
Comparing integration effort and
correctness of different merge
approaches in Version Control
Systems

Guilherme Cavalcanti

Advisor: Paulo Borba

2

Collaborative development is a common
characteristic of today’s software projects

3

(three-way merge)

4

Conflicts are frequent and time-consuming!

5

unstructured merge structured merge

Merge Approaches

6
Apel et al. 11

semistructured merge

7 Merge result

8

 We compare the number of reported conflicts by
the semistructured and unstructured merge
approaches

 We compare the number of false positives and
false negatives resulting from these merge
approaches

To understand impact on
productivity and quality...

Replication Study

10

 Apel et al. evaluated semistrucured merge on 180
merge scenarios from 24 projects that use
Subversion, a CVCS

11

DVCS

semistructured merge

12

unstructured merge

semistructured merge

13

Replication Design

14

Project selection criteria

1. Frequency and Recency of the collaborators

activities
2. Number of commits
3. Number of collaborators

1.

2. 3.

Mining Step

15

Store

Conflict?

16

17

Execution Step

Textual conflict

Conflicting LOC

Conflicting file

18

Evaluation Results

Total unstructured merge conflicts 18021

Total semistructured merge conflicts 14320

 At least 3.7K conflicts are ordering conflicts

 Number of semantic conflicts found: 1.5K

Overall results:

19

In Merge Scenarios where Semistructured
Merge Reduced the Numbers (average)

 Reduction by In Merge Scenarios SD

Textual conf. 62% 55.2% 24%

Conf. LOC 81% 71.1% 14%

Conf. files 66% 47.9% 25%

 Our replication (3266 merge scenarios, 60 projects):

 Original study (180 merge scenarios, 24 projects):

 Reduction by In Merge Scenarios SD

Textual conf. 34% 60% 21%

Conf. LOC 61% 82% 22%

Conf. files 28% 72% 12%

20

p-value < 0.05
Wilcoxon-Signed Rank Test
There is signficant reduction!

Conflicts Conflicting LOC Conflicting Files

21

Comparison with previous studies

22

…

 protected void validateFields(List<Throwable> errors) {

<<<<<<<

 for (FrameworkField each : ruleFields())

 validateInterceptorField(each.getField(), errors);

=======

 for (FrameworkField each : ruleFields())

 validateRuleField(each.getField(), errors);

>>>>>>>

 }

...

Semistructured merge reduces the metrics

Conflicting code legibility

semistructured merge conflict
(from project JUnit)

23

…

<<<<<<<

public static void validateMem…

=======

public ColumnDefinition getColu…

public ColumnDefinition getCol…

>>>>>>>

<<<<<<<

if (cf_def.memtable_flush_after_mins != null)

…

if (cf_def.memtable_throughput_in_mb != null)

…

if (cf_def.memtable_operations_in_millions != null)

…

public ColumnDefinition getColu…

…

public ColumnDefinition getColumnDe…{

 for (ColumnDefinition def : column_metadata.values())

=======

 for (ColumnDefinition def : column_metadata.values())

>>>>>>>

…

unstructured merge
conflict

(from project
Infinispan)

24

Prudêncio et al. 12

Santos et al. 12

Merge effort is the number of extra

actions to conciliate the changes

made in different revisions.

Number of Conflicts reached up to

99% correlation when compared to the

actual merge effort.

semistructured merge

reducing integration effort

 when compared to

unstructured merge ?

25

...

private void analyzeAndReportSemanticErrors() {

…

<<<<<<<

 environment.getProject(), sourceFiles, filesToAnalyzeCompletely,

JetControlFlowDataTraceFactory.EMPTY, compilerSpecialMode);

=======

 environment.getProject(), sourceFiles, filesToAnalyzeCompletely,

JetControlFlowDataTraceFactory.EMPTY);

>>>>>>>

…

}

...

 unstructured merge conflict = semistructured merge conflict
(from project kotlin)

similar numbers due to conflicts inside method bodies

Semistructured merge keeps or increases the number

26

increased numbers due to renamings or deletions

27

One group of users using a certain set of

commands is noninterfering with another

group of users if what the first group

does with those commands has no effect

on what the second group expects.

Goguen and Meseguer 82

28

increased numbers due to renamings or deletions

Integration Effort
and Correcteness

30

Semistructured merge
vs.

Unstructured merge

31

false positives: unnecessary integration effort

false negatives: build or behavioral errors

32

Comparing added false positives and false negatives
from one approach in relation to the other

33

 RQ1 - When compared to unstructured merge,
does semistructured merge reduce unnecessary
developer's integration effort?

 RQ2 - When compared to unstructured merge,
does semistructured merge compromise
integration correctness by missing more task
interferences?

Research Questions

34

semistructured merge’s superimposition

35

36

Ordering Conflict
(Unstructured Merge)

Renaming/Deletion Conflict
(Semistructured Merge)

37

Duplicated Declaration Error
(Unstructured Merge)

38

Type Ambiguity Error
(Semistructured Merge)

member x member

import java.util.List and import java.awt.List

package x package

import java.util.* and import java.awt.*

package x member

import java.util.List and import java.awt.*

39

New Artefact Referencing
Edited One

(Semistructured Merge)

40

Experimental Design

41

Mining Step

42

43

 FPa(SS) - Maximum
number of false positives
added by semistructured
merge

 FNa(SS) - Maximum
number of false negatives
added by semitructured
merge

 FPa(UN) - Minimum
number of false positives
added by unstructured
merge

 FNa(UN) - False negatives
added by unstructured
merge

Execution and Analysis Steps

44

Execution and Analysis Steps

45

Evaluation Results

19,238
unstructured merge conflicts

24%
Reduction!

14,544
semistructured merge conflicts

46

p-value > 0.05
There is no signficant difference

5.35% ± 4.85% 3.12% ± 3.55% 30.21% ± 20.68% 38.11% ± 23.49%

RQ1 - When compared to unstructured merge, does semistructured
merge reduce unnecessary developer's integration effort?

p-value < 0.05
There is signficant difference

47

48

(from project gradle)

(from project jedis)

simple ordering conflicts

49
(from project cassandra)

crosscutting ordering conflicts

50
(from project lucene-solr)

 false positive renaming conflict

51

suggestions for improving FSTMerge tool

(keeping the two versions)

52

identation renaming/deletion conflict

(from project k-9)

53

suggestions for improving FSTMerge tool

(ignoring the spacings)

54

true positive renaming conflict

(from project cassandra)

55

p-value < 0.05
There is signficant difference!

0.88% ± 1.07% 0.18% ± 0.39% 1.66% ± 7.32% 9.62% ± 16.12%

RQ2 - When compared to unstructured merge, does semistructured
merge compromise integration correctness by missing more task

interferences?

56

< 5x 5x

57

duplicated declaration error
(from project lucene-solr)

tracking false negatives

58

new element referencing edited one
(from project AntennaPod)

59

suggestions for improving FSTMerge tool

(using compilation features)

60

suggestions for improving FSTMerge tool

(infering interference)

61

unstructured
or

 semistructured merge?

62

False Positives and False
Negatives in general

Future Work

Unstructured vs.
Semistructured vs. Structured

Required effort to resolve
conflicts

Comparing integration effort and correctness of different
merge approaches in Version Control Systems

Thanks!

Apel’s et al mining step

●Projects of varying sizes, and with at least one
conflict by either semistructured and unstructured
merge.

●Merges that developers actually performed and the

revisions involved

●Merges that could have been performed or that are
realistic considering the revision history

Merge Conflicts and Their Types

false-negative: a conflict not detected

false-positive: a conflict that does not represent a

interference between developers’ tasks

true-positive: a conflict that represents a real

interference between developers’ tasks

68

69

Threats to Validity

 Construct: the output of semistructured merge

in the presence of renaming.

 Internal: our approach of selecting conflict

scenarios. Discard of scenarios.

 External: the size of our sample.

70

Ordering Conflict
(Unstructured Merge)

71

Renaming/Deletion Conflict
(Semistructured Merge)

72

Maximum False Negatives Added by Semistructured Merge – FNa(SS)
Type Ambiguity Errors

import java.util.List and import java.awt.List

import java.util.* and import java.awt.*

import java.util.List and import java.awt*

73

False Negatives Added by Unstructured Merge – FNa(SS)
Duplicated Declaration Errors

74

Maximum Number of False Positives Added
by Semistructured Merge – FPa(SS)

Renaming or Deletion Conflicts

75

Maximum Number of False Negatives Added
by Semistructured Merge – FNa(SS)

Type Ambiguity Errors

76

Maximum Number of False Negatives Added
by Semistructured Merge – FNa(SS)

New Element Referencing Edited One

77

Minimum Number of False Positives Added
by Unstructured Merge – FPa(UN)

Ordering Conflicts

FPa(UN) = P(UN) – (FP(UN|SS) + TP(UN|SS)) – FNa(SS)

FP(UN|SS) + TP(UN|SS) ????

78

P(SS) = FP(UN|SS) + TP(UN|SS) + FPa(SS) + FNa(UN)

FP(UN|SS) + TP(UN|SS) + FPa(SS) = P(SS) – FNa(UN)

Minimum Number of False Positives Added
by Unstructured Merge – FPa(UN)

Ordering Conflicts

79

FP(UN|SS) + TP(UN|SS) ≤ P(SS) – FNa(UN)

FP(UN|SS) + TP(UN|SS) + FPa(SS) = P(SS) – FNa(UN)

Minimum Number of False Positives Added
by Unstructured Merge – FPa(UN)

Ordering Conflicts

80

FPa(UN) ≥ P(UN) – P(SS) + FNa(UN) – FNa(SS)

Minimum Number of False Positives Added
by Unstructured Merge – FPa(UN)

Ordering Conflicts

81

improving FSTMerge tool

(ignoring spacings)

(using compilation features)

82

 Construct: integration effort mainly based on the
number of false positives; metrics are
approximations

 Internal: selection of merge scenarios; discarded
files

 External: only open-source Java projects

Threats to Validity

83

The Structured Merge Approach

84

 Matching of nodes depends on their syntactic category
similar to semistructured merge

 Tree matching distinguishes between ordered nodes
(which must not be permuted) and unordered nodes
(which can be permuted safely), comparing the input
trees level-wise

1 2 3

TYPE_A TYPE_B

85

86

 For ordered nodes, if their position overlap, the nodes are
flagged as conflicting

 Whether unordered nodes are in conflict, depends on
their type and name

1 2 3

Right Left

Left Right

TYPE_N TYPE_N

87
Consecutive Lines Conflict Spacing Conflict

False positives added by
Unstructured/Semistructured Merge

88

False negative added by Structured Merge
Edits to Same Statement

1 2 3

Left Right

int i = 1 i< 9 i++

For_stmt

89

Pilot Experiment

90

1.46% ± 1.63% 2.53% ± 2.84% 15.56% ± 19.25% 10.87% ± 10.44%

Preliminar Results

