
precise, theoretically, with both these pointer analyses, JOANA tends to be less precise
than object sensitive (and more than instance based) and to contain more successful
creations than object sensitive (and less than instance based).

4.3.1.4 Iteration 4

Since we created SDGs without dependencies in the first iteration and with stubs
for JRE 1.4 for iteration 1 and part of iteration 2, we decided to rerun these scenarios for
our final configuration (instance based without exceptions) with dependencies and stubs
for JRE 1.5. Nevertheless, as both including dependencies and using stubs for JRE 1.5
tend to increase the SDG size, as both include more classes in the class hierarchy, we do
not try to rerun cases which the SDG was too heavy to be created. In fact, we only rerun
cases where the SDG was originally created and there were instructions identified from
both contributions (there was source and sink, see Section 2.2.1), as we noticed this hardly
changed between the different configurations we executed. Hence, from the 62 scenarios
satisfying these conditions in iterations 1 and 2, we needed to rerun 56, as the other 6
were already executed with dependencies and stubs for JRE 1.5. Similarly, iteration 3 had
17 additional scenarios which satisfied the conditions but were already executed correctly
and as a result our sample to find the frequency of information flow between contributions
(RQ2) involved a total of 79 scenarios (from 38 projects).

4.3.1.4.1 RQ2 - What is the frequency of direct information flow between same-method
contributions?

Once we selected a configuration to be used (instance based without exceptions), we
moved on to check the frequency of direct information flow between the contributions from
merge scenarios. As previously explained, we wanted to understand if it was common to exist
direct information flow between contributions from merge scenarios (high percentages).

It was common to exist direct information between the merge scenarios contributions

Before the rerun, considering the data from iteration 3, 60.76% of the scenarios
(48 out of 79) contained direct information flow between the contributions. From the 56
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re-executed scenarios, for 7 the SDG with the final option for dependencies and stubs
was too heavy. If we consider the results from the old options for these cases, there is
direct information flow for 64.56% (51 out of 79) of the scenarios. Similarly, if we do not
consider them (as the final option was too heavy for them), the obtained frequency for
direct information flow is 63.89% (46 out of 72). Either way, around 64% of the scenarios
contained direct information flow between their contributions.

As a result, we conclude that the occurrence of direct information flow
between merge scenario contributions was common, as it occurred on around
64% of the scenarios. Since we intend to use the existence of information flow
to estimate interference, this indicates a considerable number of scenarios
which would be identified by our strategy. More specifically, all the analysed scenarios
have no syntactic conflicts. Nevertheless, the existence of information flow (on around
64% of the scenarios) indicates potential existence of interference (and dynamic semantic
conflicts). Furthermore, as we did not consider indirect flows to common target points,
this number (64%) could be even higher.

4.3.1.5 Cost of SDG creation

To give a rough idea of the cost of the SDGs created by JOANA, we measured
time to create the SDG and memory allocated in this process for scenarios where the SDG
was successfully created.

Comparison of costs for instance based and object sensitive

To give an estimative of how different options may affect the cost of a SDG we
compare time and memory to create a SDG for our last two options of configuration:
instance based without exceptions and object sensitive without exceptions. We do that for
77 scenarios where the SDG was successfully created for both options.

As it may be observed in Figure 4.15, in this sample, JOANA was able to create
instance based SDGs considerably faster than object sensitive SDGs. In particular, the
median (about 40 seconds) and the third quartile (around 1 minute and 38 seconds) from
the first are lower than the median from the second (about 2 minutes and 26 seconds).
Furthermore, the third quartile from object sensitive was more than 20 minutes, which is
more than ten times the third quartile obtained using instance based (1 minute and 38
seconds). As a matter of fact, except for one outlier that needed around two hours and
a half to compute, instance based SDGs successful creations took up to 20 minutes. In
contrast, there are multiple outliers where using object sensitive, JOANA took hours to
compute the SDG. To be more specific, 11 cases took more than 1 hour to compute, 5
took more than 4, and 1 took more than 13 hours.
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(a) Original (b) Amplified

Figure 4.15 – Original (a) and amplified (b) boxplots of time (in minutes) to
successfully create the SDG for instance based and object

sensitive SDGs without exceptions

As it may be seen in Figure 4.16, with respect to memory we observed a similar
tendency. That is, using instance based SDGs, JOANA tends to consume less memory
than using object sensitive SDGs. In particular, the obtained medians were 6.55 GB and
13.77 GB, respectively. As a matter of fact, the third quartile from instance based (10.7
GB) is also lower than the median from object sensitive (13.77 GB). Additionally, the
third quartile for object sensitive (20.18 GB) was almost two times the third quartile for
instance based (10.7 GB). Except for one outlier, instance based SDG consumed up to 22
GB. In contrast, there are 18 occurrences where using object sensitive SDGs more than 22
GB was necessary, 13 occurrences where more than 40 GB of memory was necessary, and
4 occurrences where more than 60 GB was necessary.

Costs of instance based considering extra scenarios that SDG creation fails with other configu-
rations

Additionally, we extend the initial sample of 77 scenarios, with 23 other scenarios
where JOANA was able to create the SDG using our final configuration (instance based
without exceptions), but it failed to create one using an object sensitive pointer analysis.
Thus, this sample includes 100 scenarios where it was possible to create a SDG using our
final configuration. We hope, with this extended sample, to bring a more accurate idea of
cost of SDG creation, by also considering potentially heavier cases that JOANA fails to
create the SDG using other configurations.

As it may be seen in Figure 4.17, even when also considering cases that fail
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Figure 4.16 – Boxplots of memory allocated (in GB) to successfully create the
SDG for instance based and object sensitive SDGs without

exceptions

using other configurations, JOANA is generally able to compute the SDG for our final
configuration in a matter of minutes. More precisely, the time of computation of the
SDGs from the extended sample was at most 1 minute and 5 seconds for 50%
of the cases, at most 8 minutes and 35 seconds for 75% of the cases, and at
most 1 hour for 90%. To conclude, 98% of the cases took at most 4 hours.

As it can be noticed in Figure 4.18, including heavier cases had some impact in the
overall amount of memory consumed. However, most of the cases may still be computed
using less than 30 GB of memory. In particular, 50% of the cases used at most 8.2
GB, 75% of the cases used at most 16.1 GB, and 90% of the cases used at
most 29 GB of memory.

4.3.2 Manual Analysis

Using the automatic analysis, we established a SDG configuration to run JOANA
(RQ1) and then identified that it was common to exist direct information flow between
merge scenarios contributions (RQ2). However, as we intend to use the existence of
information flow to estimate interference, we still need to understand in which situations
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(a) Original (b) Amplified

Figure 4.17 – Original (a) and amplified (b) boxplots of time (in minutes) to
successfully create the SDG for instance based SDGs without

exceptions

Figure 4.18 – Boxplots of memory allocated (in GB) to successfully create
instance based SDGs without exceptions
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Project Revision Interference Reason for no
interference

Activiti rev_0fb87-24e35 No Harmless insertion
Activiti rev_0606d-0aef7 Yes -
atmosphere rev_41d97-95e31 Yes -
cucumber-jvm rev_62ed9-4f458 No Change on generics
dropwizard rev_7fb11-adc0a No Refactoring
druid rev_07131-21613 No JOANA FP
druid rev_4f70b-e519f Yes -
elastic-river rev_cbcc2-02dc4 Yes -
elastic-river rev_0fb6b-5d7c5 No Harmless change
eureka rev_0a539-578f4 Yes -
fitnesse rev_6c383-d2474 Yes -
HikariCP rev_b4510-da5c0 No Change on formatting
hector rev_beaab-45464 No Harmless change
hector rev_2bf74-651a1 No Harmless change
hector rev_5cfd9-25c28 No JOANA FP
jenkins rev_59d31-21d13 No Changed only formatting
jsoup rev_e064b-38e20 Yes - Indirect -
jsoup rev_c1ee9-1b48d Yes -
jsoup rev_55190-97c3c Yes -
O
logback rev_077e43d993 No Change on generics
netty rev_c2417-b3b09 Yes -
okhttp rev_cd165-4c8ce No Refactoring
opentripplanner rev_aa201-4585d Yes -
orientdb rev_7bb40-fa7e5 No Harmless move
retrofit rev_931e2-e5a67 Yes -
RxJava rev_fd9b6-4350f No Refactoring
SimianArmy rev_1f0f5-82773 Yes -
SimianArmy rev_24b39-b9e7b No Harmless flow
tachyon rev_04c6c-b2ae1 No Harmless flow
tachyon rev_4a97b-ebb08 No Formatting + refactoring
titan rev_43eef-a3a3a Yes -
titan rev_319db-8fe95 No Changed only formatting
voldemort rev_24c82-64c90 No Changed statement part
voldemort rev_df73c-dc509 No JOANA FP
webbit rev_92c8b-0d577 Yes -

Table 4.5 – Manual analysis by scenario

there is information flow and no interference (RQ3) to be able to determine if the occurrence
of information flow may help to identify interference. In other words, to conclude our study
we conducted this manual analysis to understand if a considerable number of scenarios
with information flow indicates a considerable number of scenarios with interference.
Furthermore, we also investigate in which situations the existence of information flow does
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Figure 4.19 – Manual analysis overview

not represent the existence of an interference.

4.3.2.1 RQ3 - In which situations there is information flow and no interference?

The results from the manual analysis are detailed in Table 4.5 and Figure 4.19 gives
an overview of the obtained results. The merge scenarios revisions in Table 4.5 are formed
by the first five characters from the left’s commit hash and the first five characters from
right’s commit hash, separated with a hyphen. Furthermore, it is important to mention in
Figure 4.19 the category with no interference has one extra occurrence compared to the
number of methods (21 occurrences of no interference in 20 methods) due to a method
(from revision 4a97b-ebb08 from tachyon) where left did a refactoring while right did a
change only on formatting. More precisely, for this case, individually, both the refactoring
and change on formatting would already be enough for defining that there is no interference.
However, as both happen, for this case, we consider two occurrences for a single method,
one of refactoring and one of formatting.
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As it may be noticed in Figure 4.19, from the 35 analysed methods (from 35
different scenarios) we considered that there was interference only in 15 (42.86%). From
the 15 cases with interference, 14 had direct interference and one had an indirect one.
From these, some were already discussed in this work. In particular, the examples used
in Figure 3.2 and Figure 3.3 were inspired by two cases of direct interference from the
manual analysis (revisions aa201-4585d from opentripplanner and c2417-b3b09 from netty,
respectively). Similarly, the case of indirect interference (revision e064b-38e20 from jsoup)
inspired the example from Figure 3.7 (discussed in Section 3.3.1.3).

Among the cases with no interference, but with information flow reported by
JOANA, we identified three major groups of causes for having information flow and no
interference: those related to limitations of our annotation strategy, those related to the
nature of the changes, and those related to the conservativeness of the flows.

Annotation limitations

Regarding annotation limitations, we identified two different causes: no actual
change on instruction level, and annotating an entire line while only part of it was
changed. Both involve information flow that should not be detected because we annotated
instructions that should not be annotated.

First, consider the cases where there was no actual change on the instruction
level. Identified flows involving unchanged instructions are not relevant for estimating
interference because, if an instruction was not changed during a merge scenario, then there
is no interference involving this instruction (as the instruction in question is the same for
the revisions involved in the merge scenario - base, left and right).

Two causes for an unchanged instruction being marked as contribution were ob-
served: changes only on formatting and changes on generics.19 More precisely, changes
only on a line’s formatting (spacing for example) lead us to identify the line in question
as changed and mark the instructions related to the line, but these instructions did not
actually change; as a result there is no actual contribution with semantic effect that can
cause interference. Similarly, in Java 5, changes only on generics (only inserting/chang-
ing/removing generics on existing code) do not alter the program at the bytecode level
(instruction level), so we end up marking unchanged instructions that will not lead to
interference.

With respect to the second cause for annotation problems, the actual problem was a
change on a parameter of an existing method call. To illustrate, consider Figure 4.20, which
is inspired in the original scenario from our manual analysis (revision 24c82-64c90 from
voldemort). In this example, left changed only the second parameter of the instantiation of
19 Java generics - <https://docs.oracle.com/javase/tutorial/java/generics/why.html>

https://docs.oracle.com/javase/tutorial/java/generics/why.html
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1 C l i e n t Sh e l l ( C l i entCon f i g c l i e n tCon f i g ) {
2 // . . .
3 adminClient = new AdminClient ( ur l , new Cl i entCon f i g ( ) ) ;
4
5 // . . .
6 }

(a) Base

1 C l i e n t Sh e l l ( C l i entCon f i g c l i e n tCon f i g ) {
2 // . . .
3 adminClient = new AdminClient ( ur l , c l i e n tCon f i g ) ;
4
5 // . . .
6 s t r a t e gy = c r ea t eS t r a t egy ( adminClient . getUr l ( ) ) ;
7 }

(b) Integrated

Figure 4.20 – Example of change only on parameter of existing instantiation

AdminClient (changed from new ClientConfig() in line 3 from Figure 4.20a to clientConfig
in line 3 from Figure 4.20b) and right inserted a line (line 6 from Figure 4.20b). Although
left modified only a parameter from the instantiation, our annotation strategy annotates
the complete instantiation; as a result JOANA detects information flow as the first
parameter from the instantiation is used by right (in line 6 from Figure 4.20b). In contrast,
if we annotated correctly (only the second parameter from the instantiation), then no
information flow would be detected, as right’s change does not depend on the second
parameter.

Conservativeness of flows

Furthermore, there were also situations where interference and information flow
differed due to the conservativeness of the flows identified by JOANA. More precisely, as a
security tool JOANA may be too conservative leading to false positives of information flow,
or situations where the identified flows are useless to our context of estimating interference.
These cases are classified as JOANA FP (from JOANA False Positives) and harmless,
respectively. In particular, cases classified as JOANA FP correspond, in our opinion, to
false positives of information flow. To be more specific, JOANA detects information flow
for these cases (without exceptions and with an instance based pointer analysis), but
we consider that there is no actual information flow. Additionally, for cases classified as
harmless flow, there is an actual flow but the flow is considered irrelevant for estimating
interference.
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1 BasicSimianContext ( Prope r t i e s p r op e r t i e s ) {
2 this . c on f i g = new Bas i cCon f i gura t i on ( p r op e r t i e s ) ;
3
4 this . account = con f i g . g e tS t r ( " s imian . c l i e n t . accountKey " ) ;
5 // . . .
6 }

(a) Base

1 BasicSimianContext ( Prope r t i e s p r op e r t i e s ) {
2 for ( Entry<Object , Object> prop : p r op e r t i e s . entrySet ( ) ) {
3 Object key = prop . getKey ( ) ;
4 Object va lue = prop . getValue ( ) ;
5 LOG. i n f o ( S t r ing . format ( "%s ␣=␣%s " , key , va lue ) ) ;
6 }
7 this . c on f i g = new Bas i cCon f i gura t i on ( p r op e r t i e s ) ;
8
9 this . account = con f i g . g e tS t r ( " s imian . c l i e n t . accountKey " ) ;
10 this . u se r = con f i g . g e tS t r ( " s imian . c l i e n t . use r " ) ;
11 this . password = con f i g . g e tS t r ( " s imian . c l i e n t . password " ) ;
12 // . . .
13 }

(b) Integrated

Figure 4.21 – Example of harmless conservative flow for estimating interference

For example, in Figure 4.21 we show a situation (inspired on revision 24b39-b9e7b
from SimianArmy) where the flows identified by JOANA are harmless flows for estimating
interference. More specifically, left(lines 2 to 6 from Figure 4.21b) includes a for to iterate
through all the properties and for each property logs the key and value from the respective
property, while right (line 10 and 11) gets the value for two specific properties (user and
password). For this example, JOANA detects flow from lines 10 and 11 (from Figure 4.21b)
to lines 3 to 5 (from Figure 4.21b) as the properties user (line 10) and password (line
11) are also logged in line 5. From a security context the identified flows are relevant
as sensitive information (such as the password from line 11) is being logged in line 5
and hence may leak threatening confidentiality. In contrast, for our context of estimating
interference the identified flows are not relevant as both left and right are reading from
the same properties, but are not modifying; as a result, this way they can not interfere
with each other.
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1 class Bootstrap {
2 Metr i cReg i s t ry met r i cReg i s t ry ;
3 public Bootstrap ( ) {
4 this . met r i cReg i s t ry = new Metr i cReg i s t ry ( ) ;
5 this . met r i cReg i s t ry . r e g i s t e r ( " jvm .memory" ,
6 new MemoryGaugeSet ( ) ) ;
7 // . . .
8 }
9 public Metr i cReg i s t ry ge tMet r i cReg i s t ry ( ) {
10 return metr i cReg i s t ry ;
11 } // . . .
12 }

(a) Base

1 class Bootstrap {
2 Metr i cReg i s t ry met r i cReg i s t ry ;
3 public Bootstrap ( ) {
4 this . met r i cReg i s t ry = new Metr i cReg i s t ry ( ) ;
5 ge tMet r i cReg i s t ry ( ) . r e g i s t e r ( " jvm .memory" ,
6 new MemoryGaugeSet ( ) ) ;
7 // . . .
8 JmxReporter . f o rReg i s t r y ( met r i cReg i s t ry ) . bu i ld ( ) ;
9 }
10 public Metr i cReg i s t ry ge tMet r i cReg i s t ry ( ) {
11 return metr i cReg i s t ry ;
12 } // . . .
13 }

(b) Integrated

Figure 4.22 – Example of flow involving refactoring

Nature of changes

In contrast, there are cases with relevant information flow between the contributions,
but due to the nature of changes there is no interference. More precisely, for cases in
this category, after understanding the actual contributions made by left and right (and
their scope) we observed that, although there is a relevant information flow between the
contributions, there is no interference. Cases in this situation may occur for a number of
reasons such as when one of the contributions is actually a refactoring. For those cases, as
a refactoring does not change program behaviour [FOWLER; BECK, 1999], there is no
interference. For instance, Figure 4.22 shows a situation where there is information flow
between left and right, but one of the contributions was only a refactoring (inspired on
revision 7fb11-adc0a from dropwizard). In particular, left did a refactoring by accessing
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the value of metricRegistry indirectly via an invocation to getMetricRegistry (line 5 from
Figure 4.22a and Figure 4.22b) while right added a new line (line 8 from Figure 4.22b).
For this case, JOANA detects information flow from left to right (from line 5 to line
8 fromFigure 4.22b) because metricRegistry is used by both. Furthermore, the flow is
relevant for estimating interference because the code from line 5 (from Figure 4.22b)
changes metricRegistry (because of the invocation to method register). However, as left’s
change was only a refactoring, there was no actual difference on behaviour, and there is
no possibility of interference for this case.

Furthermore, there are other situations where due to the nature of changes there
is no interference. More precisely, we identified cases of harmless code change, insertion
and move (representing harmless situations of modifying existing code, inserting new
code and just moving the position of existing code, respectively). Figure 4.23 illustrates
a situation of harmless code change (inspired on revision beaab-45462 from hector). In
particular, Figures 4.23a and 4.23b show the evolution from class HSaslThriftClient on
this merge scenario, while Figure 4.23c details the code from class TFrameTransport which
is instantiated from HsalThriftClient (line 8 from Figure 4.23a and 12 from Figure 4.23b).
In this example, there is information flow from left (line 4 from Figure 4.23b) to right
(line 7 from Figure 4.23b) because left affects the field transport which is used by right.
Furthermore, the identified flow is relevant because left’s modification determines the
value of transport. Nevertheless, if we investigate the nature of the changes, we will notice
that although left affects transport, right modification does not involve transport and as a
result they do not interfere.

More precisely, right’s modification was very close to a refactoring, it involved
calling a generic method (wrapTFrame) to do a very similar job compared to what was
being done on base (lines 7 and 10-16 from Figure 4.23b and 7-9 from Figure 4.23a). To be
more specific, if the condition host .getUseTFramedTransport() used by both (line 7 from
Figure 4.23a and 11 from Figure 4.23b) evaluates to false then there is no difference in
behaviour for this change as in both cases the field transport will stay unchanged. In other
words, in Figure 4.23a line 8 will not be executed, staying with the original value, and in
Figure 4.23b line 14 will be returned with the original value of transport. On the other hand,
if host .getUseTFramedTransport() evaluates to true then there is a small difference in
behaviour caused by right’s change, but this difference does not involve transport. As it may
be noticed, for this case, the signatures of TFramedTransport invoked in Figure 4.23a and
Figure 4.23b are different (line 8 from Figure 4.23a and 12 from Figure 4.23b). The former
has only transport as parameter while the latter has also an extra value. If we observe
Figure 4.23c and compare the constructors used in the base and integrated revisions (lines
4-7 and 8-11 from Figure 4.23c, respectively) it is possible to notice that the difference is
actually for the field maxLength (lines 6 and 10 from Figure 4.23c, respectively), while
transport is the same in both cases (lines 5 and 9 from Figure 4.23c, respectively). Hence,
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’

1 class HSas lThr i f tC l i en t {
2 TTransport t ranspo r t ;
3 public HSas lThr i f tC l i en t open ( ) {
4 t ranspo r t = oldTranspCalc ( socket , s e r v i c e , c l i e n t ) ;
5
6 // . . .
7 i f ( host . getUseTFramedTransport ( ) ) {
8 t ranspo r t = new TFramedTransport ( t ranspo r t ) ;
9 }
10 return this ;
11 }
12 }

(a) HSaslThriftClient base

1 class HSas lThr i f tC l i en t {
2 TTransport t ranspo r t ;
3 public HSas lThr i f tC l i en t open ( ) {
4 t ranspo r t = newTransportCalc ( socket , s e r v i c e ) ;
5
6 // . . .
7 t ranspo r t = wrapTFrame( t ranspo r t ) ;
8 return this ;
9 }
10 protected TTransport wrapTFrame( TTransport transp ) {
11 i f ( host . getUseTFramedTransport ( ) ) {
12 return new TFramedTransport ( transp , host . maxLen ( ) ) ;
13 } else {
14 return transp ;
15 }
16 }
17 }

(b) HSaslThriftClient integrated

1 class TFramedTransport extends TTransport{
2 stat ic f ina l int DEFAULT_MAX_LENGTH = 0x7FFFFFFF ;
3 int maxLength ; TTransport t ranspo r t ;
4 public TFramedTransport ( TTransport transp ) {
5 this . t r an spo r t = transp ;
6 this . maxLength = TFramedTransport .DEFAULT_MAX_LENGTH;
7 }
8 public TFramedTransport ( TTransport transp , int maxLen) {
9 this . t r an spo r t = transp ;
10 this . maxLength = maxLen ;
11 }
12 }

(c) TFramedTransport

Figure 4.23 – Example of harmless code change
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although left affects transport, right’s change has no difference on behaviour with respect
to transport and as a result there is no interference.

Discussion

In summary, as we discussed, a considerable number of methods with infor-
mation flow and no interference were found: 20 from 35 or 57.14%. Nevertheless,
from the 21 occurrences of information flow and no interference among these 20 methods,
a third (7/21 = 33.33%) were due to annotation limitations. Hence, a more advanced
annotation system with knowledge of the difference in the instruction level (not only in
the source code level) could solve this type of problem by identifying and discarding cases
where one of the contributions contain no difference in the instruction level (6 occurrences)
and also by identifying the actual changes made in more detail in order to annotate only
parts of statements (1 occurrence) instead of only the full statements (including unchanged
parts).

Furthermore, as JOANA has a security context it is conservative and that was
reflected in almost a quarter (5/21 = 23.8%) of the cases with information flow and no
interference. A different, less conservative Information Flow Control (IFC) tool, could
be used to avoid those cases. Nevertheless, it is important to mention that the use of
such a tool would need to be carefully evaluated, as the number of false negatives would
potentially increase.

Lastly, for around 43% (9/21 = 42.86%) of the cases with no interference the
difference of conclusion involved the actual nature of the changes. Solving these cases is
harder as the problem with them is actually related to using SDG as structure to represent
the program semantics. In particular, although a SDG represents the information flow
through a program, it still largely depends on the syntactic components to represent its
nodes. As a result almost any syntactical change is seen as a difference even when there is
no semantic effect [JACKSON; LADD, 1994]. As a matter of fact, refactoring was the type
of change with more occurrences in the nature of changes category (4 from 9 occurrences).
In fact, we expect approaches that use SDGs to represent the program semantics to present
similar issues and consequently a different approach would be necessary to solve this type
of issue. In fact, Yang, Horwitz and Reps [YANG; HORWITZ; REPS, 1992] proposed an
extension of the original work from Horwitz, Prins and Reps [HORWITZ; PRINS; REPS,
1989] that specifically looks for semantics-preserving transformations. In particular, this
work helps to avoid the erroneous identification of cases of refactoring, but not the other
issues related to the nature of changes. Similarly, a tool such as SafeRefactor [SOARES et
al., 2010] could be used to identify if a change preserves behaviour. In that case, ideally,
we could eliminate the problems of erroneous identifications due to refactorings, as we
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could avoid marking changes that were only a refactoring (4 / 21 = 19.05%), but the other
issues related to the nature of changes would still occur.

Finally, we conclude that information flow between contributions may be
used to estimate interference. More specifically, we classified 42.86% of the scenarios
with information flow between contributions to be also interference. Furthermore, although
we obtained a considerable amount of false positives of information flow as an
estimator of interference (57.14%), as just discussed, improvements to our
strategy would potentially solve most of the false positives. In particular, a more
advanced annotation system could solve annotation problems (33.33% of the false positives).
Additionally, using a less conservative IFC tool could help to avoid cases of conservative
flows (23.8% of the false positives). Finally, a tool such as SafeRefactor could be used to
check if changes are only refactorings (19.05% of the false positives). Therefore, there is
room for solving around three quarters (33.33% + 19.05% + 23.8% = 76.18%) of
the obtained false positives.

4.4 Threats to validity
Our evaluation naturally leaves open a set of potential threats to validity, which

we explain in this section.

4.4.1 Construct

As previously discussed in Section 3.3.1.3 we use SDGs without concurrency which
is a threat because we may miss some cases of valid information flow due to this decision. In
particular, as we do not consider concurrency, our analysis is incomplete. Nevertheless, as
previously argued, we took this decision for performance reasons as including concurrency
is computationally expensive and could significantly reduce the number of analysed cases.

In addition, we use the notion of interference with the goal of predicting dynamic
semantic conflicts, but we do not evaluate the correspondence between interference and
dynamic semantic conflicts. In particular, our evaluation is restricted to comparing infor-
mation flow and interference, but our final goal is detecting dynamic semantic conflicts. As
we argue in Section 3.2, we focus in interference because defining if a dynamic semantic
conflict exists involves understanding the expected behaviour of a system before and after
integration of contributions from different developers and such behavioural specifications
are often hard to capture, formalize and reason about.

Additionally, one could argue that using an open-world perspective of interference
may lead to the identification of some irrelevant interference in practice. However, as
we explain in Section 3.2.3, a closed-world perspective requires considering the complete
calling context of the system being evaluated and as a result is both computationally
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expensive and time-consuming to do manually. Thus, we use an open-world perspective
even though it has the potential of flagging some cases that are not relevant in practice.
In particular, from the 15 cases with interference from the manual analysis, for at least 4
the result could potentially diverge using a closed-world perspective.

Moreover, we focus on same-method interference by calculating same-method
information flow. This is a threat to our work as this is only a subset of interference (and
information flow respectively). In particular, our evidence of frequency of information flow
between contributions is actually evidence of frequency of information flow between same-
method contributions, which may be different from information flow in general. Similarly,
all of our data and derived conclusions are restricted to same-method information flow
(and same-method interference) which is different from information flow (and interference)
in general. For instance, our comparison between SDG configurations and respective
conclusions that lead to the selection of instance based SDGs without exceptions was done
for information flow between same-method contributions, not in general. Nevertheless, as
discussed in Section 3.2.2, we decided to reduce the scope of interference (and consequently
of information flow) because we needed a place to start and considered the problem too
big to be entirely dealt with from the beginning.

4.4.2 Internal

Regarding the question of which configuration should be used (RQ1), a potential
threat to internal validity is the fact that we changed two aspects of the created SDGs
during the evaluation. More precisely, we initiated the study in iteration 1 of our automatic
analysis without considering dependencies and using stubs for the JRE 1.4. In the start of
iteration 2, we started to consider the dependencies and in the middle of this iteration we
updated the stubs version to JRE 1.5. Although we did not vary those aspects (dependencies
and stubs version) between different configurations (of pointer analysis and exceptions
use) of a merge scenario, we varied them between different scenarios and as a result one
could argue that this could affect our results. We argue this threat is only related to
the selection of our final configuration (RQ1) because in iteration 4 we re-executed the
scenarios with the final option (considering dependencies and stubs for JRE 1.5) for our
final configuration (instance based without exceptions).

Nevertheless, our decision to which configuration should be used (instance based
without exceptions) was still threatened by the inclusion of dependencies and update of
stubs version during the study. As a result, we decided to rerun the necessary scenarios
with the final option considering dependencies and with stubs to JRE 1.5. To remove the
threat related to the exceptions use (RQ1A), we rerun scenarios from iteration 1 (as this
iteration was the one responsible for this decision) now passing dependencies and stubs
for JRE 1.5 for instance based SDGs without exceptions and also for instance based SDGs
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with exceptions. After this re-execution, we obtained frequencies of information flow of
68.42% for the former and 89.47% for the latter, still maintaining a considerable difference
of extra scenarios in which only the configuration with exceptions contained information
flow (was 25% and now was around 21%).

In contrast, to completely remove the threat associated to the selection of the pointer
analysis we would need to re-execute the scenarios for all the options of pointer analysis
available (eight). Therefore, we decided to only mitigate this threat by only executing an
extra pointer analysis that was only discarded in our final decision in iteration 3 and which
we concluded that was more precise but also heavier. More precisely, we rerun scenarios for
our selected pointer analysis (instance based SDGs) and also for object sensitive, as this was
the last pointer analysis to be discarded. We re-execute the same 56 scenarios re-executed
in Section 4.3.1.4. After the re-execution, the difference which we observed between number
of creations and precision was actually increased, reinforcing our conclusion to use instance
based over object sensitive. More precisely, before the re-execution instance based were
less precise in about 7% of the scenarios, but successfully created for around 8% more
scenarios. In contrast, after the re-execution the difference in precision was reduced to
3.7% (62.96 - 59.26 = 3.7), while the difference of creations increased to 13.37% (70.70
- 57.33 = 13.37). This occurred, because including dependencies and updating the JRE
stubs version tend to increase the SDG size and as a result the number of scenarios with
SDGs too heavy to be created raised. In particular, from the 56 re-executed scenarios, for
7 extra scenarios both options were too heavy to be created and for other 8 only the object
sensitive analysis was too heavy.

Furthermore, as discussed in Section 3.3.1 we miss contributions involving removed
lines or identical lines. This is a threat to our work as we may analyse scenarios that
have these types of contributions if they also have the other types of contributions. In
particular, our analysis may erroneously classify some scenarios, that would be classified
as with information flow if the removed lines have been taken in consideration, as without
information flow. More precisely, there may be interference involved in those types of
editions which we are not currently able to detect. As previously explained, with respect
to removed lines the issue is directly related to our decision of using a single revision
(integrated) to represent the contributions from the merge scenario and in particular of
using a single SDG. Therefore, we miss those cases with the goal of improving performance
and obtaining a practical approach. Similarly, the issue with identical lines is related to
the fact that as we check for information flow in the integrated revision between lines from
left and lines from right, we cannot annotate a specific line in the integrated revision as
arising from both left and right at the same time.

Additionally, as discussed in Section 4.3.1.1 there are significant reductions as-
sociated to our sample, specially for considering frequency of information flow. More
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specifically, from the 157 scenarios (from 52 projects) which we executed JOANA, the
SDG was created for our final configuration in 111 scenarios (from 47 projects) and only
in 71 scenarios (from 36 projects) the SDG was created and there were instructions to
annotate from both left and right. Nevertheless, as previously detailed in Figure 4.11
of Section 4.3.1.1, some of the cases without annotated instructions are actually due to
limitations of our annotation strategy such as cases where the editions are inside inner
structures (anonymous classes for example). So, since we only consider cases with instruc-
tions annotated from both left and right to calculate information flow frequency, we miss
cases containing only this type of contribution, reducing the amount of analysed data.
Furthermore, this may lead us to analyse scenarios considering only part of their actual
contributions. More specifically, if left does an edition that we are not able to identify
(such as an edition inside an anonymous class), but also another edition that we are able
to identify, we annotate the second and miss the first. Hence, we may analyse scenarios
with only part of their contributions, which may lead us to erroneously classify scenarios
with valid information flow as without information flow.

Furthermore, there are threats involving both our automatic and manual analyses
associated to the methods we selected to analyse. More precisely, 9.79% (14 / 143 = 9.79)
of the methods which the SDG was successfully created for our selected configuration (in
our automatic analysis), are analysed by more than one different scenario, which may
slightly bias our data with the characteristics of those methods. In other words, for those
14 methods, the predictor of edition on the same-method occurred in different merge
scenarios and as a result we analysed small variations of these methods. Additionally, in
our manual analysis there is only one case of repeated method (from the 35 analysed
methods).

In addition, 8.39% (11 / 143) of the methods from the automatic analysis, where an
instance based SDG without exceptions was created, were actually methods from test code.
In particular, for those cases, a method from test code was edited by both contributions
flagging our predictor of editions on the same method. Since we consider test code less
relevant than the main source code of a program, we did not analyse methods from test
code in our manual analysis.

Lastly, we observed a considerable amount of constructors within our sample. In
particular, 13.99% (20 / 143) of the analysed methods from the automatic analysis, where
an instance based SDG without exceptions was created, were actually constructors. In our
manual analysis this frequency is even higher, 28.57% (10 / 35) of the analysed methods
were actually constructors.

Finally, one could argue that using only a manual analysis to understand the
limitations of information flow to estimate interference is also a threat, specially because a
manual analysis is error-prone. Nevertheless, we argue that such analysis was necessary
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to properly understand the limitations of using information flow to estimate interference.
Furthermore, most of the cases were reviewed by a second person. In particular, only
examples with clear repetitions of categories previously discussed in other examples, were
not reviewed.

4.4.3 External

Our evaluation involved open-source Java projects hosted on GitHub with build
scripts from Ant, Gradle or Maven. Thus, generalization to other languages and types of
projects is limited, and further studies are necessary to confirm our findings. In particular,
JOANA only works for Java, so a different tool would be necessary for analysing different
programming languages. However, it is not hard to believe that some of our findings may
be true for other types of projects. For instance, we also expect existence of information
flow between contributions for other programming languages.

Furthermore, one could argue that our sample size is limited as it involved only
157 scenarios. We agree that further studies, with larger samples, are indeed necessary.
However, there is a series of limiting factors for increasing sample size. For instance, we
are restricted to integrated revisions, with no merge conflicts identified by FSTMerge,
that are successfully compiled. Moreover, even with all decisions we made to improve
performance, JOANA may take hours to create a SDG for a revision or as previously
shown may not even be able to successfully create it. As a matter of fact, this factor is
enlarged by the fact that to select a configuration of SDG to be used we run multiple
configurations for each scenario. For instance, for 83 scenarios we executed 16 different
configurations. Additionally, although the number of scenarios may be considered small,
we tried to provide a degree of diversity by selecting those scenarios from 52 different
projects with different sizes and from different domains.
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5 CONCLUSION

In this work, we propose a strategy for checking information flow between contribu-
tions of a merge scenario, and use this information as an estimator of interference between
those contributions. Our final goal is supporting dynamic semantic conflicts detection.
However, as deciding if a dynamic semantic conflict exists involves understanding of the
expected behaviour of a system, and because such behavioural specifications are often
hard to capture, formalize and reason about, we instead try to detect interference. In
addition, we restrict our scope to interference caused by same-method contributions.

Given Java Object-sensitive ANAlysis (JOANA) has different options of System
Dependence Graph (SDG), first, we focused in establishing the most appropriate option
to our context. We focused on two aspects: use of exceptions and pointer analysis. We
conducted an automatic analysis (divided in iterations) comparing the different options
for 157 merge scenarios (from 52 projects), to establish the most appropriate option. After
iteration 1, we decided to use SDGs without exceptions, as JOANA tends to find too many
false positives using SDGs with exceptions. Furthermore, after iteration 3, we decided to
use instance based as our pointer analysis, as this option allows us to analyse more cases
(that is, JOANA is able to successfully create the SDG more times for this option) with
little loss in precision. However, for those who wish more precision, we recommend using
an object sensitive analysis (or n1 object sensitive).

Nonetheless, it is important to notice that object sensitive SDGs are not only
successfully created for less scenarios, but also tend to consume more memory and take
more time to be computed than instance based SDGs. In particular, for a sample of 77
scenarios where both analyses were able to create the SDGs, object sensitive had a median
of 13.77 GB of memory consumed and took a median of around 2 minutes and a half to be
computed, while instance based had medians of 6.55 GB and 38 seconds, respectively. The
difference in time is even greater when comparing the third quartiles: more than 20 minutes
for object sensitive compared to less than 2 minutes for instance based. Furthermore, while
almost all occurrences of instance based took up to 20 minutes to compute (except for one
outlier that took around two hours and a half), 11 cases took hours using object sensitive.
Similarly, except for one outlier, JOANA consumed up to 22 GB of memory using instance
based SDG. In contrast, using object sensitive SDGs, there are 18 occurrences where more
than 22 GB was necessary and 13 where more than 40 GB was necessary.

Besides establishing a SDG option to use (instance based without exceptions),
our automatic analysis also helped to answer if information flow between same-method
contributions actually occurs. We do that by calculating the frequency of direct information
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flow between same-method contributions in scenarios that were successfully merged. Since
we consider that scenarios with information flow between contributions are potential cases
of interference, the higher the frequency, the higher the number of scenarios that are
identified by our strategy. We found, in our sample, direct information flow between the
contributions in around 64% of the analysed scenarios. Therefore, this frequency indicates
a considerable number of potential candidates of interference that would be identified by
our strategy.

However, it is important to mention that our strategy has limited use when the
SDG fails to be created. More specifically, we are only able to look for information flow for
a specific scenario if a SDG is successfully created for this scenario. In particular, using
our selected configuration of SDG, we were able to successfully create the SDG for around
71% of the scenarios. As previously discussed in Section 4.3.1.1 and detailed in Figure 4.10,
we found two main reasons for a failure on SDG creation: failure to locate a class on the
class hierarchy and the SDG in question is too big. In our evaluation from iteration 1,
from the 17 cases where our selected configuration failed to create the SDG, 10 cases were
related to the first reason and 7 to the second.

The failures related to the first reason, failures to locate a class in the class hierarchy,
are related to technical problems and may be solved by also including the missing class. On
the other hand, if a SDG fails to be created because is too big, then, the only remaining
solution is to try to reduce the size of the SDG in question. There are different possible
options to do that. One possibility, is to do only intraprocedural analysis (instead of
interprocedural). That is, instead of considering method calls within a method, only the
method itself is taken in consideration. Another one, is to not consider external and/or
native dependencies. All these solutions would result in more incomplete analysis compared
to the original one, but with potential to at least analyse part of these cases where the
SDG with the original configuration fails to be created. For instance, using instance based
SDGs without exceptions, we noticed that for 7 scenarios it was possible to create the
SDG using stubs for Java Runtime Environment (JRE) 1.4 and no external dependencies,
while when using our final option regarding dependencies (with stubs for JRE 1.5 and
external dependencies) the SDG creation failed.

Lastly, we conducted a manual analysis to understand if the existence of information
flow is a good estimator for the existence of interference and to find out characteristics of
situations that have information flow but no interference. We concluded that existence of
information flow between contributions is related to existence of interference and we expect
part of the detected interference to be actually dynamic semantic conflicts. More precisely,
we classified 42.86% of the scenarios with information flow between contributions to be
also interference. However, as previously discussed, we obtained a considerable number
of false positives of interference (57.14%). We found three major reasons for these false



Chapter 5. CONCLUSION 112

positives: cases related to the nature of changes (42.86% of the false positives), cases
related to limitations of our annotation strategy (33.33% of the false positives) and cases
related to conservativeness of the flows identified by JOANA (23.8% of the false positives).

Nevertheless, although we obtained a considerable amount of false positives of
information flow as an estimator of interference, improvements to our strategy would
potentially solve most of the false positives. In particular, a more advanced annotation
system could solve annotation problems (33.33% of the false positives). Additionally, using
a less conservative Information Flow Control (IFC) tool could help to avoid (at least part
of) cases of conservative flows (23.8% of the false positives), but with the risk of increasing
false negatives. Finally, a tool such as SafeRefactor could be used to check if changes are
simply refactorings (19.05% of the false positives), avoiding part of the problems related
to the nature of changes. Therefore, there is room for solving, potentially with drawbacks
in 23.8%, around three quarters (33.33% + 19.05% + 23.8% = 76.18%) of the obtained
false positives.

Furthermore, as previously discussed in Chapter 4, we do not cover interference
true/false negatives in our manual analysis. More specifically, we are aware that our strategy
may miss valid cases of interference, however, we are interested in first understanding if
information flow existence indicates interference existence.

In practice, we envisage our strategy as a complementary verification in the merge
process. That is, for each merge scenario integrated with no conflicts, our strategy could
be automatically executed in a server to check for information flow. After the verification
was completed, an email would be sent detailing if any information flow was identified
between the contributions of the scenario and if so, detailing the obtained flows. Such
strategy involves the use of a timeout establishing the limit of time to try to create the
SDG (and consequently to receive the email). We used a timeout of 24 hours in our study,
but this information could be configurable and changed depending of the context. In
fact, we observed, in a sample of 100 scenarios, that only in 2 scenarios the SDG was
successfully created after 4 hours using our final configuration. Hence, one could decide to
use this timeout instead of 24 hours. As a matter of fact, using our final configuration,
for most of the scenarios the SDG was created in a matter of minutes (the median was 1
minute and 5 seconds and the third quartile 8 minutes and 35 seconds). Similarly, the limit
of memory used could also be configurable. In our study, we used 120 GB as the limit.
Nevertheless, that could be tailored to fit the amount of available memory. In particular,
for our final configuration, we observed that around 20 GB would already cover most of
the cases of successful creations from the 100 analysed scenarios (8.2 GB covered 50%,
16.1 GB covered 75% and 29 GB covered 90%).

To conclude, we see our strategy as complementary to the use of system tests and
code reviews to detect dynamic semantic conflicts. And, as an alternative to semantic
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merging. Specifically, we expect to detect part of the interference missed by a test-based
strategy, but also miss some cases that could be identified using tests. In particular,
compared to using tests, our strategy is generic in the sense that does not depend on the
existence of tests or on their quality and coverage to check for interference. In contrast, a
test suite needs constant maintenance to keep good coverage through software evolution.
Nevertheless, we do not expect a strategy using tests to present as many issues with
interference false positives as the proposed approach. More precisely, if a specific test
presents a different result before and after an integration, in general, we expect it to be an
interference. In contrast, as already discussed, our strategy has a number of issues with
interference false positives. Additionally, our strategy has the limitation that it is not able
to analyse a scenario if the associated SDG is too heavy.

Similarly, we see our strategy as complementary to code review. In particular, our
strategy may help to guide code review by showing possible points of interference when
information flow is found. In summary, a flow between contributions is a possible point
of interference and thus it should be closely investigated. Nonetheless, it is important to
emphasize that, when our strategy does not detect information flow between contributions,
it does not imply that there is no interference or dynamic semantic conflict. For instance, as
previously discussed, interference involving removed lines is not identified by our strategy.
Similarly, there is no information flow for cases of overwriting (mentioned in Section 3.2.2),
but they may generate an interference. For example, imagine the situation discussed in
Section 3.2.2, where left changes the value of a variable on a point 1 (of the integrated
revision) used by a statement on point 3, while right modifies the value of the same variable
on a point 2 (between left modification from point 1 and the statement from point 3).
There is interference in such a situation because right overwrites the value also modified
by left affecting the value of the variable on point 3. However, as right overwrites left,
there is no information flow from right to left, from left to right or from left and right to
a common point. In fact, the effect of integrating left and right is actually “killing” the
previously existing flow from point 1 to point 3 (on left revision), so, right overwrites left
with respect to point 3. Hence, with respect to code review, our strategy may be useful to
speed-up the process of detection of dynamic semantic conflicts, and even to detect some
conflicts that could potentially pass unnoticed. Nevertheless, we provide no guarantees: in
addition to false positives, our strategy may also produce false negatives.

Finally, with respect to semantic merging (explained in Section 2.1.2), our strategy
tends to have both more false positives and negatives, specially the latter. However, to
achieve such accuracy, semantic merging tends to be too heavy to be used in practice.
Therefore, although we may have more false positives and negatives, our approach focuses
on improving performance towards obtaining a practical approach. Specifically, we deal
with a single SDG, versus four in the original work of Horwitz, Prins and Reps [HORWITZ;
PRINS; REPS, 1989]. Furthermore, while Horwitz, Prins and Reps create full program
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SDGs, our SDG involves only methods in the call graph (see Section 2.2.1) of methods
edited by both contributions. Thus, with the goal of improving performance, our strategy
is not sound.

5.1 Contributions
This work makes four distinct contributions:

• Compares different SDG options for eight different pointer analyses with and without
exceptions, giving a total of 16 options (8×2 = 16), with respect to quantity of direct
information flow identified between same-method contributions, size and number of
successful SDG creations;

• Recommends a specific SDG option, namely instance based without exceptions, to
be used for checking for information flow between same-method contributions;

• Provides evidence of how frequently direct information flow occurs between same-
method contributions;

• Analyses the limitations of using information flow to estimate interference.

5.2 Related Work
Previous work discuss and provide evidence about collaborative development issues.

For example, Mens [MENS, 2002] provides a comprehensive overview of the field of
software-merge by comparing different techniques and discussing the advantages and
limitations from each. Furthermore, in previous sections we have already mentioned studies
with evidence of the occurrence of conflicts [KASI; SARMA, 2013; BRUN et al., 2013].
Specifically, these studies analysed merge conflicts frequency (using a textual merge tool)
and also static semantic conflicts (measuring build failures) and dynamic semantic conflicts
(using existing tests) frequency. In particular, with respect to dynamic semantic conflicts
these studies used the existing tests and found evidence of this type of conflict ranging
from 3% to 28% [KASI; SARMA, 2013] and from 6% to 35% [BRUN et al., 2013]. It is
important to mention that both studies analysed only a small list of projects, containing
four and nine projects, respectively; for semantic conflicts the numbers are actually four
and three. In addition, as previously mentioned, using existing tests to detect dynamic
semantic conflicts is dependent on the test suite quality and coverage. Additionally, as the
program evolves over time, tests need to be updated regularly to keep a good coverage of
the source code. Furthermore, similarly to our strategy, we argue that tests actually detect
interference, not dynamic semantic conflicts directly. More specifically, tests may also
detect desired interference (as discussed in Section 3.2.1). In addition, both studies may
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have imprecisions due to the fact that they only consider test failures in the integrated
revision. To be more precise, a test failure in the integrated revision may be due to an
interference, but also due to a previous existing failure. Finally, it is important to mention
that using existing tests and running our information flow verification may be seen as
complementary strategies to detect interference (and dynamic semantic conflicts).

As previously mentioned, a number of tools focus in detecting syntactic conflicts
by using knowledge of a program’s syntax tree. More specifically, tools like JDime [APEL;
LESSENICH; LENGAUER, 2012] and FSTMerge [APEL et al., 2011] merge using parsing
trees to represent the program structure. While JDime is a structured merge tool and
takes the full parse tree in consideration, FSTMerge is a semi-structured tool and works
on simplified parse trees. Additionally, previous work [CAVALCANTI, 2016] compared
the integration effort and correctness of textual merging with semi-structured merging,
showing that semi-structured tools tend to have less false positives (and negatives) than a
textual tool. As previously suggested, our approach is complementary to non-semantic
merge strategies such as textual and structured merging. As explained in our strategy (in
Section 3.3.1.1), the software may be merged using such tools and, if there is no merge
conflict, then our information flow verification may be executed.

Additionally, a number of tools focus on early identification of potential conflicts. For
instance, Palantír [SARMA; REDMILES; HOEK, 2012] is an awareness tool that informs
developers of ongoing parallel changes, while Crystal [BRUN et al., 2013] proactively
integrates commits from developers repositories with the purpose of warning as early as
possible if changes conflict. Similarly, WeCode [GUIMARÃES; SILVA, 2012] continuously
merges uncommited and commited changes to proactively detect conflicts on behalf of
developers while the development is still on progress. As non-semantic merge tools, such
proactive tools are complementary to our approach, they could execute information flow
verification for cases where no merge conflicts were identified using the traditional merging
strategies. Furthermore, although such strategies may detect part of the conflicts earlier,
they do not detect all the conflicts, and, as a result, other strategies to detect (and solve)
those conflicts are still necessary.

Regarding semantic merge, Horwitz, Prins and Reps [HORWITZ; PRINS; REPS,
1989] were the first to propose an algorithm for merging program versions without semantic
conflicts for a very simple assignment-based programming language. This original work
was later extended to handle procedure calls [BINKLEY; HORWITZ; REPS, 1995] and
to identify semantics-preserving transformations [YANG; HORWITZ; REPS, 1992]. As
previously mentioned, compared to our work, in theory, those approaches are more complete,
as they detect more interference. However, that was a deliberate decision from our part,
as those works are too computationally expensive to be used in practice, even for medium
sized systems. As a matter of fact, as previously mentioned, to our knowledge, there is no
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semantic merge tool of such kind available, although some existent syntactic tools claim
to be semantic. Thus, while these tools deal with four full program SDGs, we create a
single SDG and just for a few methods of the integrated revision (the ones edited by both
contributions). Thus, with the goal of improving performance and making our approach
practical, we miss some valid cases of interference, compromising soundness. Furthermore,
as previously mentioned in Section 4.3, we expect such approaches to present similar issues
as ours with respect to interference falses positives regarding the nature of changes.

Other approaches have taken a similar path as ours towards a more lightweight
and practical approach that may miss some interference cases. SemanticDiff [JACKSON;
LADD, 1994] takes two versions of a C program and identifies differences between them
by comparing the dependence relations between each procedure input and output to
approximate observable behaviour. As our approach, this comparison is done procedure by
procedure. However, while our approach is interprocedural, this approach is intraprocedural.
Therefore, it suffers from a number of spurious reports due to worst case assumptions when
there are procedure calls. On the other hand, this tool seems to potentially present fewer
problems with respect to the nature of changes problems encountered by our approach, as
those problems are directly related to the use of SDGs to represent information flow and
SemanticDiff does not use them.

Moreover, our main goal is identifying interference between different merge scenario
contributions (left and right). In other words, we want to detect interference due to
unexpected interactions between left and right. On the other hand, SemanticDiff shows
difference on behaviour of simple evolutions between only two versions. Thus, to use
SemanticDiff in our context, some adaptation would be necessary. More precisely, one
could try to use SemanticDiff to compare left with base and then right with base obtaining
behaviour added by left with respect to base and behaviour added by right with respect to
base. Finally, some extra logic/comparisons would be necessary to check if the integrated
revision contains all the behaviour added by left and right, and if no extra behaviour
was added after integrating left with right. In particular, integrating left and right may
cause the loss of inserted behaviour by left or right due to interaction between them,
or the inclusion of extra behaviour caused by the interaction between them. Similarly,
SafeRefactor [SOARES et al., 2010], a tool that receives two program versions and checks
for differences in behaviour by creating a series of random tests, could also be used in a
similar fashion.

Still regarding the performance problems, Semantic Conflicts Analyzer (SCA)
[SHAO; KHURSHID; PERRY, 2007] may also be considered a lightweight approach. SCA
does def-use data dependency analysis intraprocedurally and uses slicing techniques to
identify structures impacted by a change. This work may be seen as more lightweight than
ours as we use interprocedural analysis and also take in consideration the control flow
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of a program. With respect to false positives, as in our analysis, the evaluation of SCA
showed a considerable number of false positives due to refactorings . Specifically, 8 of the
19 cases of false positives found by them were classified as variable or type renaming. That
conforms to our findings where the nature of changes were the first reason for false positives,
although their rate of false positives due to refactorings was higher than ours (8 from 19
versus 4 from 21). However, they do not mention other problems, beyond refactorings, in
the nature of changes category. In addition, SCA also obtained false positives due to no
actual changes (named as false identification of changes in their work). More specifically, 3
of the 19 false positives encountered by them were in this category (versus 6 from 21 in
ours). Additionally, they obtain a type of false positive discussed by us, but not measured
in our evaluation. More precisely, they found that 5 of their 19 false positives were due to
intentional modifications to fix faults. In particular, this is closely related to our discussion
(from Section 3.2.1) of desired and undesired interference. To be more precise, these false
positives correspond to false positives due to desired interference. Lastly, still regarding
false positives, although they also consider dynamic semantic conflicts false positives (and
we consider only interference false positives), this study obtained similar findings to ours.
Moreover, their false positive rate was similar to ours. Particularly, they obtained 19
false positives from 29 cases detected. If we discard the five false positives of intentional
modifications (which we do not measure), that would result in 14 false positives from 24
cases, and, result in a false positive rate of 58.33% (14/24 = 58.33%). Indeed, this is very
close to our own false positive rate (57.14%). Finally, the evaluation of SCA also brings
evidence related to the consequences of their decision of not considering control-flow. To
be more specific, 8 of their 17 false negatives were due to control-flow dependencies, which
could potentially be identified by our strategy. Therefore, compared to ours, this study
uses a more lightweight approach, which tends to increase their number of false negatives
compared to ours. Furthermore, despite the differences between the approaches, the false
positive rate obtained by both studies was very similar. Nonetheless, as different samples
were used, and as both samples are of limited size, the comparison of the false positives
rate is limited.

So far, the proposed approaches for detecting behavioural differences are restricted
to a particular implementation language. Berzins [BERZINS, 1994] propose a general
approach by providing a language-independent definition of semantic merging with the
use of a generalization of the use of traditional denotational semantics. The main problem
with Berzins’ approach is that, because it works on the underlying semantic interpretation,
it cannot be used to diagnose and locate conflicts in the concrete syntax representation of
a program. Hence, the approach is impractical as it cannot be used to pinpoint the actual
point in the software source code that leads to a semantic conflict.

Additionally, a number of works has used SDGs to reduce the necessary amount
of tests to be executed. This is different from our approach, as we consider the opposite
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direction where the existing tests are not enough. In contrast, these works consider that a
big system has a large amount of tests and after one modification in the system only part
of those tests need to be executed to properly test it. For instance, Binkley [BINKLEY,
1992] proposes a strategy which uses SDG and interprocedural slicing to reduce the cost
of regression testing by calculating the affected points of a change. As a result, they aim
to reduce the number of test cases that must be ren-run and the size of the program these
test cases must be re-run on. Similarly, Bates and Horwitz [BATES; HORWITZ, 1993]
propose a strategy, which also uses SDGs, to guide incremental testing. More specifically,
as Binkley, they check for components affected by a change and look which existing tests
test them. Furthermore, affected components not covered by existing tests need new tests.

Finally, Böhme, Oliveira and Roychoudhury [BÖHME; OLIVEIRA; ROYCHOUD-
HURY, 2013] argue that some errors introduced in software evolution can only be identified
by stressing the interaction between the introduced changes; these errors are called change
interaction errors by them. That is, they argue that some errors are not identifiable by
only testing the changes in isolation. Although in a testing context, this idea has some
similarities with our idea of checking for the interaction between different contributions
from a merge scenario. In particular, in our case, we check for information flow between
left and right to try to detect these interactions between left and right. However, it is
important to mention that the work in question focuses on identifying change interaction
errors in simple evolution scenarios, not in merge scenarios. Nevertheless, adapting this
work to specifically check for change interaction errors between contributions from a merge
scenario seems to be a promising idea. More precisely, their original algorithm could be
modified to create two groups of changes: changes from left and changes from right. Then,
the algorithm would be almost the same, with the extension that, instead of stressing
any sequence of changes, the tested sequence of changes would need to involve at least a
change from right and at least a change from left. Nonetheless, it is important to mention
that, to look for valid sequences of changes, this strategy creates a Change Sequence
Graph (CSG), which is created using two other structures: Control Flow Graph (CFG) and
Procedure Dependence Graph (PDG). Furthermore, the work in question does not mention
the performance to create this CSGs, only after this structure is created. Therefore, we do
not know if this approach is practical, or if it is too computationally expensive.

5.3 Future Work
The first possible point of extension is related to increasing the sample size with

respect to the number of projects and merge scenarios for both our analyses (automatic and
manual). Similarly, our manual analysis involving numbers of accidental and intentional
exceptions could also evaluate more cases.
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Additionally, as previously discussed, our current strategy could be improved in a
number of ways. Here are some possible improvements:

• Improve annotation mechanism, as discussed in Section 4.3.2.1, to also include
knowledge on the instruction level to avoid false positives of interference related to
annotation;

• Investigate use of a less conservative tool than JOANA, to avoid false positives of
interference related to JOANA conservativeness;

• Use a tool such as SafeRefactor to check if a change is a refactoring, avoiding false
positives of interference related to marking refactorings as contributions. Alternatively,
we could also use a different tool to look for specific refactoring patterns (templates)
to identify refactorings;

• Investigate how removals could be considered and what is the impact of also including
them. In particular, we could start by counting removals occurrences in our current
sample. Then, we could try to extend our current annotation mechanism to also take
in account removals in our information flow verification;

• As discussed in Section 4.3.1.1, we miss intentional exceptions to avoid the accidental
ones. Hence, one possibility is modifying JOANA to include intentional exceptions
while ignoring the accidental ones;

• Investigate trade-off of including concurrency on the analysis;

• Instead of creating a SDG from scratch for each scenario from a project, consider
using an incremental construction (like done with a different structure by previous
work [CALCAGNO et al., 2015]) to reduce effort with respect to memory and time
to compute SDGs. More precisely, the basic idea is that we would only construct
the SDG from scratch in the first time. Then, for other scenarios, we would only
increment the last computed version of the SDG with the changes.

Other important point to take in consideration is that we restricted our scope to
same-method contributions. Hence, one possible point of extension is to include other
interference patterns such as dependency of modified method. As detailed in Section 3.2.2,
by dependency of modified method we reefer to situations where a method edited by
one contribution is in the call graph (see Section 2.2.1) of a method edited by the
other. For example, imagine that two methods (foo and bar) are edited by left and right,
respectively, and, that foo is called inside bar. Regarding this pattern, previous work
[SANTOS; KULESZA, 2016] found considerable occurrences of it in the context of clones
of a web-based information system. To be more specific, they found this pattern even more
than contributions to same elements (such as same-method contributions).
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Specifically, to consider this pattern, one alternative is to first look in the list of
edited methods by each contribution to check if an edited method by one contribution is in
the call graph of a method edited by the other. First, an important decision here is the level
of calls to take in account (1, 2, 3...), where by one level we mean that a method is directly
called by other. More precisely, allowing an unlimited level may be heavy and unnecessary.
In particular, previous work [SANTOS; KULESZA, 2016] provided an indication that,
for their sample, considering 3 levels could already cover most of the cases. Then, if the
pattern occurs (if a method edited by left is in the call graph of a method edited by right),
we would proceed to execute JOANA. In that case, only the caller (bar, in our example)
would need to be passed as entry-point, since the other method (foo, in the example) is
called from it and as a result will be part of the SDG created by passing the caller as
entry-point. Finally, once the SDG is created, the contributions from left and right on the
edited methods (foo and bar) would be annotated and the IFC analyses executed.

Still regarding the verification to the dependency of modified method pattern, an
alternative to the previous strategy of computing the call hierarchies of edited methods, is
to directly pass all methods edited by left or right as entry-points. This approach is more
straightforward and would avoid the extra step of verifying if there are edited method in
the call graph of other edited methods. Nonetheless, the main problem with this strategy
is that its performance tends to be bad. More precisely, the number of methods passed as
entry-point will tend to directly affect the SDG size and as a result the SDGs may be too
heavy to be computed using this strategy.

Furthermore, we do not cover here true/false negatives. As those aspects are also
important, this is another possible direction to consider. Another relevant point that
we did not cover is if an interference is actually a dynamic semantic conflict. We could
check that, similarly to [SHAO; KHURSHID; PERRY, 2007], by specifically looking in the
change management history for Change Requests (CRs) involving fixes to merge scenarios
with information flow. Another possibility, is sending an email to developers involved in a
merge scenario asking if identified interference is desired or not.

Finally, a different possibility not covered here is a comparative study with different
strategies of interference detection. For instance, one possibility is comparing the strategy
proposed here with the same strategy using an intraprocedural analysis, with respect
to aspects such as performance and quantity of true/false positives/negatives. Another
interesting possibility is a better comparison of our strategy with SCA, which only does
intraprocedural and data-flow analysis (versus interprocedural and data+control flow
analysis using JOANA). For example, we could try to replicate their dataset to obtain
more accurate comparisons.

Still regarding possible comparisons, there is a group of possibilities regarding
comparison with tests. One possibility is comparing our strategy with interference de-
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tection using system tests. Another one, is instead of comparing with existing system
tests, is using test generation tools like Randoop.1 Still regarding tests generation, other
possibility is comparing with an adaptation of the work from Böhme, Oliveira and Roy-
choudhury [BÖHME; OLIVEIRA; ROYCHOUDHURY, 2013] (as proposed in Section 5.2)
to specifically look for interaction errors between the contributions.

1 Randoop - <https://randoop.github.io/randoop/>

https://randoop.github.io/randoop/
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APPENDIX A – IMPORTANT LINKS

In this appendix we provide important links involving this work. In particular, we
provide links to our source code, and to plots and files generated during our evaluation.

• GitHub repository with source code and necessary scripts: <https://github.com/
rsmbf/joana>

• Resultant plots and files generated during evaluation: <https://drive.google.com/
drive/folders/0B1QVNk49Q0GbOGszMnJtUVlRUnc>

https://github.com/rsmbf/joana
https://github.com/rsmbf/joana
https://drive.google.com/drive/folders/0B1QVNk49Q0GbOGszMnJtUVlRUnc
https://drive.google.com/drive/folders/0B1QVNk49Q0GbOGszMnJtUVlRUnc
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