
Pós-Graduação em Ciência da Computação

“COMPARING INTEGRATION EFFORT AND

CORRECTNESS OF DIFFERENT MERGE APPROACHES IN

VERSION CONTROL SYSTEMS”

Por

GUILHERME JOSÉ CARVALHO CAVALCANTI

Dissertação de Mestrado

Universidade Federal de Pernambuco

posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE/2016

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

GUILHERME JOSÉ CARVALHO CAVALCANTI

“COMPARING INTEGRATION EFFORT AND CORRECTNESS OF
DIFFERENT MERGE APPROACHES IN VERSION CONTROL SYSTEMS"

ESTE TRABALHO FOI APRESENTADO À PÓS-GRADUAÇÃO EM
CIÊNCIA DA COMPUTAÇÃO DO CENTRO DE INFORMÁTICA DA
UNIVERSIDADE FEDERAL DE PERNAMBUCO COMO REQUISITO
PARCIAL PARA OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIA DA
COMPUTAÇÃO.

ORIENTADOR(A): Paulo Henrique Monteiro Borba

RECIFE/2016

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

C376c Cavalcanti, Guilherme José Carvalho

Comparing integration effort and correctness of different merge approaches
in version control systems / Guilherme José Carvalho Cavalcanti. – 2016.

 100 f.: il., fig., tab.

 Orientador: Paulo Henrique Monteiro Borba.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2016.

 Inclui referências e apêndices.

 1. Engenharia de software. 2. Reuso de software. 3. Modularidade. I.
Borba, Paulo Henrique Monteiro. (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE- MEI 2016-059

Guilherme José Carvalho Cavalcanti

Comparing Integration Effort and Correctness of Different Merge Approaches
in Version Control Systems

 Dissertação apresentada ao Programa de Pós-
Graduação em Ciência da Computação da
Universidade Federal de Pernambuco, como
requisito parcial para a obtenção do título de
Mestre em Ciência da Computação.

Aprovado em: 29 /02/2016

BANCA EXAMINADORA

Prof. Dr. Kiev Santos da Gama
Centro de Informática / UFPE

Prof. Dr. Fernando Marques Figueira Filho

Departamento de Informática e Matemática Aplicada / UFRN

Prof. Dr. Paulo Henrique Monteiro Borba

Centro de Informática / UFPE
(Orientador)

I dedicate this work to everyone who gave me the necessary

support to get here.

Acknowledgements

A minha família, amigos e namorada pelo apoio nos momentos em que necessitei e pela
compreensão nos momentos em que estive ausente. Ao professor Paulo Borba pela inquestionável
competência com a qual orienta seus alunos e pelas oportunidades oferecidas. Aos membros
do SPG pelas experiências e conhecimentos compartilhados, bem como os bons e divertidos
momentos vividos. Em particular, Paola Accioly por fazer parte e ajudar no meu trabalho desde a
minha graduação. Finalmente, agradeço a FACEPE por financiar minha pesquisa, e o CIn-UFPE
por todo recurso que me ofereceu.

We are what we repeatedly do. Excellence, therefore, is not an act, but a

habit.

—ARISTOTLE

Resumo

Durante a integração de contribuições de código resultantes das tarefas de desenvolvi-
mento, frequentemente desenvolvedores têm que lidar com alterações conflitantes e dedicar con-
siderável esforço para resolver conflitos. Enquanto as ferramentas de integração não-estruturadas
tentam resolver automaticamente parte dos conflitos através de similaridade textual, ferramentas
semiestruturadas tentam ir mais longe, explorando a estrutura sintática de parte dos artefatos
envolvidos.

Para entender o impacto das abordagens de integração não-estruturada e semiestruturada
sobre esforço de integração (Produtividade) e corretude do processo de integração (Qualidade),
nós realizamos dois estudos empíricos. No primeiro, com o objetivo de aumentar o atual corpo de
evidência e avaliar resultados para sistemas desenvolvidos usando um paradigma de controle de
versão alternativo, nós replicamos um experimento para comparar a abordagem não-estruturada e
semiestruturada de acordo com o número de conflitos reportados por ambas as abordagens. Nós
usamos tanto a integração semiestruturada quanto a não-estruturada em uma amostra 2,5 vezes
maior do que a do estudo original em relação ao número de projetos e 18 vezes maior em relação
ao número de integrações realizadas, e comparamos a ocorrência de conflitos. Semelhante ao
estudo original, observamos que a integração semiestruturada reduz o número de conflitos em
55% das integrações da nova amostra. Além disso, a redução de conflitos média observada de
62% nestas integrações é muito superior à observada anteriormente. Nós também trazemos nova
evidência de que o uso da abordagem semiestruturada pode reduzir a ocorrência de integrações
com conflitos pela metade.

Com o intuito de verificar a frequência de falsos positivos e falsos negativos originados
do uso dessas abordagens, nós seguimos adiante e conduzimos um segundo estudo empírico.
Nós comparamos as abordagens reproduzindo mais de 30.000 integrações de 50 projetos, co-
letando evidência sobre os conflitos reportados que não representam interferências entre as
tarefas de desenvolvimento (falsos positivos), e interferências não reportadas como conflitos
(falsos negativos). Em particular, a nossa suposição é de que falsos positivos denotam esforço
desnecessário de integração porque os desenvolvedores têm que resolver conflitos que, na re-
alidade, não representam interferências. Além disso, falsos negativos denotam problemas de
build ou bugs, impactando negativamente a qualidade do software e corretude do processo
de integração. Ao analisar esses fatores críticos, esperamos orientar os desenvolvedores em
decidir qual abordagem deve ser usada na prática. Finalmente, nossos resultados mostram que
a abordagem semiestruturada elimina uma parte significativa dos falsos positivos reportados
pela abordagem não-estruturada, mas traz falsos positivos próprios. O número global de falsos
positivos é reduzido com a integração semiestruturada, e nós argumentamos que os conflitos
associados aos seus falsos positivos são mais fáceis de resolver quando comparados aos falsos

positivos reportados pela abordagem não-estruturada. Observamos, também, que mais inter-
ferências deixaram de ser detectadas pela abordagem não-estruturada, mas foram detectadas
pela semiestruturada. No entanto, nós acreditamos que as interferências não detectadas pela
abordagem semiestruturada são mais difíceis de detectar e resolver. Por fim, nosso estudo sugere
como uma ferramenta de integração semiestruturada poderia ser melhorada para eliminar os
falsos positivos e falsos negativos adicionados que possui em relação à não-estruturada.

Palavras-chave: Desenvolvimento colaborativo. Integração de software. Integração semiestru-
turada. Sistemas de controle de versões. Estudos empíricos

Abstract

During the integration of code contributions resulting from development tasks, one likely
has to deal with conflicting changes and dedicate substantial effort to resolve conflicts. While
unstructured merge tools try to automatically resolve part of the conflicts via textual similarity,
semistructured tools try to go further by exploiting the syntactic structure of part of the artefacts
involved.

To understand the impact of the unstructured and semistructured merge approaches on
integration effort (Productivity) and correctness of the merging process (Quality), we conduct
two empirical studies. In the first one, aiming at increasing the existing body of evidence
and assessing results for systems developed under an alternative version control paradigm, we
replicate an experiment to compare the unstructured and semistructured approaches with respect
to the number of conflicts reported by both merge approaches. We used both semistructured and
unstructured merge in a sample 2.5 times bigger than the original study regarding the number of
projects and 18 times bigger regarding the number of performed merges, and we compared the
occurrence of conflicts. Similar to the original study, we observed that semistructured merge
reduces the number of conflicts in 55% of the performed merges of the new sample. Besides
that, the observed average conflict reduction of 62% in these merges is far superior than what
has been observed before. We also bring new evidence that the use of semistructured merge can
reduce the occurrence of conflicting merges by half.

In order to verify the frequency of false positives and false negatives arising from
the use of these merge approaches, we move forward and we conduct a second empirical
study. We compare the unstructured and semistructured merge approaches by reproducing more
than 30,000 merges from 50 projects, and collecting evidence about reported conflicts that do
not represent interferences between development tasks (false positives), and interferences not
reported as conflicts (false negatives). In particular, our assumption is that false positives amount
to unnecessary integration effort because developers have to resolve conflicts that actually do not
represent interferences. Besides that, false negatives amount to build issues or bugs, negatively
impacting software quality and correctness of the merging process. By analyzing such critical
factors we hope to guide developers on deciding which approach should be used in practice.
Finally, our results show that semistructured merge eliminates a significant part of the false
positives reported by unstructured merge, but brings false positives of its own. The overall
number of false positives is reduced with semistructured merge, and we argue that the conflicts
associated to its false positives are easier to resolve when comparing to the false positives reported
by unstructured merge. We also observe that more interferences were missed by unstructured
merge and reported by semistructured merge, but we argue that the semistructured merge ones
are harder to detect and resolve than the other way around. Finally, our study suggests how a

semistructured merge tool could be improved to eliminate the extra false positives and negatives
it has in relation to unstructured merge.

Keywords: Collaborative development. Software merging. Semistructured merge. Version
control systems. Empirical studies

List of Figures

2.1 Centralized version control paradigm. 20
2.2 Distributed version control paradigm. 21
2.3 Merge conflict. 22
2.4 Ordering Conflict(Unstructured Merge). 25
2.5 Renaming Conflict(Semistructured Merge). 26
2.6 False Negatives arising from Semistructured Merge in relation to Unstructured

Merge. 28
2.7 Duplicated declaration error (Unstructured Merge). 29

3.1 Replication study design. 31
3.2 Replication boxplots of sample projects (we have hidden outliers for a better

visualization). 39
3.3 Renaming conflict example taken from project NServiceBus. 43

4.1 Experimental design. 48
4.2 Intercepting FSTMerge tool to find false negatives (FNa(UN)) duplicated dec-

laration error candidates. 51
4.3 Intercepting FSTMerge tool to find false negatives (FNa(SS)) type ambiguity

error candidates. 52
4.4 Intercepting FSTMerge tool to find false negatives (FNa(SS)) new element

referencing edited one candidates. 53
4.5 Intercepting FSTMerge tool to find false positives (FPa(SS)) renaming/deletion

conflict candidates. 54
4.6 Set of conflicts reported by unstructured and semistructured merge 55
4.7 Boxplots describing the percentage per project of added false positives in terms

of merge scenarios and conflicts. 58
4.8 Boxplots describing the percentage per project of the added false negatives in

terms of merge scenarios and conflicts. 60
4.9 Observed ordering conflicts. 62
4.10 Observed renaming conflicts. 64
4.11 Renaming conflict resolved by conciliating different changes. 65
4.12 Observed false negatives. 66
4.13 When nodes conflict with structured merge. 70
4.14 False positives added by unstructured/semistructured merge in relation to struc-

tured merge. 71
4.15 Edits to different parts of the same statement (Structured Merge). 72

B.1 Boxplots describing false positives added by unstructured/semistructured merge
per project in terms of merge scenarios and conflicts in relation to Structured
Merge. 100

List of Tables

3.1 Characteristics of the projects django and cassandra. 34
3.2 Number of merge scenarios where semistrucutured merge reported less, the same

number, and more textual conflicts, conflicting lines of code and conflicting files
than unstructured merge. 35

3.3 Replication results by projects. 37

A.1 Replication sample projects list and characteristics. 83
A.2 Replication results on merge scenarios where semistructured merge reduced the

numbers. 84
A.3 Replication results on merge scenarios where unstructured merge reduced the

numbers. 85

B.1 Java sample project list and characteristics. 87
B.2 False positives added by semistructured merge in terms of merge scenarios. . . 88
B.3 False positives added by semistructured merge in terms of conflicts. 89
B.4 False positives added by unstructured merge in terms of merge scenarios. . . . 90
B.5 False positives added by unstructured merge in terms of conflicts. 91
B.6 False negatives added by semistructured merge in terms of merge scenarios. . . 92
B.7 False negatives added by semistructured merge in terms of conflicts. 93
B.8 False negatives added by unstructured merge in terms of merge scenarios. . . . 94
B.9 False negatives added by unstructured merge in terms of conflicts. 95
B.10 Spacing conflicts in terms of merge scenarios. 96
B.11 Spacing conflicts in terms of conflicts. (Based on the number of reported conflicts

of Semistructured Merge) . 97
B.12 Consecutive lines conflicts in terms of merge scenarios. 98
B.13 Consecutive lines conflicts in terms of conflicts. (Based on the number of

reported conflicts of Semistructured Merge) 99

Contents

1 Introduction 16

2 Background 19
2.1 Version Control Systems . 19
2.2 Merging Software Artefacts . 21

2.2.1 Unstructured merge tools . 22
2.2.2 Semistructured merge tools . 23

2.3 Checking Interference . 24
2.3.1 False positives added by Unstructured Merge 25
2.3.2 False positives added by Semitructured Merge 26
2.3.3 False negatives added by Semistructured Merge 27
2.3.4 False negatives added by Unstructured Merge 27

3 Replication Study 30
3.1 Replication Design . 30

3.1.1 Mining Step . 31
3.1.2 Execution Step . 34

3.2 Evaluation Results . 34
3.3 Discussion . 40

3.3.1 Semistructured merge play to its strengths 40
3.3.2 Semistructured keeps or increases the number of conflicts 41

3.4 Threats to Validity . 44
3.4.1 Construct Validity . 44
3.4.2 Internal Validity . 44
3.4.3 External Validity . 44

4 Integration Effort and Correctness 46
4.1 Empirical Evaluation . 46

4.1.1 Experimental Setup . 48
4.1.1.1 Mining Step . 49
4.1.1.2 Execution and Analysis Steps 50

4.1.1.2.1 False Negatives Added by Unstructured Merge —
FNa(UN) . 51

4.1.1.2.2 Maximum Number of False Negatives Added by
Semistructured Merge —
FNa(SS) . 51

15

4.1.1.2.3 Maximum Number of False Positives Added by
Semistructured Merge —
FPa(SS) . 54

4.1.1.2.4 Minimum Number of False Positives Added by Un-
structured Merge —
FPa(UN) . 55

4.2 Evaluation Results . 56
4.2.1 When compared to unstructured merge, does semistructured merge re-

duce unnecessary integration effort? 57
4.2.2 When compared to unstructured merge, does semistructured merge com-

promise integration correctness by missing more task interferences? . . 58
4.3 Discussion . 60

4.3.1 Integration Effort . 60
4.3.2 Correctness . 65
4.3.3 Unstructured or Semistructured merge? 67

4.4 Threats to Validity . 67
4.4.1 Construct Validity . 67
4.4.2 Internal Validity . 68
4.4.3 External Validity . 68

4.5 The Structured Merge Approach . 68

5 Conclusions 73
5.1 Contributions . 74
5.2 Related Work . 74
5.3 Future Work . 76

References 77

Appendix 81

A Replication Study Appendix 82

B Integration Effort and Correctnesses
Study Appendix 86

161616

1
Introduction

In a collaborative development environment, developers often perform tasks in an in-
dependent way using individual copies of project files. As a result, when merging separate
code changes from each task, one might have to deal with conflicting changes and dedicate
substantial effort to resolve conflicts. These conflicts occur due to a number of reasons. For
example, when different developers make changes to the same artefact without being aware
of the others’ changes — the so-called direct, merge or textual conflicts — or when there are
concurrent modifications in different artefacts, leading to build or test failures — the indirect

conflicts (BRUN et al., 2011; KASI; SARMA, 2013). Regardless of the conflict nature, they may
hamper productivity, because detecting and resolving conflicts might be a tiresome and error
prone activity. As a consequence, they delay the project while developers trace the cause and
seek a solution (BIRD; ZIMMERMANN, 2012).

To learn about the occurrence of conflicts and their consequences, previous empirical
studies answer questions concerning when developers detect conflicts, and how often conflicts
occur. ZIMMERMANN (2007), for instance, by analysing four open source projects, describes
that conflicts occurred in a range from 23% to 47% of all files integration. BRUN et al. (2011)
and KASI and SARMA (2013), by analysing, respectively, nine and four projects hosted on
GitHub, found that conflicts occurred in 16% and 13% of all merge scenarios (a set
consisting of a common/ancestor and its derived revisions). They also found evidence of
projects’ merge scenarios free of merge conflicts resulting in build or semantic conflicts, more
specifically, 31%of projects’ merge scenarios in the sample of KASI and SARMA (2013) and
8% in the sample of BRUN et al. (2011).

Such evidence motivates and guides the design of tools that use different strategies
to both decrease integration effort and guarantee integration correctness. For example, to
reduce integration effort, the unstructured merge approach is purely text-based and resolves
conflicts via textual similarity (KHANNA; KUNAL; PIERCE, 2007). On the other hand, a
structured merge tool is tailored to a specific programming language and uses knowledge of the
language’s syntax to resolve conflicts (WESTFECHTEL, 1991; GRASS, 1992; MENS, 2002;
APIWATTANAPONG; ORSO; HARROLD, 2007; APEL; LESSENICH; LENGAUER, 2012)).

17

Finally, the semistructured merge approach uses part of the structural information inherent to the
software’s artefacts to resolve conflicts, and when this information is not sufficient nor available,
it applies the usual textual resolution from unstructured merge (APEL et al., 2011).

APEL et al. (2011), in a previous empirical study, found that the semistructured approach
was promising if compared to the unstructured one. By studying 24 projects using Subversion
(SUBVERSION, 2015), a Centralized Version Control System (CVCS), and analysing a total of
180 merge scenarios, they found that the semistructured approach was able to reduce the number
of textual conflicts in 60% of their sample merge scenarios. In these scenarios, the observed
average reduction was of 34%. They also found that, in 82% of their sample merge scenarios, the
semistructured approach reduced the number of conflicting lines of code by, on average, 61%;
and that, in 72% of their sample merge scenarios, semistructured merge reduced the number of
conflicting files by, on average, 28%.

Given the importance of such tools for collaborative software development, to understand
the impact of the unstructured and semistructured merge approaches on integration effort (Pro-
ductivity) and correctness of the merging process (Quality), we conduct two empirical studies.
In the first one, we further investigate APEL et al. (2011) hypothesis and replicate their study.
To possibly expand external validity of the original study, we analyse different systems that use
Git (GIT, 2015), a Distributed Version Control System (DVCS), since DVCSs have seen an
increase in popularity compared to traditional CVCS, and offer extra information, such as merge
tracking, that help us to better understand software development processes (BIRD et al., 2009;
BRINDESCU et al., 2014). We then compare semistructured merge to the unstructured approach
in 3266 merge scenarios from 60 projects, a sample 2.5 times bigger than the original study
regarding the number of projects and 18 times bigger regarding the number of merge scenarios.
Besides that, our methodology allows us to collect evidence about the occurrence of conflicting
code integrations and, thus, compare with those from the studies of BRUN et al. (2011) and
KASI and SARMA (2013). While this evidence rely on the use of an unstructured merge
tool, here, we are able to bring new evidence about the occurrence of conflicting code
integrations considering the use of a semistructured merge implementation.

Motivated by the achieved results on the first study, in order to verify the frequency of
false positives and false negatives arising from the use of these merge approaches, we move
forward and we conduct a second empirical study. More specifically, while APEL et al. (2011)
compare these merge approaches with respect to the number of reported conflicts, we investigate
which fraction of the detected conflicts are in fact relevant, that is, represent interferences between
development tasks; and which fraction of the relevant conflicts (the existing interferences) they
detect. In particular, such merge approaches lead to false negatives because they cannot detect
certain kinds of interference between developers’ tasks. Such false negatives might be harder to
track, understand and resolve, leading to build or behavioral errors. Besides that, they lead to
false positives when the detected conflicts do not represent interferences between developers’
tasks, and resolving them is therefore an unnecessary effort. Thus, false positives decrease

18

productivity, and false negatives negatively impact software quality and the correctness of the
merging process — factors that are critical to decide which approach should be used in practice.
In this second study, we compare the unstructured and semistructured merge approaches by
reproducing 34030 merge scenarios from 50 projects, while collecting evidence about which
false positives conflicts reported by unstructured merge are not reported by semistructured merge,
and which interferences are missed by semistructured merge and reported by unstructured merge
(and vice versa). Initially, our objective was to compare integration effort and correctness also
with the structured merge approach. However, we did not find sufficiently mature tools for this
purpose (we discuss more details and insights about this later on this text). In particular, we
investigate the following research questions:

� RQ1: When compared to unstructured merge, does semistructured merge reduce

unnecessary integration effort?

� RQ2: When compared to unstructured merge, does semistructured merge compromise

integration correctness by missing more task interferences?

The remainder of this work is organized as follows:

� Chapter 2 reviews the main concepts used to understand this dissertation;

� Chapter 3 presents the replication study assessing semistructured merge in distributed
version control systems, which was already published in CAVALCANTI; ACCIOLY;
BORBA (2015);

� Chapter 4 presents the empirical study comparing integration effort and correctness
of the unstructured and semistructured merge approaches;

� Chapter 5 draws our conclusions, summarizes the contributions of this research, and
discusses related and future work.

191919

2
Background

Here we explain the main concepts used in our work. Initially, we discuss the funda-
mentals of version control systems (VCSs) and its centralized and distributed paradigms in
Section 2.1. In this context, we explain how software artefacts are merged and the characteristics
of the unstructured and semistructured merge tools (Section 2.2). Finally, in Section 2.3, we
describe the kinds of interferences between development tasks these merge approaches are able
to detect or not.

2.1 Version Control Systems

Collaborative software development is only possible thanks to software configuration
management (SCM) and the consequent use of VCSs. In particular, SCM manages the evolution
of large and complex software systems (TICHY, 1988). It provides techniques and tools to
assist developers in performing coordinated changes to software products. These techniques
include version control mechanisms to deal with the evolution of a software product into many
parallel versions and variants that need to be kept consistent and from which new versions may
be derived via software merging (CONRADI; WESTFECHTEL, 1998). This became necessary
when there were several developers working together in projects, and a standardized way of
keeping track of the changes were needed. If there would be no control the developers would
overwrite each other’s changes (ESTUBLIER et al., 2002). In practice, VCSs allow a developer
to download and modify files in your local working area, which is periodically synchronized
with the repository that contains the main version of the files. How the repositories are disposed
and the developers access them determine the version control paradigm.

In a Centralized Version Control System (CVCS), such as CVS (CVS, 2015) and Subver-
sion (SUBVERSION, 2015), there is one central repository, which can accept code, and everyone
synchronizes their work to it (see Figure 2.1). Relying on a client-server architecture, a number
of developers are consumers of that repository and synchronize to that one place. This means
that if two developers are working based on the same repository and both make changes, the
first developer to send their changes back up can do so with no problems. The second developer

2.1. VERSION CONTROL SYSTEMS 20

must merge in the first one’s work before sending changes up, so as not to overwrite the first
developer’s changes.

Figure 2.1: Centralized version control paradigm.

Source: the authors.

Conversely, in a Distributed Version Control System (DVCS), such as Mercurial (MER-
CURIAL, 2015) and Git (GIT, 2015), there is no central location where the developers are
working to (even if this still is a possibility). This paradigm relies on a peer-to-peer architecture.
The main idea is, instead of getting and sending data to a single server, each developer holds its
own repository, including project data and history, and synchronizes on demand with repositories
maintained by other developers (see Figure 2.2). RIGBY et al. (1996) makes a interesting
differentiation between CVCSs and DVCSs: "with CVCSs changes flow up and down (and

publicly) via a central repository. In contrast, DVCSs facilitate a style of collaboration in which

work output can flow sideways (and privately) between collaborators, with no repository being

inherently more important or central.”

DVCSs have seen an increase in popularity relative to traditional CVCSs, mainly on the
open source community (BIRD et al., 2009; BRINDESCU et al., 2014; GOUSIOS; PINZGER;
DEURSEN, 2014). At the end of 2012, GitHub (GITHUB, 2015), the most popular repository
hosting service for Git projects, hosted over 4.6M repositories, compared to 300K repositories
on SourceForge (SOURCEFORGE, 2015), the primary repository hosting service for Subversion
(BRINDESCU et al., 2014). DVCS brings a whole set of novel capabilities. Using DVCSs,
developers (i) can work in isolation on local copies of the repositories enabling them to work
offline while still retaining full project history, (ii) they can cheaply create and merge branches,
and (iii) they can commit individual changed lines in a file, as opposed to being forced to commit
a whole file like in CVCSs.

Regardless of the VCS paradigm, they allow the creation of parallel versions of a
software system. The problem, however, is not in creating parallel versions, but in figuring out
how to merge them back into a single version (PERRY; SIY; VOTTA, 2001). While the VCS’s

2.2. MERGING SOFTWARE ARTEFACTS 21

Figure 2.2: Distributed version control paradigm.

Source: the authors.

synchronization protocol allows rapid parallel development, it also allows developers to make
conflicting changes inadvertently.

2.2 Merging Software Artefacts

In order to merge multiple source code artefacts, it is essential to compare them and
extract the differences. For this purpose, a two-way merge attempts to merge two revisions
directly by comparing two files without using any other information from the VCS. Therefore,
each difference between the two revisions leads to a conflict since it cannot be decided whether
only one of the revisions introduced a change to the code or both. It also cannot be determined
whether a certain program element has been created by one revision or has been deleted by the
other one. In turn, with three-way merge, which is used in every practical VCS, the information
in the common ancestor is also used during the merging process, and thus it has more information
at its hands to decide where a change came from and whether it creates a conflict or not (PERRY;
SIY; VOTTA, 2001; O’SULLIVAN, 2009).

Conflicts are frequent, persistent, and appear not only as overlapping textual edits —
the direct, merge or textual conflicts — but also as subsequent build and test failures — the
indirect conflicts (BRUN et al., 2011; GUIMARãES; SILVA, 2012). ZIMMERMANN (2007),
for instance, by analysing four open source projects, describes that merge conflicts occurred in a

2.2. MERGING SOFTWARE ARTEFACTS 22

range from 23% to 47% of all files integration. BRUN et al. (2011) and KASI and SARMA
(2013), by analysing, respectively, nine and four projects hosted on GitHub, found that merge
conflicts occurred in 16% and 13% of all performed merges. They also found evidence of
projects’ merges free of merge conflicts resulting in build or behavioral conflicts, more
specifically, 31%of projects’ merges in the sample of KASI and SARMA (2013) and 8% in
the sample of BRUN et al. (2011).

These conflicts emerge due to concurrent work, because developers are not aware of
others’ changes, and become more complex as changes grow without being integrated and as
further developments are made. Conflicts are so annoying that some developers do not merge
as frequently as desirable because of difficult merges (GRINTER, 1995), and developers rush
their tasks to avoid being the ones responsible for the merge (SOUZA; REDMILES; DOURISH,
2003). As a consequence, when the developers decide to merge their changes, one likely has to
dedicate substantial effort to resolve the conflicts often using some merge tool.

2.2.1 Unstructured merge tools

While the VCSs have evolved over the years in several stages to cope with increasing
demands, the tools that actually perform the merges have not evolved that much. When it comes
to merges in VCSs, the state of the art is performing a textual, line-based merge (MENS, 2002). A
popular example for an unstructured merge tool is GNU merge, which was developed to perform
a three-way merge (DIFFUTILS, 2015). GNU merge works in the same way as rcsmerge, which
was released as part of the Revision Control System (RCS) in 1982 and is today part of the GNU
project (TICHY, 1985). Unstructured merge tools used by VCSs work and behave in a similar
way as GNU merge does.

Basically, when merging files, an unstructured merge tool compares the modified files
in relation to its common ancestor (the version from which the files have been derived), line
by line, and detects the smallest sets of differing lines (chunks). As observed by KHANNA;
KUNAL; PIERCE (2007), for each of the detected chunks, the algorithm checks whether there is
an element common to all three revisions, separating the chunk’s content into two distinct areas.
If the developers modify the content in the same area, the algorithm reports a conflict. In the case
a conflict was detected, it is displayed at the relevant place in the output as shown in Figure 2.3.

Figure 2.3: Merge conflict.

Source: the authors.

2.2. MERGING SOFTWARE ARTEFACTS 23

The benefits of an unstructured merge are its generality and its performance. It can be
applied to all non-binary files, even to very large ones, so there is only one tool needed regardless
of which programming languages are used within a project. If the amount of changes is very
small in comparison to the input files, or if there are no changes at all, this method is very
effective. However, since this type of merge does not utilize knowledge about the structure
of the input documents and the syntax of respective languages, it might miss conflicts, report
spurious conflicts and is likely to produce syntactically incorrect output (HORWITZ; PRINS;
REPS, 1989; BUFFENBARGER, 1995).

2.2.2 Semistructured merge tools

Semistructured merge, proposed by APEL et al. (2011), works on simplified parse trees,
representing the program structure. Through an annotated grammar, it provides information
about how nodes of certain types (methods, classes, etc.) and its subtrees can be merged. Such
parse trees, include some but not all structural information of a program. Concerning Java,
for example, classes, methods and fields are contained in the tree, whereas statements and
expressions are hidden in the leaves of the tree in form of plain text (from there came the semi in
the approach’s name).

The idea is to use the structured information contained in the trees to merge revisions
with less conflicts than unstructured merge, while not having to deal with the merging of
separate statements on the syntax level inside of method body (which increases the complexity
of the comparison algorithms, and affects the performance in full structured merges (APEL;
LESSENICH; LENGAUER, 2012)). This trade-off allows semistructured merge to support
a larger set of programming languages than full structured merges (because not the entire
source code is parsed), and to provide superior conflict resolution in most cases, compared to
conventional unstructured merge (APEL et al., 2011).

APEL et al. (2011) state that the ability of semistructured merge to resolve certain
conflicts is based on the observation that the order of certain elements (classes, interfaces,
methods, fields, and so on) does not matter — the so-called ordering conflicts. By abstracting the
document structure as tree, the approach can identify ordered items. When semistructured merge
doesn’t know how to merge a software element, such as method body with statements (where the
order matters), it represents the elements as plain text and uses (calls) conventional unstructured
merge. It also allows special conflict handlers to be added, much like as plugins, to resolve
specific cases of conflicts that the developers would like to resolve automatically. (Throughout
the text we show examples of merged code by the two approaches.)

The merge algorithm itself is implemented via superimposition of the simplified parse
trees (APEL; LENGAUER, 2008). With superimposition, two trees are composed by composing
their corresponding nodes, starting from the root and proceeding recursively. Two nodes are
composed to form a new node (1) when their parents (if there are parents) have been composed,

2.3. CHECKING INTERFERENCE 24

that is, they are on the same tree level, and (2) when they have the same name and type. The
new node receives the name and type of the nodes that have been composed. If two nodes
have been composed, the process of composition proceeds with their children. If a node has no
counterpart to be composed with, it is added as separate child node to the composed parent node.
This recurses until all leaves have been reached. Therefore, this approach allows to identify
commutative and associative declarations, and implies that method body only have to be merged
if the signature of two methods is identical. In this case, unstructured merge is launched to merge
the method body.

2.3 Checking Interference

Ideally, a merge tool should be able to detect interference between development tasks,
reporting the interfering changes as conflicts, and automatically integrating the noninterfering
ones (HORWITZ; PRINS; REPS, 1989; PERRY; SIY; VOTTA, 2001). As stated by PERRY;
SIY; VOTTA (2001), the basic problem is that we have parallel changes made to a software
system by multiple people, and these changes represent interactions that may interfere with
each other. In particular, according to GOGUEN; MESEGUER (1982), one group of developers
using a certain set of commands is noninfertering with another group if what the first group
does with those commands has no effect on what the second group expects. In that sense, merge
tools might report conflicts that do not represent interferences between development tasks (false
positives), and they might also let interferences go on undetected (false negatives).

Despite being hard to establish ground truth on what are false positives and false negatives
in the context of software merging, because, in particular, interference in this context is not
computable (although it would be possible with the help of specialists for a small sample), it is
still possible to compare different merge approaches with regard to the added occurrence of false
positives and false negatives from one approach to another. When comparing unstructured merge
with semistructured merge, it is necessary to look to where the approaches behave differently. So,
we analysed the algorithms of both approaches to observe how and where they behave differently,
and how such differences might lead to false positives and false negatives. In particular, as
semistructured merge calls the unstructured approach inside methods body, in such cases, the
false negatives and false positives of them are the same. Therefore, the differences in terms of
false positives and false negatives between these merge approaches rely on how the approaches
behave outside methods declarations.

Regarding the false negatives added by semistructured merge, they are due to changes
occurring in the same code area (otherwise, unstructured merge would not report conflict)
to different elements (otherwise, semistructured merge would match the elements) that can
generate build or behavioral problems. The false negatives added by unstructured merge is
just the opposite, that is, changes taking place in distinct code area of the same element (thus,
semistructured merge could match the elements) that can cause build or behavioral problems.

2.3. CHECKING INTERFERENCE 25

Figure 2.4: Ordering Conflict(Unstructured Merge).

Source: the authors.

Similarly, the false positives added by unstructured merge are due to changes not representing
interferences to different elements taking place in the same code area. Finally, the false positives
added by semistructured merge are due to changes not representing interferences in different
code area of the same element. Given this reasoning, in the following sections we describe the
observed false positives and false negatives.

2.3.1 False positives added by Unstructured Merge

Beginning with the false positives added by unstructured merge, due to superimposition,
semistructured merge can identify commutative and associative declarations. This is not the
case for unstructured merge. As observed by APEL et al. (2011), one of the main weaknesses
of unstructured merge is its inability to detect reordered declarations. In Java, for instance, a
change in the order of methods and fields has no semantic impact on the program behavior, but
using the unstructured approach to merge such changes will lead to conflicts (false positives) —
the ordering conflicts. This situation is illustrated in Figure 2.4, where two different methods
(sum and sub) were added in the same area of the text, leading to conflict by unstructured merge.

2.3. CHECKING INTERFERENCE 26

Figure 2.5: Renaming Conflict(Semistructured Merge).

Source: the authors.

2.3.2 False positives added by Semitructured Merge

Nevertheless, semistructured merge adds false positives too. More specifically, if a
method is renamed or deleted in one revision, the merge algorithm is not able to map the
renamed/deleted element to its previous version. This happens because the algorithm considers
the identifier of the elements during the matching of the nodes of the parse trees. When the method
is renamed or deleted, the algorithm can only identify two of the three versions expected by the
three-way merge. In such cases, a conflict only occurs if the other revision changes the original
method’s body, because the three versions become different (the original, the body-changed and
the renamed/deleted). In Figure 2.5, we illustrate this situation: one of the developers renamed
the doMath method to sum, while the other developer kept the old signature, but edited its body.
Besides, since semistructured merge cannot map sum to its previous version (doMath), the sum

method does not appear in the conflict, that is, the sum method is not surrounded by the conflict
markers.

Particularly, not all renaming or deletion conflicts are semistructured merge false positives
and, indeed, represent interferences between development tasks. This happens, for instance,
when there still are references (calls) to the original signature after the renaming/deletion. This

2.3. CHECKING INTERFERENCE 27

can occur when the developer who edits the method body adds a new reference to that method,
indicating his intentions of using the method with the changes introduced by him, calling it
with the original signature. This is now interfering with the renaming/deletion done in the other
revision because the method with the original signature is no longer available. A renaming
conflict can be considered false positive when the developer who did the renaming did not edit
the method body. In such cases, the changes do not affect the expectations of the developers:
the method will have the behavior desired by one developer, and will be called as wanted by the
other developer. In turn, deletion conflicts are more restricted because the developer who edited
the method has its contributions overwritten by the deletion, which is clearly an interference,
unless the method was not previously used (dead code). Finally, it is important to note that if the
renaming/deletion and the changes to the method’s body correspond to different areas of the text,
it will not lead to conflict by unstructured merge.

2.3.3 False negatives added by Semistructured Merge

When it comes to semistructured merge false negatives not missed by unstructured merge,
the issues emerge again from semistructured merge’s matching process. The semistructured
approach assumes that the order of import declarations does not matter, thus, it allows two
developers to add import declarations in the same area of the program text. However, this might
lead to type ambiguity error (see Figure 2.6 (a)) because the import declarations might involve
members with the same name but from different packages. In the illustrated case, both imported
packages have a List class. In that case, an unstructured tool would report a conflict because
the import statements were added in the same or adjacent lines of the code.

Our analysis also indicated false negatives added by semistructured merge happening
when one developer adds a new element referencing an existing one, and this existing element is
edited by the other developer. As these changes correspond to different elements (technically,
different nodes in the generated AST of semistructured merge), there is no matching between
them, and, therefore, the approach does not report conflict. In such cases, the developer who
added the new element might not be expecting the changes made to the element referenced by
his element, possibly leading to behavioral errors. However, it is possible that these changes
have occurred in the same area of the program text, leading to conflict by unstructured merge. In
the example illustrated in Figure 2.6 (b), the new method composed is referencing the method
doMath edited by the other developer.

2.3.4 False negatives added by Unstructured Merge

Conversely, regarding unstructured merge false negatives in relation to semistructured
merge, the problem is that the unstructured approach allows any kind of duplicated content in the
same file as long as the changes occurs in different areas of the text. In terms of a programming
language, unstructured merge raises no conflict when two developers add declarations with the

2.3. CHECKING INTERFERENCE 28

Figure 2.6: False Negatives arising from Semistructured Merge in relation to
Unstructured Merge.

(a) Type Ambiguity Error

(b) Duplicated Declaration Error
Source: the authors.

same identifier in different areas of the code, leading to a duplicated declaration error by the
compiler. In Figure 2.7, we illustrate this situation. Both developers added methods with the
same signature but with different behaviors in different areas of the text, not leading to conflict
by unstructured merge.

Exploiting the syntactic structure of the artefacts involved in code integration has shown
reduction in the overall number of reported conflicts, mainly by eliminating obvious false
positives of unstructured tools (WESTFECHTEL, 1991; GRASS, 1992; MENS, 2002; APIWAT-
TANAPONG; ORSO; HARROLD, 2007; APEL et al., 2011; APEL; LESSENICH; LENGAUER,
2012). However, those studies do not further evaluate whether the observed reduction was ob-
tained at the expense of introducing false negatives, or even other kinds of false positives that
might be harder to resolve than the eliminated ones. This information is important because, in
practice, false positives represent unnecessary integration effort, which decrease productivity,

2.3. CHECKING INTERFERENCE 29

Figure 2.7: Duplicated declaration error (Unstructured Merge).

Source: the authors.

because developers have to resolve conflicts that actually do not represent interferences. Besides
that, false negatives represent build or behavioral errors, negatively impacting software quality
and correctness of the merging process. Having the evidence of false positives and false nega-
tives resulting from the merge approaches might be beneficial, because this way the developers
could choose the merge approach to be used in terms of their impact on integration effort and
correctness.

303030

3
Replication Study

As we discussed in the previous chapter, semistructured merge is able to resolve conflicts,
such as ordering conflicts, that unstructured merge cannot resolve. This way, we expect the
semistructured approach to be able to decrease the occurrence of conflicts compared with the
unstructured one. In this case, it is interesting to know how big is the reduction, and how
frequently such conflicts occur in software projects. This is what led APEL et al. (2011) to
conduct a empirical study to evaluate semistructured merge.

To further evaluate semistructured merge in a different context formed by different
projects and version control paradigm, as a replicated study, we want to investigate the original
study hypothesis.

Original Hypothesis. Many of the conflicts that occur in merging revisions are ordering

conflicts, which can be resolved automatically with semistructured merge. An additional fraction

of conflicts can be resolved with conflict handlers.
Besides that, we want to go further and provide evidence of the occurrence of conflicting

merge scenarios as done in the studies of BRUN et al. (2011) and KASI and SARMA (2013).
While this evidence rely on the use of an unstructured merge tool, we aim to provide new
evidence based on the use of the semistructured approach. By providing such evidence, the
developers will have an idea of which merge approach leads to more conflicting code
integrations.

3.1 Replication Design

During this replication, we designed a two-step study as illustrated in Figure 3.1. The
study design is composed by a mining step, which is different from the original study because
we are exploring DVCS repositories instead of CVCS ones; and by a execution step, which is
similar to the original study, where we use the tool and scripts provided by the original authors.
In particular, in the mining step, we select the sample projects written in Java, Python and C#
— the languages supported by the semistructured merge tool used in this study. Besides that,
we built tools that mine DVCS repositories to collect a number of merge scenarios from the
selected projects. Subsequently, in the execution step, we use a prototype of the semistructured

3.1. REPLICATION DESIGN 31

Figure 3.1: Replication study design.

Source: the authors.

approach (the FSTMerge tool) in order to run the selected merge scenarios using both merge
approaches. We also use R scripts to collect metrics on the number of conflict markers per file
(textual conflicts), lines of code surrounded by these conflict markers (conflicting lines of code)
and files with at least one conflict marker (conflicting files).

In addition, to assess the second part of the hypothesis, we evaluate the occurrence of
conflicts that could be resolved with special conflict handlers — also called semantic conflicts in
the original study.

Finally, to learn more about the nature of the studied merge approaches, we reviewed
some of the merged revisions of the projects manually.

3.1.1 Mining Step

In the same way as the original study, we analyse the source code history of open source
projects instead of developing our own case study, which could leave too much room for bias.
How to select merge and conflicting scenarios is fundamental to the study since we want to
expand the external validity of the original study.

For mining’s purpose, to select the projects candidate, APEL et al. (2011) explore the
SourceForge (SOURCEFORGE, 2015) open source software portal based on two criteria. First,
the projects must be of reasonable but varying sizes. Second, either semistructured merge or
unstructured merge must produce at least one conflict. To collect the merge scenarios, the authors
had to deal with the shortcoming of Subversion has no proper mechanism allowing to identify
the performed merges automatically. So, they analyse the projects’ log to extract information

3.1. REPLICATION DESIGN 32

about the merges that developers actually performed, indicated by comments of the developers
that point clearly to merges. They also considered merges that could have been performed or that
are realistic considering the revision history, looking for patterns indicating sequence of multiple,
alternating changes in different branches (for instance, trunk-branch-trunk), which indicates
concurrent development and points to potential conflict scenarios (as long as the changes in
different branches are not identical). Technically, they use Subversion (SUBVERSION, 2015) to
browse the revision histories and to check out revisions. Finally, they selected a sample of 24
projects with 180 merge scenarios written in Java, Python and C#.

We decided to explore Git (GIT, 2015) and GitHub (GITHUB, 2015) because they offer
extra information that help us to better understand projects’ development processes, including
merge tracking (BIRD et al., 2009; BRINDESCU et al., 2014), which allows us to conduct our
mining step in an automatic and systematic way .

To select projects candidate, we first search for the top 100 projects with the highest
number of stars on GitHub’s advanced search page1, which indicate the more popular projects
and also suggests relevant project activity. After sorting the search result by the number of
stars in descending order, we selected 60 projects varying on number of commits and number of

developers (when we got around this number, we didn’t observe significant variance in the chosen
criteria). In particular, we chose these criteria because we do not want inactive projects, which
could denote that they are toys or projects that do not reflect any current model of development.
Besides, we believe that the greater the number of developers, the greater is the possibility of
having conflicting code contributions resulting from development tasks, although only a portion
of them may actually have worked on the project. Finally, we believe that the greater the number
of commits, the greater is the possibility of finding a merge commit — a commit that represents
a three-way merge. Regarding the sampling of merge scenarios, we are interested on those,
from the entire histories of the projects, that had already shown conflicts on Git to provide the
evidence of the occurrence of conflicting merge scenarios. Therefore, we used tools to mine
GitHub and to reproduce Git merges.

We mine GitHub using the GitMiner tool (GITMINER, 2015). GitMiner receives
a project or a particular GitHub user, connects to GitHub via GitHub’s API and loads all the
metadata available about the project or user. Finally, the metadata is stored in a Neo4j graph
database (NEO4J, 2015). Such architecture is the most suitable for understanding individual
dependencies between projects and its users activities, including their commits (RODRIGUEZ,
2010), which is fundamental in our mining step.

We then built a script to query the database to retrieve users’ commits and to execute
code integration using Git built-in merge tool, which is by default unstructured. Our script
uses Gremlin, a graph traversal language (GREMLIN, 2015), and JGit, a Java library
implementing the Git version control system (JGIT, 2015). The graph database represents
commits as nodes with an isMerge attribute indicating whether the commit is a merge commit.

1https://github.com/search/advanced

https://github.com/search/advanced

3.1. REPLICATION DESIGN 33

In addition, each merge commit has two parents (here we call them left and right revisions) and
a common ancestor (the base revision). Therefore, to identify merge scenarios, we query (1)
the ID of all merge commits, checking which commits have the isMerge attribute with a true
value, and (2) the ID of the revisions (base, left and right) that lead to the merge commit, and,
thus, constitute the merge scenario. Finally, since we are interested on merge scenarios that had
already shown conflicts, we use Git built-in merge tool to merge the revisions from the merge
scenarios and we filter them by the conflicting ones, looking for those which have at least one
file marked with conflict markers. For simplicity, from these merge scenarios, we only store
the files with conflicts. This way, we run the study with the files and merge scenarios that had
already shown conflicts on Git.

Following this procedure, we came to a sample of 4678 merge scenarios from 60 projects,
written in Java, Python and C#. However, we had to discard 1412 merge scenarios because the
semistructured implementation used in both studies does not support the files of these scenarios
due to incompatibility between its current annotated grammar and the source code of the merge
scenario. For example, there is an incompatibility with object initializers with named objects
in C# and conditional assignment in Python, leading to parsing errors. As we will discuss in
Section 3.4, this issue might threat internal validity because we could bias our results with
scenarios only supported by the semistructured merge tool used in the study. We therefore run
the study with 3266 merge scenarios, a number 18 times bigger than the original study (and 2.5
times bigger regarding the number of projects), which possibly expands the external validity of
the original study. (The original study does not mention any incompatibility issue and discards.)

It is also important to note that, despite our assumptions underlying our project selection
criteria, the development model adopted by the projects as well as Git internal mechanisms, such
as git rebase, which allows the history of the repository to be rewritten, might decrease the
occurrence of merge commits and conflicting merges commits. More specifically, we analyse
projects that adopt a pull-based development, so we may have detected fewer conflicts that
could exist if the project used a push-based development because in such cases the conflict
may have been perceived by the integrator, who may have rejected the pull. We may also have
detected fewer conflicts because merge commits that led to conflicts may have been erased from
project’s history with git rebase. For instance, as shown in Table 3.1, django is the project
with the largest number of collaborators, a large number of commits, but proportionately few
merge commits and conflicting merge commits. Its documentation makes explicit that they use
a pull-based development model, with the frequent use of git rebase in the contribution
process.2 In turn, cassandra has substantially less collaborators than django, less commits, but
nine times more merge commits and far more conflicting merge commits. This happens because
this project has a patch-based contribution process, with no specific strategy to avoid conflicts.3

2https://docs.djangoproject.com/en/1.7/internals/contributing/
writing-code/working-with-git/

3http://wiki.apache.org/cassandra/HowToContribute

https://docs.djangoproject.com/en/1.7/internals/contributing/writing-code/working-with-git/
https://docs.djangoproject.com/en/1.7/internals/contributing/writing-code/working-with-git/
http://wiki.apache.org/cassandra/HowToContribute

3.2. EVALUATION RESULTS 34

All information on the sample is available in Appendix A.

Table 3.1: Characteristics of the projects django and cassandra.

Name KLOC Collaborators Commits Merge Commits Conflicting
Merge Commits Language

cassandra 9 63 15427 4820 896 Java
django 12 717 19232 557 15 Python

3.1.2 Execution Step

After collecting the sample projects and merge scenarios in the previous step, we apply
both unstructured and semistructured approaches to the merge scenarios and we analyse the
number of textual conflicts, conflicting lines of code and conflicting files resulting from both
unstructured and semistructured merge. Besides that, we also count the occurrence of semantic
conflicts. We performed this step exactly like the original study, using the same tools and scripts.
In particular, we use a virtual machine pre-configured provided by the original authors.

In the original study, the authors implemented a first prototype of a semistructured merge
tool, called FSTMerge, which internally uses the Linux merge tool as unstructured merge
tool.4 FSTMerge is able to resolve ordering conflicts and can be extended with special conflict
handlers. Currently, the tool has conflict handlers for 54 structural elements of Java, C#, and
Python. Typically, the handlers are very simple and only flag a semantic conflict. So, they did
not implement specific resolution strategies but serves just to count situations in which they can
be applied, which is sufficient for the quantitative analysis. The tool takes as input the three
revisions (base, left and right) that compose a merge scenario, obtained in the previous step, and
applies both unstructured and semistructured merge. Finally, we use R scripts to account the
results.

3.2 Evaluation Results

After performing the study described in the previous sections, we present the achieved
results before discussing their implications in Section 3.3. Full results are available in Appendix
A.

In the first row of Table 3.2, we summarize the number of merge scenarios according to
the results presented by both semistructured and unstructured merge. More specifically, we show
for how many merge scenarios semistructured merge reported less, the same number and more
textual conflicts than unstructured merge. Besides that, in the second and third rows, we show

4http://www.gnu.org/software/rcs/

http://www.gnu.org/software/rcs/

3.2. EVALUATION RESULTS 35

similar comparisons for conflicting lines of code and conflicting files. For example, 1804 in the
first row and column indicates the number of code integrations in which the sum of conflicts
markers resulting from semistructured merge is less than that from the unstructured merge. In
a similar way, 581 in the second row and column indicates the number of code integrations in
which the sum of lines of code surrounded by the conflict markers resulting from both approaches
is identical. Finally, 9 in the third row and column indicates the number of code integrations in
which the sum of files with at least one conflict marker resulting from the unstructured merge is
less than that from semistructured merge.

Table 3.2: Number of merge scenarios where semistrucutured merge reported less, the
same number, and more textual conflicts, conflicting lines of code and conflicting files

than unstructured merge.

Semistructured
Reported Less

Semistructured and Unstructured
Reported the Same Number

Unstructured
Reported Less

Textual Conflicts 1804 (55.24%) 1179 (36.1%) 283 (8.66%)
Conflicting LOC 2323 (71.13%) 581 (17.79%) 362 (11.08%)
Conflicting Files 1566 (47.95%) 1691 (51.77%) 9 (0.28%)

Total Merge Scenarios 3266

Concerning textual conflicts, semistructured merge reduced the numbers in 55.24% of
the sample merge scenarios. In these scenarios, we observed a reduction of, on average, 62.3%,
with a maximum of 100% in a merge scenario from sympy, minimum of 2.7% in a merge
scenario from OG-Platform and standard deviation of 23.57%. On the other hand, in 8.66%
of the sample merge scenarios, unstructured merge reduced the number of textual conflicts
compared to semistructured merge. In these scenarios, we observed a reduction of, on average,
40.49%, with a maximum of 100% in a merge scenario from nova, minimum of 0.99% in a
merge scenario from jedis and standard deviation of 20.09%. In the remainder 36.1% of the
sample merge scenarios, both approaches reported a similar number of textual conflicts.

In terms of conflicting lines of code, semistructured merge reduced the numbers in
71.13% of the sample merge scenarios. In these scenarios, we observed a reduction of, on
average, 81.04%, with a maximum of 100% in the same merge scenario from sympy, minimum
of 0.24% in another merge scenario from sympy and standard deviation of 13.52%. On the
other hand, in 11.08% of the sample merge scenarios, unstructured merge reduced the number of
conflicting lines of code compared to semistructured merge. In these scenarios, we observed a
reduction of, on average, 43.62%, with a maximum of 100% in the same merge scenario from
nova, minimum of 0.57% in a merge scenario from cassandra and standard deviation of 21.12%.
In the remainder 17.79% of the sample merge scenarios, both approaches reported a similar
number of conflicting lines of code.

Regarding conflicting files, semistructured merge reduced the numbers in 47.95% of the
sample merge scenarios. In these scenarios, we observed a reduction of, on average, 65.51%,
with a maximum of 100% in the same merge scenario from sympy, minimum of 2.33% in a

3.2. EVALUATION RESULTS 36

merge scenario from OpenRefine and standard deviation of 25.12%. On the other hand, only in
0.28% of the sample merge scenarios, unstructured merge reduced the number of conflicting files
compared to semistructured merge. In these scenarios, we observed a reduction of, on average,
74%, with a maximum of 100% in the same merge scenario from nova, minimum of 25% in
another merge scenario from cassandra and standard deviation of 27.92%. In the remainder
51.77% of the sample merge scenarios, both approaches reported a similar number of conflicting
files.

Besides that, seeing that we filtered the merge scenarios by the conflicting ones (see
Section 3.1.1 for more details), we are able to provide evidence about the occurrence of conflicting
merge scenarios as it was done in the studies of BRUN et al. (2011) and KASI and SARMA
(2013). That is, from the total of 69924 Merge Commits and 4678 Conflicting Merge Commits
observed in our sample, we can determine that approximately 7% of the merge commits lead to
conflicts. Similarly, BRUN et al. (2011) found that conflicts occurred, on average, in 16% of
the merge scenarios, KASI and SARMA (2013) found that from 7% to 16% of the merge
scenarios had conflicts. All these numbers rely on the use of an unstructured merge tool (in our
case, we used the Git built-in merge tool). However, we found that semistructured merge
reported occurrence of conflicts in 2362 of the analysed merge scenarios, which represents
approximately 3% of the identified merge scenarios. In other words, if the semistructured
approach had already been used in the studied projects, the occurrence of conflicting code
integrations would have decayed from the previous 7% to remarkably 3% — an improvement of
more than 50%. Note that due to the discard of merge scenarios because of the semistructured
merge tool’s compatibility issues, explained in Section 3.1.1, this numbers can be considered a
lower bound.

In Table 3.3, we further detail what happened in the merge scenarios by showing results
by projects. In this table, the arrows indicate whether semistructured merge decreased, kept or
increased the numbers. For instance, projects such as monodevelop and nupic are cases where
semistructured merge detects more textual conflicts than unstructured merge. In the next section,
we explain that refactoring, such as renaming, and deletions is the reason for this increased
number. On the other hand, projects such as Bukkit and Clojure are cases where semistructured
performed similar to unstructured merge. In these cases, the explanation relies on the fact
that semistructured merge calls the unstructured mechanism inside method body. In addition,
from the total columns of Textual Conflicts, we observed that semistructured merge reported
approximately 14,3K textual conflicts compared to approximately 18K from unstructured merge
(a reduction of approximately 21%), which means that at least 3,7K textual conflicts are ordering
conflicts. Likewise, we observe a substantial reduction by semistructured merge in the number
of conflicting lines of code (1,25MLOC vs 283KLOC). Indeed, even in some projects where
the semistructured approach reports at least the same number of textual conflicts, the number
of conflicting lines of code is less than that from unstructured merge. It happens due to the
semistructured merge structure-driven and fine-grained nature in which the conflicts respect
boundaries of classes, methods, and other structural elements. Another substantial reduction is

3.2. EVALUATION RESULTS 37

Table 3.3: Replication results by projects.

Project Unstructured Semistructured

Textual Conf. Conf. Lines Conf. Files Textual Conf. Conf. Lines Conf. Files Sem. Conf.

astropy 28 901 5 13 ↓ 378 ↓ 3 ↓ 2
atmosphere 96 3973 35 66 ↓ 1275 ↓ 26 ↓ 7

Bukkit 27 1464 26 27↔ 321 ↓ 12 ↓ 1
cassandra 2286 76816 1258 1576 ↓ 31769 ↓ 931 ↓ 74

clojure 4 39 3 4↔ 39↔ 3↔ 0
cloudify 150 4407 41 93 ↓ 1544 ↓ 30 ↓ 6

CruiseControl.NET 1 8 1 1↔ 8↔ 1↔ 0
cxf 1 219 1 1↔ 16 ↓ 1↔ 1

django 10 548 9 1 ↓ 22 ↓ 1 ↓ 4
dropwizard 16 479 10 7 ↓ 86 ↓ 6 ↓ 2

Dynamo 336 56682 215 205 ↓ 3339 ↓ 84 ↓ 78
edx-platform 380 7598 222 234 ↓ 2620 ↓ 114 ↓ 55
EventStore 146 5206 99 75 ↓ 861 ↓ 35 ↓ 2

flask 5 14 5 2 ↓ 8 ↓ 2 ↓ 2
gradle 289 10784 206 159 ↓ 1770 ↓ 119 ↓ 24

graylog2-server 104 3387 69 66 ↓ 1022 ↓ 38 ↓ 9
infinispan 90 1433 46 71 ↓ 702 ↓ 33 ↓ 1
ipython 57 4184 47 48 ↓ 646 ↓ 26 ↓ 19

jedis 300 5613 103 276 ↓ 2095 ↓ 56 ↓ 5
jsoup 5 76 3 1 ↓ 9 ↓ 1 ↓ 0
junit 124 4062 75 57 ↓ 539 ↓ 40 ↓ 36
kotlin 162 3880 86 88 ↓ 1316 ↓ 63 ↓ 4

lucene-solr 1633 69035 723 1147 ↓ 21678 ↓ 485 ↓ 53
matplotlib 263 7071 142 157 ↓ 2300 ↓ 81 ↓ 34

mct 44 1344 24 33 ↓ 522 ↓ 19 ↓ 1
mockito 76 992 32 6 ↓ 72 ↓ 4 ↓ 0

monodevelop 911 207013 884 1096 ↑ 32380 ↓ 565 ↓ 111
Nancy 22 536 22 17 ↓ 175 ↓ 16 ↓ 0
netty 168 11922 92 110 ↓ 3802 ↓ 59 ↓ 8
nova 1198 38243 750 871 ↓ 10229 ↓ 479 ↓ 26

NRefactory 40 2156 34 10 ↓ 129 ↓ 10 ↓ 6
NServiceBus 126 4164 109 88 ↓ 1015 ↓ 71 ↓ 13

nupic 49 13896 38 60 ↑ 2230 ↓ 25 ↓ 3
OG-Platform 3530 213733 2155 3266 ↓ 51406 ↓ 1316 ↓ 406
OpenRefine 59 12408 54 106 ↑ 3235 ↓ 51 ↓ 5

opensimulator 5 64 4 3 ↓ 72 ↓ 3 ↓ 0
orientdb 340 15902 189 316 ↓ 3948 ↓ 111 ↓ 68
pandas 28 380 14 18 ↓ 348 ↓ 6 ↓ 5
Questor 78 14743 52 72 ↓ 11167 ↓ 49 ↓ 3

ReactiveUI 34 281 32 2 ↓ 27 ↓ 2 ↓ 0
realm-java 297 12449 190 301 ↑ 4305 ↓ 145 ↓ 21

Rebus 12 341 12 3 ↓ 31 ↓ 3 ↓ 0
requests 16 410 9 12 ↓ 131 ↓ 5 ↓ 1
retrofit 35 671 17 13 ↓ 216 ↓ 7 ↓ 2

roboguice 100 6277 63 105 ↑ 1381 ↓ 45 ↓ 36
Rock 305 13448 170 128 ↓ 2332 ↓ 67 ↓ 24

RxJava 49 2845 34 10 ↓ 116 ↓ 8 ↓ 1
scrapy 5 20 5 0 ↓ 0 ↓ 0 ↓ 11

SharpDevelop 2092 316419 1956 1701 ↓ 49216 ↓ 839 ↓ 304
SignalR 2 14 2 1 ↓ 8 ↓ 1 ↓ 0
slapos 90 5583 53 51 ↓ 677 ↓ 29 ↓ 7

SparkleShare 31 640 11 30 ↓ 258 ↓ 10 ↓ 0
sympy 785 39183 202 836 ↑ 17899 ↓ 109 ↓ 8

taiga-back 9 257 3 1 ↓ 5 ↓ 1 ↓ 1
testrunner 19 1465 10 15 ↓ 315 ↓ 7 ↓ 0
tornado 16 121 16 2 ↓ 16 ↓ 2 ↓ 16

Umbraco-CMS 557 20119 329 398 ↓ 6924 ↓ 212 ↓ 23
voldemort 366 31424 142 257 ↓ 4730 ↓ 110 ↓ 9

WowPacketParser 10 591 5 5 ↓ 44 ↓ 2 ↓ 1
zamboni 4 38 4 2 ↓ 4 ↓ 2 ↓ 0

Total 18021 1257971 11148 14320 ↓ 283728 ↓ 6581 ↓ 1539

3.2. EVALUATION RESULTS 38

observed in the number of conflicting files (11148 vs 6581) too. Finally, similar as observed in
the original study, the number of semantic conflicts found here is rather low compared to the
numbers of ordering conflicts (1,5K versus 3,7K), especially when considering the quite high
number of 54 elements that the semistructured merge tool handle with special conflict handlers.

In addition, discerning the significance of data by looking only at their values is not
appropriate to extract the important characteristics of a dataset. For this reason, here we manage
this shortcoming observed in the original study, and to better interpret data, we carried out a
descriptive analysis to observe data tendency and distribution. The three boxplots in Figure 3.2
indicate that semistructured merge tends to have fewer textual conflicts, conflicting lines of code
and conflicting files. The long upper whisker in the boxplots means that both approaches varied
amongst the most positive quartile group, and very similar in the least positive quartile group.
Note, for example, in the boxplots showing the distribution of textual conflicts and conflicting
files according to the merge approach, that, despite the medians being close, the upper limit of the
number of textual conflicts and conflicting files with the semistructured approach is close to the
3rd quartile when using unstructured merge. Besides that, regarding the number of conflicting
lines, the overall results from semistructured merge are less than the median of the unstructured
one, indicating a more significant reduction.

As a final remark, although semistructured merge has reduced the numbers, such re-
duction may have been insignificant if compared to the numbers presented by the unstructured
mechanism. So, we need to know what is the probability of that relationship of reduction
between the merge approaches, described in the achieved results, being due to random chance,
and whether there is a good chance that we are right in finding that this relationship exists.
Therefore, since each subject of our sample has two measurements (one with semistructured
merge and other with unstructured merge) and deviates from normality for the three metrics, we
performed a Wilcoxon Signed-Rank Test (WILCOXON; WILCOX, 1964) on the three metrics
from both approaches and obtained a p-value of 2.414e-07, 4.21e-11 and 5.245e-11 regarding
the number of textual conflicts, conflicting lines of code and conflicting files, respectively. Since
these values are lower than 0.05, we cannot accept the null hypothesis of equality of the averages,
and therefore there is evidence that semistructured merge has made a significant reduction in the
numbers compared to unstructured merge. The original study did not describe hypothesis test, so
we cannot compare our results to theirs.

3.2. EVALUATION RESULTS 39

Figure 3.2: Replication boxplots of sample projects (we have hidden outliers for a better
visualization).

(a)

(b)

(c)
Source: the authors.

3.3. DISCUSSION 40

3.3 Discussion

In this section, we analyse the results presented in the previous section, comparing with
those from the original study, and we provide additional discussion on their implications. Besides,
we manually analysed selected samples of merged code in order to learn about the influence of
the merge approach on the resulting code structure and to better understand our results.

3.3.1 Semistructured merge play to its strengths

In terms of merge scenarios, the number of merge scenarios in which semistructured
merge reduced the metrics was lower in our study than in the original one. APEL et al. (2011) ob-
served a reduction in the number of textual conflicts, conflicting lines of code and conflicting files
in, respectively, 60%, 82% and 72% of their sample merge scenarios (compared to, respectively,
55.24%, 71.13% and 47.95% in our study). However, apart from our sample being substantially
bigger than that from the original study (18 times regarding the number of merge scenarios and
2.5 times regarding the number of projects), which might explain that variance, the reductions
observed in these scenarios were much more significant in our study. While they observed a
reduction of 34%, 61% and 28% (with standard deviations of 21%, 22% and 12%) in the number
of textual conflicts, conflicting lines of code and conflicting files, respectively, we observed
a reduction of 62.3%, 81.04% and 65.51% (with standard deviations of 23.57%, 13.52% and
25.12%) in our replication. Also notable is the fact that, in the original study, unstructured merge
performed better in that it reported less textual conflicts in 28% of their sample merge scenarios,
compared to only 8.66% in ours (unfortunately, we do not have numbers regarding the other
metrics to compare with). At least in terms of textual conflicts, it means that semistructured
merge played to its strengths much more in this study than in the original study.

The observed numbers further confirm the original hypothesis that many of the conflicts
that occur in merging revisions are ordering conflicts — more specifically, at least 21% (or 3,7K)
of the reported textual conflicts — which can be resolved automatically with semistructured
merge. We also found that an additional fraction of conflicts can be potentially resolved with
language-specific conflict handlers. These findings reinforce the benefits of exploiting the
syntactic structure of the artefacts involved in a code integration.

With respect to the positive implications of the results, PRUDêNCIO et al. (2012)
suggests that the integration effort is the number of extra actions (additions, deletions or modi-
fications on the artefacts) that the developer had to do during the integration to conciliate the
changes made in revisions developed concurrently (here, the left and right revisions of a merge
scenario). Furthermore, SANTOS and MURTA (2012) correlate the number of conflicts to that
met-ric, suggesting that conflict reduction imply effort reduction. By following this reasoning,
since semistructured merge reduced the number of conflicts compared to the unstructured
approach, it would be also reducing the integration effort. Moreover, the substantial
reduction made in

3.3. DISCUSSION 41

the conflicting lines of code could support this reasoning if we consider that the greater is the
number of conflicting lines of code that the developer has to deal with, the greater is the effort
to integrate the code contributions, because conflicting lines of code amounts to the size of the
conflicts. The shortcoming of this metric is that it means only part of the time that the developer
takes editing the code, it does not consider the time that the developer took reasoning about these
activities. This way, this editing time can mean just one part of the total integration effort. A
deeper analysis of integration effort (and correctness) is the focus of the next chapter of this
work.

Finally, in the same way as the original study, we could observe that semistructured
merge, due to its structure-driven and fine-grained nature, leads always to conflicts that respect
boundaries of classes, methods, and other structural elements. This is not the case for unstructured
merge, the conflicts are typically larger and often crosscut the syntactic program structure, which
makes them harder to understand and resolve. It happens because the unstructured approach
resolves conflicts via textual similarity, based on the area of the changes in the text, without
any knowledge of the underlying language. Thus, it is common to find conflicts involving
mismatched syntactic structures, such as a conflict involving the signature of a method and a
loop statement simply because they were in the same area of the code, which hardly makes sense.
Respecting structural boundaries (that is, aligning the merge with the program structure) might
be beneficial, because, this way, developers could understand conflicts in terms of the underlying
structure.

3.3.2 Semistructured keeps or increases the number of conflicts

In cases where the approaches reported a similar number of textual conflicts, it happened
because the conflicts occurred inside method body. In this situations, the statements’ order
matters, and thus semistructured merge calls the unstructured one. We could see that in revisions
from clojure, cassandra, flask and so on.

Finally, in cases where semistructured merge increases the number of textual conflicts or
conflicting lines of code, APEL et al. (2011) found that refactorings, such as renaming, challenge
semistructured merge due to the use of superimposition to merge revisions. If a program element
is renamed in one revision, the merge algorithm is not aware of this fact and cannot map the
renamed element to its previous version. This results in a situation in which there is, in one
revision, an empty or non-existent element. We observed that this issue also applies to cases of
deletions. Besides, if the other revision changes the original method body, when semistructured
merge tries to integrate the methods, it will notify a conflict because the three versions are
different (the original, the body-changed and the renamed/deleted). In Figure 3.3, we illustrate
this situation using a snippet of code taken from a merge scenario of NServicebus. One of the
developers (left) changed the signature of the Init method, while the other developer (right) kept
the old signature, but added an extra assignment statement. Since the changes were made in

3.3. DISCUSSION 42

different areas of the text, unstructured merge did not report any conflict, however semistructured
merge did report a conflict due to the modification in the method signature in the left revision and
the modification in the method body in the right revision. It is important to notice that a method
is identified by its name and the types of the formal parameters. If one of the two differ between
two declarations, semistructured’s merge current implementation cannot match them anymore.

The issue gets worse when, instead of a method, a directory is renamed or deleted. This
happened, for instance, in merge scenarios from monodevelop, kotlin and graylog2-server. In
these cases, unstructured merge reports a large conflict for each file into the directory because
it cannot map the files of the directory to the corresponding files of the other revision and uses
empty files instead. The same happens in semistructured merge, except that the conflicts are
not reported per file but per method or constructor in the file. This results in more conflicts
but the overall number of conflicting lines is smaller than in unstructured merge. The reason is
that unstructured merge has a file level granularity, while semistructured merge has a structural
element level granularity. Therefore, in these cases, unstructured merge flags entire files as
conflicts, and semistructured merge flags only individual structural elements such as methods. A
more recent study (SILVA et al., 2014) presents an approach for detecting differences, moves,
and refactoring-related changes on source code through dynamic programming algorithms to
find the longest common subsequences (HUNT; SZYMANSKI, 1977) between the files; one can
improve a semistructured merge tool with a similar approach.

Whereas in the original study renaming is seen as an issue, that is, a false positive,
which should not happen, if we consider the definition of interference given by GOGUEN;
MESEGUER (1982), one group of developers using a certain set of commands is noninfertering
with another group if what the first group does with those commands has no effect on what the
second group expects, a fraction of the renaming/deletion conflicts can be seen as true positive.
Figure 3.3 might also illustrates this example: the left developer might not be expecting for
the extra assignment statement, and the right developer probably would call the Init method
with three parameters, as in the original version. This might be an interference captured by
semistructured merge but not by the unstructured one.

3.3. DISCUSSION 43

Figure 3.3: Renaming conflict example taken from project NServiceBus.

Source: the authors.

3.4. THREATS TO VALIDITY 44

3.4 Threats to Validity

Since our study is a replication of the research made by APEL et al. (2011) it is natural
that our study suffers from some of the same threats to validity. This holds particularly to the
threats to construct and external validity. However, in our replication, we were able to improve
internal and external validity.

3.4.1 Construct Validity

APEL et al. (2011) remarks that the output of semistructured merge in the presence of
renaming is not satisfactory, but it still allows us to detect conflicts properly and to incorporate
them in our data. A threat to the construct validity is that the number of conflicting lines of
code may be estimated too low, because the renamed element is not considered. However, we
believe that the occurrence of renaming-related conflicts would has little potential to impact the
reduction of approximately 1MLOC we found here regarding the number of conflicting lines of
code if the renamed version was considered.

3.4.2 Internal Validity

A potential threat to internal (and external) validity is also our approach to select con-
flicting merge scenarios. The problem is that some distributed development models make use of
mechanisms, such as git rebase, that can rewrite the repository history, making impossible
to identify merge commits of the old history. Otherwise, we could have more merge scenarios
and more conflicts to analyse. This way, we have explored a lower bound of what really happened
in projects’ history. The impact of an increased sample on the results presented here is hard
to predict. However, we still believe that we performed better than the original study in this
aspect because we only analysed real merge scenarios from the sample projects instead of using
"speculative" merge scenarios as happened in the original study.

Besides, one can argue that we bias the results for the reason that we discard merge
scenarios not supported by the semistructured implementation used in the study. Nevertheless,
we analysed source code carefully to understand this problem and we found that most of
the unsupported content is language’s constructions that happen inside method body, where
semistructured merge works exactly like the unstructured one. Thus, it means that in such cases
the results presented by both approaches would be almost the same.

3.4.3 External Validity

To increase external validity of the original study, we collected a substantial number
of projects and merge scenarios written in different languages and of different domains, with
a number 2.5 times bigger regarding to the number of projects and 18 times bigger regarding

3.4. THREATS TO VALIDITY 45

the number of merge scenarios compared to the original study. However, our sample contains
only open source projects hosted on GitHub. We believe that it would be also important to know
how the approach performs on industrial systems. In particular, organizational factors might
influence in how the tasks are assigned, and this might impact the occurrence of conflicts directly
or indirectly. This way, if in such cases conflicts are uncommon, a more sophisticated approach,
such as the semistructured one, might not be necessary.

464646

4
Integration Effort and Correctness

In the previous chapters, we saw that semistructured merge is able to reduce the number
of reported conflicts when compared to unstructured merge. For instance, APEL et al. (2011)
showed that semistructured merge was able to reduce the number of conflicts by 34% compared
to unstructured merge. In a replication of this study presented in the previous chapter, we found
an even greater reduction of 62% in the number of conflicts, again in favor of semistructured
merge.

However, the observed reduction might have been obtained at the expense of introducing
false negatives, or even other kinds of false positives that might be harder to resolve than the
eliminated by the use of the semistructured approach. So, we need further analysis because, in
practice, false positives represent unnecessary integration effort, which decrease productivity,
because developers have to resolve conflicts that actually do not represent interferences. On the
other hand, false negatives represent build or behavioral errors, negatively impacting software
quality and correctness of the merging process. This way, number of conflicts alone might not be
a precise proxy for impact on productivity and quality. Having the evidence of false positives and
false negatives resulting from the merge approaches might be beneficial, because this way the
developers could choose the merge approach to be used in terms of their impact on integration
effort and correctness.

4.1 Empirical Evaluation

Our evaluation aims to verify whether semistructured merge’s reductions on the number
of conflicts in relation to the unstructured merge approach actually lead to integration effort
reduction with no negative impact on the correctness of the merging process. We do that
reproducing merges from the development history of different projects hosted on GitHub, while
collecting evidence about the occurrence of conflicts, false positives and false negatives described
in Chapter 2. In particular, we investigate the following research questions:

4.1. EMPIRICAL EVALUATION 47

� RQ1: When compared to unstructured merge, does semistructured merge reduce

unnecessary integration effort?

� RQ2: When compared to unstructured merge, does semistructured merge compromise

integration correctness by missing more task interferences?

To answer RQ1, we compute the maximum number of false positives added by semistruc-

tured merge (spurious conflicts reported by semistructured merge and not reported by unstruc-
tured merge). We also compute the minimum number of false positives added by unstructured

merge (spurious conflicts reported by unstructured merge and not reported by semistructured
merge) metrics. Therefore, we are comparing the unstructured and semistructured merge ap-
proaches with respect to the false positives explained in Chapter 2. In particular, establishing
ground truth for integration conflicts, or more generally interference between development tasks,
is non-trivial and would significantly reduce the analysed sample. So, we actually analyse, both
analytically and empirically, which conflicts reported by unstructured merge are not reported by
semistructured merge, and vice versa. This way we can compute the number of false positives
added and removed by one merge approach in comparison to the other. As the metrics name
suggest, due to implementation limitations that we further detail later, they are proxies. Nev-
ertheless, if we find that an upper bound value is lesser than a lower bound one, we can affirm
that the real value underlying the maximum number is lesser than the real value underlying the
minimum one.

As different conflicts might demand different resolution effort, comparing conflict num-
bers might not be enough for understanding the impact on integration effort. However, if we find
that the difference between the number of added false positives reported by the two approaches is
substantial (which benefits from the comparison of maximum and minimum values), it might be
possible to conclude impact on integration effort. Moreover, to understand the effort necessary to
resolve different kinds of conflicts, we manually analyse a sample of the identified false positives
to draw conclusions about the impact on integration effort. Our goal with this analysis is to try to
verify if there is any possibility of the computed metrics be a proxy of integration effort.

For answering RQ2, we compute the maximum number of false negatives added by

semistructured merge (conflicts missed by semistructured merge and correctly reported by un-
structured merge), and the number of false negatives added by unstructured merge (conflicts
missed by unstructured merge and correctly reported by semistructured merge) metrics, compar-
ing the unstructured and semistructured merge approaches with respect to the false negatives
explained in Chapter 2. Due to the mentioned difficulties on establishing ground truth to a large
dataset, we are actually computing which false negatives of unstructured merge are detected by
semistructured merge, and vice versa. Besides that, whereas we are able to compute the number

of false negatives added by unstructured merge metric in a precise manner, the maximum number

of false negatives added by semistructured merge metric is a proxy. However, it still is a valid
comparison in case of finding that the upper bound value is lesser than the precise one.

4.1. EMPIRICAL EVALUATION 48

4.1.1 Experimental Setup

To answer our research questions and compute the related metrics, we adapt and extend
the setup of the replication study presented in Chapter 3 as illustrated in Figure 4.1. In the
mining step, we use tools that mine Distributed VCS repositories to collect a number of merge
scenarios. Subsequently, in the execution step, we use merge tools from both approaches in order
to merge the selected merge scenarios and to find false positives and false negatives candidates.
Afterwards, in the analysis step, we parse and compile the files to which the false positives and
false negatives candidates belong to confirm their occurrence. Finally, we use R scripts to sum
up the results. We explain the details in the following, explaining together the execution and
analysis steps in the name of simplicity.

Figure 4.1: Experimental design.

Source: the authors.

4.1. EMPIRICAL EVALUATION 49

4.1.1.1 Mining Step

This step is quite similar to the one described in Section 3.1.1. The difference relies on
the selected projects and number of merge scenarios. We explain the details in the following.

To select projects candidate, we first search for the top 100 projects with the highest
number of stars on GitHub’s advanced search page, which might indicate considerable project
relevancy and activity.1 We restricted our sample to Java projects because the execution and
analysis steps demand language dependent tool implementation and configuration. After sorting
the search result by the number of stars in descending order, we selected 50 projects from that
search result varying on the number of commits and number of developers, both extracted from
repositories’ pages on GitHub. In particular, we fixed the number of projects in 50 because when
we got around this number, we didn’t observe significant variance in the chosen criteria. We
chose these criteria hoping that projects with more commits more likely contain more merge
commits — commits that were the result of a Git merge command — and hoping that the
greater the number of developers, the greater is the possibility of having conflicting code changes
resulting from developers’ tasks. Besides that, our 50 projects sample includes projects, such as
cassandra, Junit and Voldemort, that were analysed in previous merging studies (BRUN et al.,
2011; KASI; SARMA, 2013). We give a detailed list of the analysed projects in Appendix B.

Although we have not systematically targeted representativeness or even diversity (NA-
GAPPAN; ZIMMERMANN; BIRD, 2013), we believe that our sample projects have a con-
siderable degree of diversity with respect to the already mentioned number of developers, but
also source code size and domain. Our sample contains projects from different domains such
as databases, search engines, and games. They also have varying sizes and number of devel-
opers. For example, retrofit, an HTTP client for Android and Java, has only 12 KLOC, while
OG-Pratform, a solution for financial analytic, has approximately 2,035 KLOC. Moreover, mct
has 13 collaborators, while dropwizard has 141.

After selecting the sample projects, we use the GitMiner tool (GITMINER, 2015) to
mine GitHub repositories and collect merge scenarios from the entire histories of the selected
projects. The tool converts a project version history into a graph database. We then implemented
scripts that query the database to retrieve a list of all merge commit IDs and their parents IDs.
Afterwards, we clone each project locally and, for each merge commit, we use the JGit API (JGIT,
2015) to checkout and copy the revisions involved in the merge scenario: the common/ancestor
revision, and the two parents revisions of the merge commit (here we call base, left, and right

revisions, respectively). In the replication study presented on Chapter 3, we filter the merge
scenarios and files by those that had already shown textual conflicts on Git. In this study, we
select all merge scenarios and Java files of these scenarios. This is necessary because, by ignoring
a non-conflicting file or merge scenario with Git merge tool (which is unstructured by default),
we might miss files and scenarios that could have conflicts with semistructured merge.

1https://github.com/search/advanced

https://github.com/search/advanced

4.1. EMPIRICAL EVALUATION 50

As a result, we obtained 34030 merge scenarios from the 50 selected Java projects. Given
that part of the execution and analysis steps are language dependent, we process only the Java
files in these scenarios. This way, we measure only integration effort and correctness for the Java
content, not for the scenario as a whole, which corresponds to, on average, 84.67% in relation to
all projects’ content. We also discard Java files containing elements not supported by the Java
grammar used by the current version of FSTMerge, the semistructured merge tool we use in our
study. For example, there is an incompatibility with Java annotations leading to semistructured
parsing errors. We observed that these files correspond, on average, to only 0.16% in relation to
the total number of Java files of our sample projects.

4.1.1.2 Execution and Analysis Steps

After collecting the sample projects and merge scenarios in the previous step, we use
both unstructured and semistructured approaches to merge the selected scenarios and to find the
false positives and false negatives described in Chapter 2.

In this step, we use the FSTMerge tool as our semistructured merge tool (APEL et al.,
2011). Besides, for simplicity, we use the Kdiff3 tool, which is one of the many standalone
unstructured merge tools available (KDIFF3, 2015) (instead of using the virtual machine of the
replication study). These tools take as input the three revisions (base, left and right) that compose
a merge scenario and try to merge their files. To identify false positives and false negatives
candidates, we intercept FSTMerge during its execution. Given that the tool is structure-driven,
we are able to inspect the source code and the conflicts in terms of the syntactic structure of the
underlying language, which would not be possible with a textual tool. Finally, when necessary,
to confirm the occurrence of the false positives and false negatives, we use the features from the
Eclipse JDT API, the base framework for many tools of the Eclipse IDE (JDT, 2015).

Additionally, in the study of APEL; LESSENICH; LENGAUER (2012), FSTMerge’s
performance has shown to be an issue when merging systems with a large number of files. We
also observed this issue in the replication study presented on Chapter 3. Since we use the tool
in a large number of merge scenarios, we had to handle this issue, otherwise the study could
become impracticable in terms of time. Originally, the tool creates a single representation (tree)
in memory for all content (files) of the merge scenario. Therefore, the more files and more
complex these files are, the more complex are the trees representing the merge scenario. As
a consequence, such situations can lead to memory overflow and slower trees’ merges. So,
to handle this issue, we call the merge tools only in files that differ in the three revisions that
compose a merge scenario, which is actually the case that matters in terms of software merging.
This insight came from the observation that, in software merging, many of the files are not
modified or are modified by only one of the developers (ALEXANDRU; GALL, 2015). In such
cases the merge is trivial. So, when files are equals, or only one of them differ, we simply move
the corresponding file to the resulting merged folder. This is a simple but useful optimization
that could be applied to any merge tool.

4.1. EMPIRICAL EVALUATION 51

In the following sections we explain how we collect each metric.

4.1.1.2.1 False Negatives Added by Unstructured Merge — FNa(UN)

The unstructured merge false negatives that semistructured merge can detect occur when,
in the changes introduced by the developers, there are elements, such as fields and methods, with
the same name but in different areas of the program text, leading to the duplicated declaration
error. This is not the case for semistructured merge because it is able to match the nodes
representing the elements regardless the area in the program text.

To identify such situations, by intercepting FSTMerge’s execution, we look for triple
of matched elements in which the base version of the element is empty and the left and right
are not (see Figure 4.2). Such pattern indicates that there are two elements with the same
name not present in the base revision of the code. Then, for each identified triple, we check if
unstructured merge reports a conflict a containing the identifier of the possibly duplicated element
(for example, a method signature). When we cannot find a conflict with such characteristic,
unstructured merge was able to integrate the two versions of the element, or there might be a
duplication. We check that by using Eclipse AST’s compilation features to compile the file
containing the observed duplication candidate merged by unstructured merge. Finally, we search
for compilation problems corresponding to duplicated declaration error related to the observed
candidate. In case of finding such compilation problem, we consider an occurrence of false
negative.

Figure 4.2: Intercepting FSTMerge tool to find false negatives (FNa(UN)) duplicated
declaration error candidates.

Source: the authors.

4.1.1.2.2 Maximum Number of False Negatives Added by Semistructured Merge —
FNa(SS)

Semistructured merge reduces some of the false negatives of unstructured merge due to
the detection of duplicated declarations, but it adds some too. In particular, semistructured merge
is able to integrate elements introduced or modified by different developers in the same area of
the text. As a consequence, the semistructured approach can lead to type ambiguity error when
these elements are import statements, and they involve Java types with the same name. Similarly,

4.1. EMPIRICAL EVALUATION 52

semistructured merge can lead to behavioral errors when an introduced element is referencing a
modified one, and they are in the same area of the text. In what follows we further detail how
identify these false negatives, and the reasons why this metric is an upper bound.

Beginning with the false negatives related to the import statements, they can occur in
three situations, which we describe bellow, explaining together how we identify them. As
illustrated in Figure 4.3, by intercepting FSTMerge execution, we identify pairs of nodes
representing import statements introduced by different developers in the files being merged by
semistructured merge. Afterwards, we check if the identified pairs are (1) involving members
with the same name, as in import java.util.List and import java.awt.List.
We also look if the identified pairs are (2) pairs of import statements of entire packages as
in import java.util.* and import java.awt.* (as long as the packages have a
member in common). Finally, whereas these previous cases lead to build problems, (3) we
compute a case that can lead to behavioral errors instead (which is even worse). Such cases
happen when one of the developers imports all members from a package, and the other developer
imports a member with the same name of an existing member in the package imported by the
first developer. For instance, one writes import java.awt.* and the other writes import
java.util.List, where the package java.awt.* also has a member named List. These
pairs of import statements can only be a false negative added by semistructured merge if they are
added in the same area of the text, otherwise it would be a false negative of the two approaches.
This way, we check in the corresponding file merged by unstructured merge if there is a conflict
involving the pair of imports statements.

Figure 4.3: Intercepting FSTMerge tool to find false negatives (FNa(SS)) type
ambiguity error candidates.

Source: the authors.

The first and second cases described in the previous paragraph only lead to type ambiguity
errors when, in the presence of those pairs, the rest of the code refers to the imported elements
using its abbreviated name as in List list = List(). We check that by using Eclipse
AST’s compilation features. We compile the files merged by semistructured merge and that have
the a pair of import statements as just described, and we search and account the compilation
problems corresponding to type ambiguity error. Regarding the third case, we approximate the
verification by checking if the changes introduced by the developer who imported all members
from the package contain the name of the member imported by the second developer.

4.1. EMPIRICAL EVALUATION 53

The other false negative added by semistructured merge happens when one developer
adds a new element that references an existing one, and this existing element is edited by the
other developer. In such cases, the developer who added the new element might not be expecting
for the changes made to the element referenced by his element, possibly leading to behavioral
errors. As these changes correspond to different elements (technically, different nodes in the
generated AST of semistructured merge), the semistructured approach does not report conflict.
However, it is possible that these changes have occurred in the same area of the program text,
leading to conflict by unstructured merge.

By intercepting FSTMerge execution (see Figure 4.4), we identify all added and edited
elements of the merge scenario. So, for each pair of added and edited elements, we check
whether the added element references the edited one, looking for the identifier (the name of a
field declaration, for instance) of the edited element in the added one. In case there is a reference,
we verify if using unstructured merge to integrate this scenario reports a conflict involving both
the added and the edited element. If there is a conflict, we consider an occurrence of false
negative added by semistructured merge.

Figure 4.4: Intercepting FSTMerge tool to find false negatives (FNa(SS)) new element
referencing edited one candidates.

Source: the authors.

The two kinds of false negative added by semistructured merge are related to programs’
semantic, and we do not verify semantics, either because this is, in general, not computable
(WILHELM; WACHTER, 2008), or because its approximations, such as tests, might also be
imprecise and could reduce the analysed sample. Thus, we are actually computing an upper
bound of the false negatives added by semistructured merge metric. Besides, in both the new
element referencing edited one false negative, and the third case of the import statements issue,
we search for the identifier of the elements of interest textually, using the identifier of the elements
as keyword. The problem is that the identifier might be ambiguous, that is, another element with
the same identifier might exist, for instance. This way, we overestimate even more the occurrence
of these false negatives.

4.1. EMPIRICAL EVALUATION 54

4.1.1.2.3 Maximum Number of False Positives Added by Semistructured Merge —
FPa(SS)

The semistructured merge added false positives in comparison to unstructured merge, as
explained earlier in Section 2.3.2, usually happen when one of the developers edits the body of an
existing method from the base revision, and the other developer deletes the method, or modifies
its signature. In the following paragraphs we explain how we identify such false positives, and
why this metric is an upper bound.

As programs’ elements are nodes in the generated AST of the FSTMerge tool, to
identify these false positives, we first observe conflicts detected by FSTMerge of triples of
matched elements representing methods in which the left or right version of the element is empty,
and the base version is not. Not having the left or right version of the element (represented by the
empty string in Figure 4.5) indicates that the semistructured merge algorithm could not map the
method to its previous version, either because the method was renamed, or because the method
was deleted.

Figure 4.5: Intercepting FSTMerge tool to find false positives
(FPa(SS)) renaming/deletion conflict candidates.

Source: the authors.

However, not all cases like that are false positives. There are situations in which these
cases indeed represent interferences between development tasks and therefore should be con-
sidered true positives. As described in Section 2.3.2, this could occur, for instance, when the
developers leave references to the renamed/deleted method. Thus, for each observed conflicting
renamed/deleted method, we check whether there still are calls that refer to the original signature
of the method. When there is no longer references to the original version, we assume that
conflict as an added false positive of semistructured merge in relation to unstructured merge.
We check that by using the parser and generated AST from the Eclipse JDT API. We parse
all files of the project at the revision of the renamed/deleted method. We then look for nodes
representing method calls and we check whether these calls point to the original signature of the
renamed/deleted method of the conflict.

Finally, this metric is an upper bound because we look for references to methods via
syntactic analysis and, when we do not find any reference to the method of the renaming/deletion
conflict, we classify that conflict as false positive. However, our analysis only searches in the

4.1. EMPIRICAL EVALUATION 55

first level of references, otherwise the analysis could become computationally expensive and
time-demanding, compromising the analysed sample size. So, although we believe that this is
uncommon, it is possible that the referrer of the method of the renaming/deletion conflict is not
being referenced too, and so on. Besides that, the version with the new signature can have its
body edited too, which might interfere with the changes from the developer who kept the old
signature. Finally, others renaming/deletion conflicts representing interferences, aside from these
cases we identified, might exist. Therefore, we actually compute the maximum number of false
positives added by semistructured merge metric.

4.1.1.2.4 Minimum Number of False Positives Added by Unstructured Merge —
FPa(UN)

The false positives added by unstructured merge in comparison to semistructured merge
are due to changes in the order of commutative and associative declarations — the ordering
conflicts. We explain bellow how we compute such false positives, and why this metric is a lower
bound. In particular, there are no specific patterns of ordering conflicts that would allow us to
identify them systematically. Thus, we compute this metric in function of the other ones.

In the diagram of Figure 4.6, we illustrate the set of conflicts emerging from development
tasks reported by unstructured and semistructured merge. Observe that each merge approach has
its own set of reported conflicts. For instance, unstructured merge’s set includes its own false
positives (FPa(UN)), and false negatives added by the semistructured approach that unstructured
merge is able to detect (FNa(SS)). The sets also includes true positives and false positives
common to both approaches (TP(UN|SS) and FP(UN|SS)). Looking at these sets, we can infer
how to calculate the false positives added by unstructured merge. In particular, from the diagram,
note that:

Figure 4.6: Set of conflicts reported by unstructured and semistructured merge

Source: the authors.

4.2. EVALUATION RESULTS 56

P(UN) = FP(UN|SS)+T P(UN|SS)+FPa(UN)+FNa(SS)

From which follows that,

FPa(UN) = P(UN)− (FP(UN|SS)+T P(UN|SS))−FNa(SS)

In order to FPa(UN) be a lower bound, we need an upper bound of
(FP(UN|SS) + TP(UN|SS)) because it is a subtractive factor. If we look at how P(SS) is
composed, we see that:

P(SS) = FP(UN|SS)+T P(UN|SS)+FPa(SS)+FNa(UN)

Therefore,

FP(UN|SS)+T P(UN|SS) = P(SS)−FPa(SS)−FNa(UN)

Note that,

FP(UN|SS)+T P(UN|SS)+FPa(SS) = P(SS)−FNa(UN)

Thus, an upper bound of (FP(UN|SS) + TP(UN|SS)) happens if FPa(SS) is at its
minimum possible value (zero). Therefore, the upper bound of (FP(UN|SS) + TP(UN|SS))))
is given by:

FP(UN|SS)+T P(UN|SS)6 P(SS)−FNa(UN)

Finally, replacing (FP(UN|SS) + TP(UN|SS)) in the formula of FPa(UN) given
above, the minimum number of false positives added by unstructured merge becomes:

FPa(UN)> P(UN)−P(SS)+FNa(UN)−FNa(SS)

4.2 Evaluation Results

During this study, we analysed a total of 34030 merge scenarios from 50 Java projects. We
identified 19238 conflicts by using unstructured merge, and 14544 using semistructured merge,
representing a reduction of, approximately, 24% in the total number of conflicts (compared to a
reduction of 21% in the replication study presented on Chapter 3). In this section, we present
descriptive statistics structured according to our research questions. Full results are available in
Appendix B.

In this study, our assumption is that the higher the number of false positives in these
conflicts and merge scenarios, the greater the integration effort. Similarly, the higher the number

4.2. EVALUATION RESULTS 57

of interferences not detected by the merge approaches (false negatives), the weaker the correctness
guarantees of the merging process. So, we compared the unstructured and semistructured merge
approaches with regard to the occurrence of the false positives and false negatives described in
the previous sections. In particular, we are interested in finding out the frequency of the false
positives reported by unstructured merge not reported by semistructured merge, and vice-versa.
We also want to know the frequency of the false negatives undetected by unstructured merge
detected by semistructured merge, and vice versa.

4.2.1 When compared to unstructured merge, does semistructured merge
reduce unnecessary integration effort?

In order to answer RQ1, we need to compare the number of false positives added by each
merge approach. In particular, our results show that, in our sample, when using an unstructured
merge tool, on average, 5.35% of the merges scenarios have at least one of its added falses
positives (FPa(UN)) (standard deviation of 4.85%). Moreover, on average, 38.11% of the
reported conflicts are false positives (FPa(UN)) (standard deviation of 23.49%). This number
is slightly bigger than the percentage of the reported conflicts that are false positives added by
semistructured merge (FPa(SS)). We observed that, on average, 30.21% of the reported conflicts
are false positives (FPa(SS)) when using semistructured merge (standard deviation of 20.68%).
In addition, on average, 3.12% of the merge scenarios have at least one added false positive
(FPa(SS))(standard deviation of 3.55%).

The bloxplots in Figure 4.7 (a) shows that semistructured merge indeed tends to have
less merge scenarios with at least one of its added false positives (FPa(SS)). Observe that the 3rd
quartile, which represents 75% of the projects of our sample, is inferior to the median of the merge
scenarios that had at least one false positive added by unstructured merge (FPa(UN)). Besides
that, the maximum whisker of the merge scenarios with at least one false positive (FPa(SS)) is
inferior to the 3rd quartile of the merge scenarios with at least one false positive (FPa(UN)). The
left side boxplot also points out Bukkit, cassandra and infinispan as outlier projects, with more
than 12.5% of its merge scenarios having false positives (FPa(UN)). On the other hand, only the
projects clojure and closure-compiler had no merge scenarios with false positives (FPa(UN)).
Similarly, the right side boxplot shows that the outlier projects Bukkit, cassandra, lucene-solr
and roboguice had more than 7.5% of the merge scenarios with false positives (FPa(SS)). Finally,
only the projects closure-compiler, commafeed, commons, Essentials, jsoup and OpenRefine
had no merge scenarios with false positives (FPa(SS)).

Conversely, the boxplots in Figure 4.7 (b) suggests that there is no significant difference
between the number of reported conflicts accounted as added false positives by unstructured
merge (FPa(UN)) and the number of reported conflicts accounted as added false positives by
semistructured merge (FPa(SS)). Note that both the median, the 3rd quartile and the maximum
whisker in the two bloxplots are close. In addition, the left side boxplot shows that the outlier

4.2. EVALUATION RESULTS 58

projects Conversations and mct had more than 85% of the reported conflicts accounted as false
positives (FPa(UN)) added by unstructured merge, and in only the projects clojure and closure-
compiler none of the reported conflicts are false positives (FPa(UN)). In turn, the right side
boxplot shows that in the outlier project Equivalent-Exchange-3, more than 75% of the reported
conflicts are false positives (FPa(SS)) added by semistructured merge, and projects such as
OpenRefine and Jsoup had no false positives (FPa(SS)).

Figure 4.7: Boxplots describing the percentage per project of added false positives in
terms of merge scenarios and conflicts.

(a) (b)
Source: the authors.

Given that our data are paired, come from the same sample, and deviates from normality,
in other to check difference in the computed metrics, we conducted a Wilcoxon Signed-Rank
Test (WILCOXON; WILCOX, 1964). Results of that analysis indicate that the frequency of
merge scenarios that had false positives (FPa(SS))>0 is significantly lower than the frequency of
merge scenarios that had false positives (FPa(UN))>0 (p-value equals to 1.536e-07, lower than
0.05). On the other hand, there is no significant difference between the percentage of reported
conflicts that are accounted as false positives (FPa(SS)), and the percentage of reported conflicts
that are accounted as false positives (FPa(UN)) (p-value equals to 0.1773, greater than 0.05).

4.2.2 When compared to unstructured merge, does semistructured merge
compromise integration correctness by missing more task interfer-
ences?

Moving on towards answering RQ2, we have to compare the number of false negatives
added by each merge approach.

4.2. EVALUATION RESULTS 59

In terms of merge scenarios, giving the notion of how often the merging process had
at least one added interference missed by one merge approach and detected by the other (false
negatives), Figure 4.8 (a) shows the distribution of the percentage per project of merge scenarios
having false negatives added by the merge approaches. On the left side boxplot, we observe that,
in around 75% of the projects from our sample, less than 1.5% of the merge scenarios had false
negatives added by unstructured merge (FNa(UN))>0, with an average of 0.88% and standard
deviation of 1.07%. It also points out Bukkit and jitsi as outlier projects with more than 3.5%
of its merge scenarios having false negatives (FNa(UN))>0. Similarly, the right side boxplot in
Figure 4.8 (a) depicts the merge scenarios having false negatives added by semistructured merge
(FNa(SS))>0. In this case, on average, 0.18% of the merge scenarios of our sample had false
negatives (FNa(SS))>0, with standard deviation of 0.39%. Besides that, in around 75% of the
projects from our sample, less than 0.5% of the merge scenarios had false negatives (FNa(SS))>0,
and in outlier projects, such as lucene-solr and netty, more than 0.5% of the merge scenarios had
false negatives (FNa(SS)).

In terms of conflicts, representing the percentage of added false negatives with respect to
the total number of reported conflicts in the merged files, Figure 4.8 (b) shows the distribution of
the percentage per project of the false negatives added by the merge approaches. On the left side
boxplot, we observe that, in around 75% of the projects from our sample, the percentage of false
negatives (FNa(UN)) was lower than 12.5%, with an average of 14.10% and standard deviation
of 16.12%. In the outlier projects, such as closure-compiler and Essentials, the percentage of
false negatives (FNa(UN)) was higher than 25%. Besides that, the right side boxplot in Figure 4.8
(b) depicts the distribution of the false negatives added by semistructured merge (FNa(SS)). In
this case, the average percentage of false negatives (FNa(SS)) is 1.66%, with standard deviation
of 7.32%. Additionally, in around 75% of the projects from our sample, the percentage of false
negatives (FNa(SS)) with respect to the total number of reported conflicts was lower than 2%,
and outlier projects, such as AntennaPod and cassandra, had the percentage of false negatives
(FNa(SS)) higher than 6%. Finally, when distinguishing between the two kinds of false negatives
(FNa(SS)) — the type ambiguity error and new element referencing edited one — we found that
most of the false negatives (FNa(SS)) are related to new element referencing edited one. We
discuss our thoughts about this in the next section.

Finally, a Wilcoxon Signed-Rank Test (WILCOXON; WILCOX, 1964) showed that
there is significant difference between the frequency of merges scenarios that had false negatives
added by unstructured merge (FNa(UN)) and falses negatives added by semistructured merge
(FNa(SS)), and also between the percentage of FNa(UN) and FNa(SS) with respect to the total
number of reported conflicts (p-value equals to, respectively, 1.056e-05 and 2.842e-06, both
lower than 0.05).

4.3. DISCUSSION 60

Figure 4.8: Boxplots describing the percentage per project of the added false negatives in
terms of merge scenarios and conflicts.

(a) (b)
Source: the authors.

4.3 Discussion

4.3.1 Integration Effort

As described in Section 4.1, our metrics are approximations. In particular, we computed
an upper bound of the number of false positives added by semistructured merge, and a lower
bound of the number of false positives added by unstructured merge. As we did not find
significant statistical difference between them, our results actually mean that, on average, the
maximum number of false positives added by semistructured merge is, at most, slightly lower than
the minimum number of false positives added by unstructured merge in our sample. Therefore,
the real number of false positives added by semistructured merge is also lower than the real

number of false positives added by unstructured merge.
Although the indicative of reduction in the number of added false positives by semistruc-

tured merge suggests that this approach might reduce integration effort, a more accurate compar-
ison would measure the effort required for analysing and discarding these false positives. This is
needed because different conflicts might demand different effort to be analysed, discarded or
resolved. Thus, to better understand the impact of these false positives on integration effort, we
manually analysed a sample of false positives reported by both merge approaches. Actually, this
analysis was very simple and not systematic, we randomly selected 20 merge scenarios from
five projects, mixing outliers and average ones, and we selected one file, merged by the two
approaches, from each of these scenarios. In some cases, analysing projects’ commit history,

4.3. DISCUSSION 61

we also observed how the integrator resolved the identified false positives and if the integrator’s
decision prevailed in future versions of the code. It is important to note that our goal was
not to find statistical evidence with this manual analysis, but to better understand the required
integration effort in the perspective of software developers.

The analysis indicates false positives added by unstructured merge (the ordering conflicts)
that seems easy to analyse and resolve, but also pointed out conflicts that suggest more effort.
For instance, we observed conflicts caused by the introduction of simple declarations in the same
text area, as illustrated in Figure 4.9 (a) in which the developers added different methods and
attributes in the same area of the text. We believe that this kind of conflict can often be resolved
with little effort because the integrator simple has to choose one of the declarations, or decide to
keep all of them. We also identified another type of ordering conflict, which we call crosscuting

conflict. This is a conflict that does not respect the boundaries of the syntactic structure, that is,
a conflict mixing parts of different elements (the body of two different methods for instance).
In Figure 4.9 (b) we illustrate two crosscuting conflicts observed in a merge scenario of project
cassandra. Observe that parts of the two getColumn and the validateMemtableSetting methods
are in conflict. Such conflicts are more difficult to understand and resolve because the conflict
mixes parts of different syntactic structures. It is necessary to map these snippets of code to the
corresponding syntactic structures, for instance, to which method the for and if statements
belong. We believe that conflicts like this might demand the integrator to ask for help from
the developers responsible for the changes, possibly demanding the effort of more than one
developer. As such conflicts corresponds to different syntactic elements (technically different
nodes in a parse tree), semistructured merge can resolve them automatically.

With respect to the semistructured merge’s added false positives, which are a fraction of
the renaming/deletion conflicts, as illustrated in Figure 4.10 (a), we found situations in which
the integrator opted to resolve the conflict by choosing the changes made by only one of the
developers. That is, he accepted the renaming/deletion done by one of the developers, or opted
for the declaration with the original signature and edited body changed by the other developer.
We also noticed that the integrator’s decision prevailed in future versions of the code, which
might indicate that this was an appropriate decision. This also suggests that the discarded
changes might not be relevant, or that they are not critical for the developer responsible for them.
Finally, as just one of the changes was kept, we believe that there was little integration effort to
resolve such conflicts because there is no conciliation of the different changes, for instance. We
also found false positives renaming/deletion conflicts in which a developer renamed/deleted the
method, while the other developer changed the code indentation in the version with the original
signature, without changing the body’s content (Figure 4.10 (b)). In such cases, the solution of
the conflict is trivial because two versions of the method are similar apart of the difference in the
indentation. Indeed, in our small sample analysed manually, we did not observe any added false
positive of semistructured merge that seems to be harder to resolve than a crosscuting conflict
from unstructured merge. Finally, these observed conflicts not only can be easily resolved, but

4.3. DISCUSSION 62

Figure 4.9: Observed ordering conflicts.

(a) Simple ordering conflicts

(b) Crosscuting conflicts
Source: the authors.

4.3. DISCUSSION 63

also can be resolved automatically.
To automatically resolve the false positives described in the previous paragraph, a

semistructured merge tool could be extended with a mechanism that looks for references to the
renamed/deleted element. When we did not find references to the renamed element, as described
in Section 4.1.1.2, we classify the conflict as false positive. Alternatively, a safe, but "lazy",
solution would be not to report the conflict and maintain both versions of the method. This last
solution would lead in the worst case to dead code. In relation to the false positives due to code
indentation, when the semistructured merge tool matches the nodes of the trees, it could compare
the strings representing the body’s content ignoring the spacings. Conversely, an improved
unstructured merge tool would only be able to resolve its added false positives by behaving like
semistructured merge.

On the other hand, in a few renaming conflicts of projects such as Bukkit and cassandra,
we observed that the integrator had to conciliate the changes made by the developers suggesting
significant resolution effort. This is illustrated in Figure 4.11, where the integrator merged the
changes in the body of the method with the original signature with the body of the renamed
version (which also had its body edited). Besides, that decision prevailed in future versions of the
code. However, as both changes had to be conciliated to cope with the needs of the developers, it
actually suggests that there was an interference between the developers’ tasks, and the renaming
conflict was a true positive instead. Thus, our numbers of false positives added by semistructured
merge are more overestimated than what we expected in Section 4.1.1.2 because they include
others kinds of conflicts representing interference between developers’ tasks.

In our sample, semistructured merge reduced the overall number of reported conflicts,
and there is also an indicative that it added less false positives when compared to unstructured
merge. Furthermore, we did not observe false positives added by semistructured merge
that seems to require more effort to be resolved than the unstructured merge ones. Finally,
we believe that semistructured merge could be extended to eliminate the its observed false
positives without much difficulty.

4.3. DISCUSSION 64

Figure 4.10: Observed renaming conflicts.

(a) Renaming conflict resolved by discarding one’s changes.

(b) Indentation renaming conflict
Source: the authors.

4.3. DISCUSSION 65

Figure 4.11: Renaming conflict resolved by conciliating different changes.

Source: the authors.

4.3.2 Correctness

When comparing false negatives not detected by unstructured merge but detected by
semistructured merge, and vice versa, the reasoning is straightforward because the greater the
number of false negatives, the greater the number of build or behavioral errors, and therefore
the weaker the correctness guarantees of the merging process. As explained in Section 4.1, the
computed number of false positives added by semistructured merge metric is an approximation
(upper bound), whereas the unstructured one is precise. So, the achieved results actually mean
that the exact number of false negatives added by unstructured merge is almost 6 times bigger
than the maximum number of false negatives added by semistructured merge.

These results show that semistructured merge, as is currently implemented in the
FSTMerge tool used in this study, adds less false negatives than unstructured merge. However,
the false negatives added by unstructured merge cause compilation errors (the duplicated dec-
laration error), illustrated by the underline in Figure 4.12 (a), guiding the developers toward
the location and cause of the problem. On the other hand, both kinds of added false negatives
by semistructured merge include "discret" problems. When one developer adds a new element
referencing an edited existing one, there is no compilation error, but possibly there is a be-
haviorial issue. In particular, the changes made by one developer might affect the behavior
expected by the other. This situation is illustrated in Figure 4.12 (b), the developer who added
the setStatus method might not be expecting the extra notification added by the other developer
on the bluetoothNotifyChange method (referenced by the first developer). The same happens in
the third case (package vs. member) of the import statements issue (see Section 4.1.1.2.2). We
believe that in such cases the detection and resolution of the issue is likely more difficult and
demands substantially more effort.

Whereas an improved unstructured merge would only be able to detect its added false
negatives by applying the techniques used by the semistructured approach, we believe that the

4.3. DISCUSSION 66

Figure 4.12: Observed false negatives.

(a) (b)
Source: the authors.

FSTMerge tool could be extended to detect its extras false negatives without much difficulty.
For example, the tool could include some compiler features to search for compilation problems
related to the false negatives to detect them, similar to what we did during the experiment (see
Section 4.1.1.2). In the case of the false negatives that might cause behavioral errors, the tool
could also look at the developers contributions as a whole to try to infer interference between
them. In particular, in the third case of the import statements issue, the tool could verify if the
changes introduced by the developer who imported the package contain the name of the member
imported by the second developer. Besides that, in the cases of new artefact referencing edited
one, the tool could check whether the added element references the edited one, looking for the
identifier of the edited element in the added one. Given that such analyses are not precise, they
could also add false positives, but this addition would not be significant as suggested by the
achieved results.

Finally, we got surprised with the small number of false negatives added by semistruc-
tured merge related to the import statements in our sample. However, the strategies we use
to identify these situations in the setup described in Section 4.1.1.2.3 can give clues in what
happened. One possibility is that there was no conflict by unstructured merge related to the
imports, that is, it was a false negative of the two merge approaches. Additionally, even in cases
of having conflicts by unstructured merge, there was no compilation error related to the imports,
either because the developers used the members using their full name, or because they simply did
not use the imported members. Finally, in the third case of the import statements issue (package
vs. member), which might cause behavioral errors, the changes introduced by the developer who
imported the package might not refer the member imported by the second developer. Even so, a
deeper analysis might be necessary.

4.4. THREATS TO VALIDITY 67

Although the number of merges leading to false negatives using unstructured merge
and semistructured merge are almost insignificant in our sample, unstructured merge added
more false negatives than the semistructured approach. However, we believe that the
semistructured merge’s added false negatives are harder to detect and resolve, but a semistruc-
tured tool could be fixed to detect them without much difficult.

4.3.3 Unstructured or Semistructured merge?

All the criteria we used to classify an approach as better than the other — the number of
reported conflicts in the replication study of Chapter 3, or the number of false positives and false
negatives in this second study — indicate the semistructured approach as the best.

However, we wouldn’t say it’s an easy choice. For instance, depending on the develop-
ment phase of the project, if there are too many refactorings, the developers will have to deal
with too many renaming conflicts. If the code coupling is high, in which different elements
tend to depend from each other, there may be a higher incidence of the semistructured merge
behavioral false negatives, which are more difficult to detect and resolve.

Nevertheless, if it were an improved semistructured tool, with simple improvements such
as we suggested, the semistructured approach could be chosen without regrets.

4.4 Threats to Validity

Our empirical analyses and evaluations naturally leave open a set of potential threats to
validity, which we explain in this section.

4.4.1 Construct Validity

In this study, we are measuring integration effort mainly based on the number of false
positives reported by the different merge approaches. However, different conflicts may require
different efforts to be resolved. For instance, taking into account the conflicts mentioned in
Section 4.3.1, it is not hard to believe that a single crosscuting conflict requires more effort to be
resolved than several indentation renaming/deletion conflicts. Nonetheless, in addition to the
quantitative comparison, we have manually analysed sample of false positive to better understand
their impact on integration effort. Although this analysis was very simple, involving a small
sample, it still allowed us to better understand the required integration effort.

Another threat to construct validity is our metrics because, as they are approximations,
one can argue that we perhaps could not compare them properly. However, the achieved results
allowed us to make the comparisons accordingly. For instance, considering the false negatives
in which we compared an upper bound with a precise value, as the achieved upper bound was

4.5. THE STRUCTURED MERGE APPROACH 68

lower than the precise value, is straightforward that the real value underlying the upper bound
was also lesser than the precise value.

4.4.2 Internal Validity

A potential threat to the internal (and external) validity of our study is our approach to
collect merge scenarios. As we analyse public Git repositories, we might be missing merge
scenarios and conflicts resolved in private repositories and erased by mechanisms such as rebasing.
Therefore, our sample actually corresponds to part of the conflicts that actually happened in the
analysed projects. The impact of an increased sample on the results presented here is hard to
predict, but we are not aware of factors that could make the erased conflicts different from the
ones we analysed.

One could also argue that we bias the results in favor of the semistructured merge
approach because we discard files not supported by the semistructured implementation used in
the study (in particular, due to Java annotations). We actually miss the false positives and false
negatives present in these files. However, this correspond only to 0.16% of the total Java files.
Therefore, we believe that such issue has insignificant impact on our results. We also discarded
projects’ non Java content, which corresponds to, on average, 15.33% of all projects’ content.
Nevertheless, in both cases, as semistructured merge uses the unstructured one internally to
merge methods body, it could be extended to merge these files. As a consequence, the approaches
would have similar behavior.

4.4.3 External Validity

Although the semistructured merge tool used in this study actually supports more pro-
gramming languages than just Java (more specifically, the tool also supports Python and C#),
we restricted our sample to Java projects because our setup demanded language dependent tool
implementation and configuration. However, all the false positives and false negatives analysed
here are also likely to happen in projects written in other languages. Besides, in spite of this
limitation, as discussed in Section 4.1.1.1, we believe that our sample projects has a considerable
degree of diversity with respect to number of developers, source code size and domain.

4.5 The Structured Merge Approach

The merge approaches are not restricted to the already discussed unstructured and
semistructured merge approaches. There are also structured merge tools (WESTFECHTEL,
1991; GRASS, 1992; APIWATTANAPONG; ORSO; HARROLD, 2007; APEL; LESSENICH;
LENGAUER, 2012), or even semantic merge (BERZINS, 1994; JACKSON; LADD, 1994;
BINKLEY; HORWITZ; REPS, 1995). In the last case, they are promising, but still limited to

4.5. THE STRUCTURED MERGE APPROACH 69

academic research and too immature to be used in real-world software projects (MENS, 2002;
APEL; LESSENICH; LENGAUER, 2012).

Initially, our goal was to compare integration effort and correctness across merge ap-
proaches likely to be used in practice, in particular, the unstructured, semistructured and
structured approaches. As structured approach, we opted for the implementation of APEL;
LESSENICH; LENGAUER (2012). That is a quite recent implementation, which is still being
improved, and has been evaluated in real-world software projects. In addition, due to our experi-
ence with the semistructured merge of the same authors (APEL et al., 2011), we had support
from them. However, when we tried to use the tool in our context, it did not work properly (too
many crashes, for example) and we could not continue the study. In this section, we discuss our
findings.

Comparing two programs for structured merge means traversing trees/graphs and finding
the differing nodes, much similar to semistructured merge (APEL; LESSENICH; LENGAUER,
2012). The difference, however, is that, while semistructured merge parses the source code until
the level of method declarations, representing statements and expressions on the syntax level of
method body as plain text, the structured merge approach parses the entire source code.

A key point for structured merge is the distinction between ordered nodes (which must
not be permuted) and unordered nodes (which can be permuted safely), comparing the input
trees level-wise. For ordered nodes, the positions relative to the parent node are decisive: if they
overlap, the nodes are flagged as conflicting (see Figure 4.13 (a)). Whether unordered nodes
are in conflict, depends on their type and name (see Figure 4.13 (b)). The matching of nodes
depends on their syntactic category. For instance, two method declarations are considered equal
if their signatures are equal, again similar to semistructured merge. As immediate consequence,
structured merge also has the false positives and false negatives added by semistructured merge
(the renaming/deletion conflicts, the type ambiguity error, and new element referencing edited
one) because all of them happen due to the matching process, which is similar in the two
approaches for unordered nodes. Nevertheless, it is also able to detect duplicated declarations.
Besides that, since the approach is able to differentiate between ordered and unordered nodes, the
approach is also able to resolve the ordering conflicts (the added false positives of unstructured
merge). That, however, is where the similarities among the approaches end. To identify the false
positives and false negatives added by structured merge, and those that the approach is able to
resolve and detect, we must look to where the approach behaves differently. In particular, this
happens inside method body because, in such cases, semistructured and unstructured merge work
likewise, merging the method body content textually, whereas the structured approach does it
structurally.

One of the false positives added by unstructured/semistructured merge in relation to
structured merge we identified happens due to code spacing/indentation — what we call spacing

conflicts (see Figure 4.14 (a)). (Re)formatting of code produces conflicts when textual merge
is used, because the position of brackets and the indentation style (for instance, tabs or spaces)

4.5. THE STRUCTURED MERGE APPROACH 70

Figure 4.13: When nodes conflict with structured merge.

(a) Ordered Nodes

(b) Unordered Nodes
Source: the authors.

might be different according to the settings of the developer’s editor. Besides, reformatting
is not an uncommon practice, and, as a consequence, many unnecessary conflicts are created
by textual merges. This is not the case for structured merge, in which, during its parsing
process, the code formatting is lost and no longer relevant. Another kind of false positive added
by unstructured/semistructured merge, as illustrated in Figure 4.14 (b), is due to changes of
consecutive lines of code — the consecutive lines conflict. As there is no common element
separating the text, the entire content is considered conflicting. On the other hand, theses conflicts
are properly addressed by structured merge because the content is treated structurally. So far, we
have not identified false positives added by structured merge, or others false positives added by
unstructured/semistructured merge (if both exist).

Regarding the added false negatives, the problems emerges from the high degree of
granularity of structured merge. Whereas a statement typically corresponds to a single line
in the text, so if the developers edit the same statement, textual merge notify a conflict. With
structured merge, each part of a statement corresponds to different nodes. Besides that, the
position of these parts of a statement matters (they are ordered nodes). So, as different changes to
the same statement corresponds to different positions, structured merge does not notify conflict

4.5. THE STRUCTURED MERGE APPROACH 71

Figure 4.14: False positives added by unstructured/semistructured merge in relation to
structured merge.

(a) Spacing conflict (b) Consecutive lines conflict
Source: the authors.

(because the positions do not overlap). However, theses changes possibly will cause behavioral
errors. We call this false negative as edits to different parts of the same statement. In Figure 4.15
we illustrate this situation with different edits to the same for statement, and how structured
merge interprets the situation. We have not identified others false negatives relative to the
unstructured/semistructured and structured merge approaches yet.

In a pilot experiment, by intercepting FSTMerge tool execution, we were able to assess
the frequency of the spacing and consecutive lines conflicts. We did that each time nodes
representing methods were being merged with semistructured merge. Regarding the consecutive
lines conflicts, we identify such conflicts using string comparison to check if only consecutive
lines were edited. On the other hand, by comparing left and right revisions to the base revision,
ignoring tabs, spaces and line breaks. If at least one of the revisions (left and right) is equal to the
base, we classify this conflict as a spacing conflict. We performed this pilot on the same sample
described in Section 4.1.1.2. More specifically, 34030 merge scenarios of 50 java projects.

We found that 1.46% of the merge scenarios had at least one spacing conflict (standard

4.5. THE STRUCTURED MERGE APPROACH 72

deviation of 1.63%). Besides that, 10.87% of the reported conflicts are spacing conflicts (standard
deviation of 10.44%). Similarly, we found that 2.53% of the merge scenarios had at least one
consecutive lines conflict (standard deviation of 2.84%), and that 15.56% of the reported conflicts
are consecutive lines conflicts (standard deviation of 19.25%). (Detailed results are available on
Appendix B.)

In summary, up to now, we observed that structured merge adds the same false positives
and false negatives of semistructured merge. The approach is also able to resolve the ordering
conflicts of unstructured merge. In addition, it is able to resolve unstructured/semistructured
merge spacing and consecutive lines conflicts. However, the approach adds false negatives
regarding editions to different parts of the same statement.

Figure 4.15: Edits to different parts of the same statement (Structured Merge).

Source: the authors.

737373

5
Conclusions

Conflicts are a recurring problem in the context of collaborative software development.
As a consequence, one likely has to dedicate substantial effort to resolve them. To reduce such
effort, while unstructured merge tools try to automatically resolve part of the conflicts via textual
similarity, structured and semistructured merge tools try to go further by exploiting the syntactic
structure of the elements involved.

To understand the impact of the unstructured and semistructured merge approaches on
integration effort (Productivity) and correctness of the merging process (Quality), we conducted
two empirical studies. In the first one, with a replicated experiment of APEL et al. (2011),
we evaluated the semistructured approach in a sample 2.5 times bigger than the original study
regarding the number of projects and 18 times bigger regarding the number of merge scenarios.
In proportions far greater than the original study, we observed a significant decrease in the
number of textual conflicts, conflicting lines of code and conflicting files by using semistructured
merge compared to the unstructured merge. We also observed that an additional fraction of
conflicts could be potentially resolved with language-specific conflict handlers. Finally, we
state that if semistructured merge was used in place of the unstructured one, the occurrence of
conflicting merge scenarios would drop by half.

In order to verify the frequency of false positives and false negatives arising from the
use of these merge approaches, we conducted a second empirical study. By reproducing 34030
merges from 50 Java projects, we compared the relation between these merge approaches with
respect to the resulting occurrence of false positives and false negatives. In particular, our assump-
tion was that false positives represent unnecessary integration effort, which decrease productivity,
because developers have to resolve conflicts that actually do not represent interferences between
development tasks. Besides that, false negatives represent build or behavioral errors, negatively
impacting software quality and correctness of the merging process.

We observed that semistructured merge not only reduced the number of conflicts, but
also added less false positives when compared to unstructured merge. Furthermore, we did not
observe false positives added by semistructured merge that require more effort to be resolved
than the unstructured merge ones. Finally, we found that semistructured merge added less false

5.1. CONTRIBUTIONS 74

negatives than unstructured merge, but we argue that they are harder to detect and resolve than
the other way around. Additionally, our study suggested that a semistructured merge tool could
be easily extended to resolve its added false positives and to detect its added false negatives.

5.1 Contributions

This work makes the main following contributions:

� Replicates an empirical study assessing semistructured merge in distributed version
control systems;

� Shows how frequently merge conflicts occur during the merge process by using both
semistructured and unstructured merge;

� Derives a list of false positives and false negatives from one merge approach in
relation to the other;

� Evaluates how frequently the added false positives and false negatives occur during
the merge process as approximations for integration effort and correctness;

� Describes how a semistructured merge tool could be improved to address the observed
false positives and false negatives.

5.2 Related Work

A number of studies propose development tools and strategies to better support col-
laborative development environments. Those tools use different strategies to both decrease
integration effort, and improve correctness during tasks integration. For instance, APEL et al.
(2011) propose and evaluate the FSTMerge tool, a semistructured merge tool. In this work,
we show evidence that FSTMerge indeed reduces the number of reported conflicts. We also
conduct a deeper analysis regarding its false positives and false negatives. Conversely, structured
and semantic merge approaches have been proposed. WESTFECHTEL (1991) and BUFFEN-
BARGER (1995) propose tools that incorporate structural information such as the context-free
and context-sensitive syntax in the merging process. Researchers also propose a wide variety of
structural comparison and merge tools including tools specific to Java (APIWATTANAPONG;
ORSO; HARROLD, 2007) and C++ (GRASS, 1992). APEL; LESSENICH; LENGAUER (2012)
also propose a tool that tune the merging process on-line by switching between unstructured and
structured merge, depending on the presence of conflicts. Some tools even consult additionally
semantic information of the language (BINKLEY; HORWITZ; REPS, 1995). Finally, NIU;
EASTERBROOK; SABETZADEH (2005) propose a merge approach that is both structured
and independent of the language. Other approaches require that the documents to be merged

5.2. RELATED WORK 75

come with a formal semantics (BERZINS, 1994; JACKSON; LADD, 1994). However, while
these different techniques are mainly worried about the number of reported conflicts, we focus
on falses positives and false negatives added by different merge approaches. Moreover, other
studies offer solutions to detect conflicts before code integration. For instance, Palantir (SARMA;
REDMILES; HOEK, 2012) informs developers of ongoing parallel changes, and Crystal (BRUN
et al., 2011) proactively integrates commits from developers repositories with the purpose of
warning them if their changes conflict. Our study found a pattern of renaming conflict in which
the integrator had to conciliate changes made in the different versions. We believe that these
conflicts might benefit from such awareness tools.

Regarding the concept of integration effort, PRUDêNCIO et al. (2012) suggests hat it
can be measured as the number of extra actions (additions, deletions or modifications on the
artefacts) that the developer had to do during the code integration to conciliate the changes
made in revisions developed concurrently. Furthermore, SANTOS and MURTA (2012)
correlate the number of conflicts to that metric, suggesting that conflict reduction imply effort
reduction. We opted for a qualitative analysis because this metric measures only the fraction
of the time taken by the developer to edit the code, not taking into account the time that the
developer took reasoning about how to resolve the conflict. This way, this editing time
amounts to one part (peharps, the minor part) of the total integration effort time. On the other
hand, KASI and SARMA (2013) measure integration effort based on the number of days that
the conflict persisted in the project’s repository. However, they assume that, during this
period, the developers exclusively worked to resolve that conflict. As this information might be
hard to find, and we believe that is often not the case that developers exclusively work to
resolve conflicts when they happen, we opted for a qualitative analysis. In our study we have
analysed conflicts that do not represent interferences between developers’ tasks (false
positives), and, as such, resolving them is an unnecessary integration effort. So, implementing
mechanisms to automate the resolution of such conflicts might decrease the integration effort.

Finally, there are studies describing empirical evaluations that provide evidence about
the frequency and impact of conflicts, and their associated causes. For example, KASI and
SARMA (2013), and BRUN et al. (2011) reproduce merge scenarios from different GitHub
systems with the purpose of measuring the frequency of merge scenarios that resulted in
conflicts. Moreover, ZIMMERMANN (2007) does a similar analysis, but with a different
metric, since the author reproduces files integration from projects on CVS. All of these work
conclude that conflicts indeed occur frequently. Our work complements these studies by
bringing evidence about the frequency of integrations that had conflicts when using a
semistructured merge tool. Besides that, we bring evidence about the frequency of integrations
that had certain types of false positives and false negatives, meaning how often integrations
demands unnecessary integration effort and had interferences undetected by the unstructured
and semistructured merge tools. In addition, KASI and SARMA (2013), and BRUN et al.
(2011) also study the frequency of merge scenarios that had build or test failures, which can
be seen as a consequence of the false negatives in the

5.3. FUTURE WORK 76

merging process. In this respect, we have explored specific types of falses negatives that cause
build or test failures.

5.3 Future Work

As discussed in previous chapters, initially our objective was to compare integration
effort and correctness also with the structured merge approach. However, we did not find
sufficiently mature tools for this purpose. Despite this limitation, we still were able to discuss
some insights about this on Section 4.5. So, as immediate future work, we plan to conduct a
complete comparative study involving the unstructured, semistructured and structured merge
approaches.

In addition, during this study we explored certain kinds os false positives and false
negatives. In particular, as establishing ground truth for integration conflicts, or more gener-
ally interference between development tasks, is non-trivial and would significantly reduce the
analysed sample, we have actually analysed, both analytically and empirically, which conflicts re-
ported by unstructured merge are not reported by semistructured merge, and vice versa. However,
it would also be important to know false positives and false negatives in general, those common
to both merge approaches. We want to identify interferences and inconsistencies generated by
dependencies between the development tasks and how the current merge approaches deal with
them. The focus is mainly on semantic interference and conflicts that are rarely detected and
require more integration effort. By having this knowledge, it would be possible to improve an
existing merge approach, or propose a new one. Additionally, experiments to measure required
effort for analysing, resolving or even discard conflicts, and also exploring others language than
just Java might be beneficial.

777777

References

ALEXANDRU, C.; GALL, H. Rapid Multi-Purpose, Multi-Commit Code Analysis. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 37. Proceedings. . .
[S.l.: s.n.], 2015. (ICSE ’15).

APEL, S. et al. Semistructured Merge: rethinking merge in revision control systems. In: ACM
SIGSOFT SYMPOSIUM AND THE 13TH EUROPEAN CONFERENCE ON FOUNDATIONS
OF SOFTWARE ENGINEERING, 19. Proceedings. . . ACM, 2011. (ESEC/FSE ’11).

APEL, S.; LENGAUER, C. Superimposition: a language-independent approach to software
composition. In: INTERNATIONAL CONFERENCE ON SOFTWARE COMPOSITION, 7.
Proceedings. . . Springer-Verlag, 2008. (SC’ 08).

APEL, S.; LESSENICH, O.; LENGAUER, C. Structured Merge with Auto-tuning: balancing
precision and performance. In: IEEE/ACM INTERNATIONAL CONFERENCE ON
AUTOMATED SOFTWARE ENGINEERING, 27. Proceedings. . . ACM, 2012. (ASE 2012).

APIWATTANAPONG, T.; ORSO, A.; HARROLD, M. J. JDiff: a differencing technique and
tool for object-oriented programs. Automated Software Engineering, [S.l.], 2007.

BERZINS, V. Software Merge: semantics of combining changes to programs. ACM Trans.
Program. Lang. Syst., [S.l.], 1994.

BINKLEY, D.; HORWITZ, S.; REPS, T. Program Integration for Languages with Procedure
Calls. ACM Transactions on Software Engineering and Methodology, [S.l.], 1995.

BIRD, C. et al. The Promises and Perils of Mining Git. In: IEEE INTERNATIONAL
WORKING CONFERENCE ON MINING SOFTWARE REPOSITORIES, 6. Proceedings. . .
IEEE Computer Society, 2009. (MSR ’09).

BIRD, C.; ZIMMERMANN, T. Assessing the Value of Branches with What-if Analysis. In:
ACM SIGSOFT 20TH INTERNATIONAL SYMPOSIUM ON THE FOUNDATIONS OF
SOFTWARE ENGINEERING. Proceedings. . . ACM, 2012. (FSE ’12).

BRINDESCU, C. et al. How Do Centralized and Distributed Version Control Systems Impact
Software Changes? In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING,
36. Proceedings. . . ACM, 2014. (ICSE 2014).

BRUN, Y. et al. Proactive Detection of Collaboration Conflicts. In: ACM SIGSOFT
SYMPOSIUM AND THE 13TH EUROPEAN CONFERENCE ON FOUNDATIONS OF
SOFTWARE ENGINEERING, 19. Proceedings. . . ACM, 2011. (ESEC/FSE ’11).

BUFFENBARGER, J. Syntactic Software Merging. In: Selected Papers from the ICSE
SCM-4 and SCM-5 Workshops, on Software Configuration Management. [S.l.]:
Springer-Verlag, 1995.

CAVALCANTI, G.; ACCIOLY, P.; BORBA, P. Assessing Semistructured Merge in Version
Control Systems: a replicated experiment. In: INTERNATIONAL SYMPOSIUM ON
EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT, 9. Proceedings. . . ACM,
2015. (ESEM ’15).

REFERENCES 78

CONRADI, R.; WESTFECHTEL, B. Version models for software configuration management.
ACM Computing Surveys (CSUR), [S.l.], v.30, n.2, p.232–282, 1998.

CVS. http://www.nongnu.org/cvs/.

DIFFUTILS. http://www.gnu.org/software/diffutils/.

ESTUBLIER, J. et al. Impact of the research community on the field of software configuration
management: summary of an impact project report. ACM SIGSOFT Software Engineering
Notes, [S.l.], v.27, n.5, p.31–39, 2002.

GIT. https://git-scm.com/.

GITHUB. https://github.com/.

GITMINER. URL: https://github.com/pridkett/gitminer.

GOGUEN, J. A.; MESEGUER, J. Security policies and security models. In: IEEE
SYMPOSIUM ON SECURITY AND PRIVACY. Anais. . . [S.l.: s.n.], 1982.

GOUSIOS, G.; PINZGER, M.; DEURSEN, A. v. An Exploratory Study of the Pull-based
Software Development Model. In: INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING, 36. Proceedings. . . ACM, 2014. (ICSE 2014).

GRASS, J. E. Cdiff: a syntax directed differencer for c++ programs. In: USENIX C++
CONFERENCE. Proceedings. . . USENIX Association, 1992.

GREMLIN. URL: https://github.com/tinkerpop/gremlin/.

GRINTER, R. E. Using a Configuration Management Tool to Coordinate Software
Development. In: CONFERENCE ON ORGANIZATIONAL COMPUTING SYSTEMS.
Proceedings. . . ACM, 1995. (COCS ’95).

GUIMARãES, M. L.; SILVA, A. R. Improving Early Detection of Software Merge Conflicts. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 34. Proceedings. . .
IEEE Press, 2012. (ICSE ’12).

HORWITZ, S.; PRINS, J.; REPS, T. Integrating Noninterfering Versions of Programs. ACM
Transactions on Programming Languages and Systems, [S.l.], 1989.

HUNT, J. W.; SZYMANSKI, T. G. A Fast Algorithm for Computing Longest Common
Subsequences. Communications of the ACM, [S.l.], 1977.

JACKSON, D.; LADD, D. A. Semantic Diff: a tool for summarizing the effects of modifications.
In: INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE. Proceedings. . .
IEEE Computer Society, 1994. (ICSM ’94).

JDT, E. http://www.eclipse.org/jdt/.

JGIT. URL: http://www.eclipse.org/jgit/.

KASI, B. K.; SARMA, A. Cassandra: proactive conflict minimization through optimized task
scheduling. In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 35.
Proceedings. . . IEEE Press, 2013. (ICSE ’13).

REFERENCES 79

KDIFF3. http://kdiff3.sourceforge.net/.

KHANNA, S.; KUNAL, K.; PIERCE, B. C. A Formal Investigation of Diff3. In:
INTERNATIONAL CONFERENCE ON FOUNDATIONS OF SOFTWARE TECHNOLOGY
AND THEORETICAL COMPUTER SCIENCE, 27. Proceedings. . . Springer-Verlag, 2007.
(FSTTCS’ 07).

MENS, T. A State-of-the-Art Survey on Software Merging. IEEE Transactions on Software
Engineering, [S.l.], 2002.

MERCURIAL. https://www.mercurial-scm.org/.

NAGAPPAN, M.; ZIMMERMANN, T.; BIRD, C. Diversity in Software Engineering Research.
In: JOINT MEETING ON FOUNDATIONS OF SOFTWARE ENGINEERING, 9.
Proceedings. . . ACM, 2013. (ESEC/FSE ’13).

NEO4J. URL: http://www.neo4j.org/.

NIU, N.; EASTERBROOK, S.; SABETZADEH, M. A category-theoretic approach to syntactic
software merging. In: SOFTWARE MAINTENANCE, 2005. ICSM’05. PROCEEDINGS OF
THE 21ST IEEE INTERNATIONAL CONFERENCE ON. Anais. . . IEEE, 2005. (ICSM ’05).

O’SULLIVAN, B. Making Sense of Revision-control Systems. Communications of the ACM,
[S.l.], 2009.

PERRY, D. E.; SIY, H. P.; VOTTA, L. G. Parallel Changes in Large-scale Software
Development: an observational case study. ACM Transactions on Software Engineering and
Methodology, [S.l.], 2001.

PRUDêNCIO, J. a. G. et al. To Lock, or Not to Lock: that is the question. Journal of Systems
and Software, [S.l.], 2012.

RIGBY, P. et al. Collaboration and Governance with Distributed Version Control. ACM
Transactions on Software Engineering and Methodology, [S.l.], v.5, 1996.

RODRIGUEZ, M. A. Graph databases: trends in the web of data. KRDB Trends in the Web of
Data School-Brixen/Bressanone, [S.l.], 2010.

SANTOS, R. d. S.; MURTA, L. G. P. Evaluating the Branch Merging Effort in Version Control
Systems. In: BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEERING, 26.
Proceedings. . . IEEE Computer Society, 2012. (SBES ’12).

SARMA, A.; REDMILES, D.; HOEK, A. van der. Palantir: early detection of development
conflicts arising from parallel code changes. IEEE Transactions on Software Engineering,
[S.l.], 2012.

SILVA, F. F. et al. Towards a Difference Detection Algorithm Aware of Refactoring-Related
Changes. In: INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND
SECURITY, 9. Proceedings. . . IEEE Computer Society, 2014. (ARES ’14).

SOURCEFORGE. http://sourceforge.net/.

REFERENCES 80

SOUZA, C. R. B. de; REDMILES, D.; DOURISH, P. "Breaking the Code", Moving Between
Private and Public Work in Collaborative Software Development. In: INTERNATIONAL ACM
SIGGROUP CONFERENCE ON SUPPORTING GROUP WORK, 2003. Proceedings. . .
ACM, 2003. (GROUP ’03).

SUBVERSION. https://subversion.apache.org/.

TICHY, W. F. RCS—a system for version control. Software: Practice and Experience, [S.l.],
v.15, n.7, p.637–654, 1985.

TICHY, W. F. Tools for Software Configuration Management. SCM, [S.l.], v.30, p.1–20, 1988.

WESTFECHTEL, B. Structure-oriented Merging of Revisions of Software Documents. In:
INTERNATIONAL WORKSHOP ON SOFTWARE CONFIGURATION MANAGEMENT, 3.
Proceedings. . . ACM, 1991. (SCM ’91).

WILCOXON, F.; WILCOX, R. A. Some rapid approximate statistical procedures. [S.l.]:
Lederle Laboratories, 1964.

WILHELM, R.; WACHTER, B. Abstract interpretation with applications to timing validation.
In: COMPUTER AIDED VERIFICATION. Anais. . . [S.l.: s.n.], 2008.

ZIMMERMANN, T. Mining Workspace Updates in CVS. In: FOURTH INTERNATIONAL
WORKSHOP ON MINING SOFTWARE REPOSITORIES. Proceedings. . . IEEE Computer
Society, 2007. (MSR ’07).

Appendix

828282

A
Replication Study Appendix

In this appendix we provide replication study of Chapter 3 sample projects characteristics
and evaluation results. We also provide online links to source code, repository, and data
mentioned in this work.

� Mining scripts: http://tinyurl.com/h33rczl

� Sample dataset: http://tinyurl.com/horttx7

� Semistructured merge tool and evaluation scripts: http://tinyurl.com/hxedzjk

http://tinyurl.com/h33rczl
http://tinyurl.com/horttx7
http://tinyurl.com/hxedzjk

83

Table A.1: Replication sample projects list and characteristics.

Name KLOC Collaborators Commits Merge Commits Conflicting
Merge Commits

Analysed Conflicting
Merge Commits Language

astropy 244 95 10532 1791 18 5 Python
atmosphere 84 81 5091 244 10 9 Java

Bukkit 67 106 1509 19 4 4 Java
cassandra 173 63 15427 4820 896 700 Java

clojure 95 101 2667 37 2 2 Java
cloudify 168 25 11048 213 14 14 Java

CruiseControl.NET 108 44 3746 197 3 1 C#
cxf 1.206 25 9824 71 1 1 Java

django 12 717 19232 557 15 7 Python
dropwizard 55 141 2502 256 8 7 Java

Dynamo 247 37 14362 3582 342 101 C#
edx-platform 67 181 27051 7448 212 120 Python
EventStore 269 35 3795 781 52 29 C#

flask 28 236 2082 288 13 5 Python
gradle 855 132 22418 555 77 77 Java

graylog2-server 142 35 2947 214 31 25 Java
infinispan 724 76 6792 23 5 5 Java
ipython 85 343 18366 3178 56 37 Python

jedis 34 71 962 192 40 40 Java
jsoup 33 33 754 42 5 3 Java
junit 47 89 1973 351 39 34 Java
kotlin 1.171 88 18762 504 39 36 Java

lucene-solr 1.751 23 13422 211 74 72 Java
matplotlib 180 275 13239 2041 135 62 Python

mct 217 13 975 199 13 13 Java
mockito 68 37 2363 38 4 4 Java

monodevelop 28 159 32583 1204 60 29 C#
Nancy 294 190 3979 670 27 15 C#
netty 295 132 6348 175 10 10 Java
nova 157 552 31320 13166 664 488 Python

NRefactory 62 29 4320 387 30 13 C#
NServiceBus 10 69 7488 742 70 39 C#

nupic 174 49 3499 976 23 22 Python
OG-Platform 2.035 33 26700 5278 445 432 Java
OpenRefine 526 21 1997 70 7 7 Java

opensimulator 191 62 21516 1582 15 4 C#
orientdb 435 60 8744 818 72 65 Java
pandas 342 314 10934 2278 44 12 Python
Questor 135 27 3316 256 33 21 C#

ReactiveUI 86 61 3072 210 22 7 C#
realm-java 86 18 2924 782 79 79 Java

Rebus 3.538 23 1382 118 10 7 C#
requests 31 324 3711 771 23 6 Python
retrofit 12 59 817 280 4 4 Java

roboguice 217 16 1049 78 14 14 Java
Rock 762 15 8612 1225 123 69 C#

RxJava 105 97 3230 419 25 25 Java
scrapy 56 124 4408 362 10 6 Python

SharpDevelop 176 66 14677 721 170 129 C#
SignalR 238 59 4363 346 12 2 C#
slapos 192 18 7375 643 32 31 Python

SparkleShare 64 122 4033 274 9 9 C#
sympy 298 316 20837 2936 184 77 Python

taiga-back 34 19 1474 95 3 2 Python
testrunner 58 39 7413 32 4 4 Python
tornado 42 158 2473 302 23 10 Python

Umbraco-CMS 110 124 5870 2032 258 159 C#
voldemort 283 54 3832 457 51 49 Java

WowPacketParser 6 45 3695 138 7 3 C#
zamboni 100 142 22386 2249 7 4 Python

Total 19.308 6698 522218 69924 4678 3266

84

Table A.2: Replication results on merge scenarios where semistructured merge reduced
the numbers.

Project Unstructured Semistructured Reduction

Textual conf. Conf. Lines Conf. Files Textual conf. Conf. Lines Conf. Files Textual conf. Conf. Lines Conf. Files

CruiseControl.NET - - - - - - - - -
Dynamo 246 56287 159 66 2808 27 73.17% 95.01% 83.02%

EventStore 88 4904 70 13 481 6 85.23% 90.19% 91.43%
monodevelop 403 206905 862 334 32210 543 17.12% 84.43% 37.01%

Nancy 9 525 9 3 154 3 66.67% 70.67% 66.67%
NRefactory 35 2124 27 5 97 3 85.71% 95.43% 88.89%

NServiceBus 89 4098 86 44 915 48 50.56% 77.67% 44.19%
opensimulator 3 20 1 1 5 0 66.67% 75.00% 100.00%

Questor 50 14634 19 40 11058 16 20.00% 24.44% 15.79%
ReactiveUI 33 281 31 1 27 1 96.97% 90.39% 96.77%

Rebus 11 341 11 2 31 2 81.82% 90.91% 81.82%
Rock 235 12861 124 53 1687 21 77.45% 86.88% 83.06%

SharpDevelop 1520 316147 1891 866 48903 774 43.03% 84.53% 59.07%
SignalR 1 6 1 0 0 0 100.00% 100.00% 100.00%

SparkleShare 5 615 1 1 227 0 80.00% 63.09% 100.00%
Umbraco-CMS 393 18692 214 199 4766 97 49.36% 74.50% 54.67%

WowPacketParser 9 587 3 4 40 0 55.56% 93.19% 100.00%
astropy 25 665 3 7 133 1 72.00% 80.00% 66.67%
django 9 548 8 0 22 0 100.00% 95.99% 100.00%

edx-platform 318 7535 172 159 2493 64 50.00% 66.91% 62.79%
flask 3 6 3 0 0 0 100.00% 100.00% 100.00%

ipython 40 4162 25 11 613 3 72.50% 85.27% 88.00%
matplotlib 227 6770 114 119 1922 53 47.58% 71.61% 53.51%

nova 776 36690 421 335 6743 146 56.83% 81.62% 65.32%
nupic 31 13840 18 10 2143 5 67.74% 84.52% 72.22%

pandas 24 131 9 12 19 0 50.00% 85.50% 100.00%
requests 10 358 6 5 45 2 50.00% 87.43% 66.67%
scrapy 5 20 5 0 0 0 100.00% 100.00% 100.00%
slapos 81 5567 44 39 661 20 51.85% 88.13% 54.55%
sympy 109 38934 171 28 16104 78 74.31% 58.64% 54.39%

taiga-back 9 257 3 1 5 1 88.89% 98.05% 66.67%
testrunner 14 1465 8 10 315 5 28.57% 78.50% 37.50%
tornado 15 110 15 1 5 1 93.33% 95.45% 93.33%
zamboni 2 36 2 0 2 0 100.00% 94.44% 100.00%

atmosphere 93 3901 26 63 976 17 32.26% 74.98% 34.62%
Bukkit 9 1464 26 2 321 12 77.78% 78.07% 53.85%

cassandra 1643 69395 616 852 16459 287 48.14% 76.28% 53.41%
clojure - - - - - - - - -

cloudify 138 4296 28 78 1287 17 43.48% 70.04% 39.29%
cxf - 219 - - 16 - - 92.69% -

dropwizard 11 472 5 1 55 1 90.91% 88.35% 80.00%
gradle 212 10583 154 72 1451 67 66.04% 86.29% 56.49%

graylog2-server 79 3040 58 28 560 27 64.56% 81.58% 53.45%
infinispan 89 1428 45 70 697 32 21.35% 51.19% 28.89%

jedis 115 5167 66 61 1571 19 46.96% 69.60% 71.21%
jsoup 5 76 2 1 9 0 80.00% 88.16% 100.00%
junit 111 4028 55 44 505 20 60.36% 87.46% 63.64%
kotlin 143 3466 55 67 749 32 53.15% 78.39% 41.82%

lucene-solr 1526 67849 669 1024 19484 431 32.90% 71.28% 35.58%
mct 21 1314 11 9 478 6 57.14% 63.62% 45.45%

mockito 76 992 31 6 72 3 92.11% 92.74% 90.32%
netty 158 11900 83 100 3780 50 36.71% 68.24% 39.76%

OG-Platform 2328 210562 1805 1304 46479 966 43.99% 77.93% 46.48%
OpenRefine 13 12189 51 11 2995 48 15.38% 75.43% 5.88%

orientdb 225 15640 157 109 3640 79 51.56% 76.73% 49.68%
realm-java 179 12069 106 115 3678 61 35.75% 69.53% 42.45%

retrofit 31 668 16 8 213 6 74.19% 68.11% 62.50%
roboguice 34 6237 49 20 1316 31 41.18% 78.90% 36.73%

RxJava 46 2822 30 6 76 4 86.96% 97.31% 86.67%
voldemort 297 30477 100 163 3418 68 45.12% 88.78% 32.00%

Average 62.30% 81.04% 65.51%
Median 60.36% 83.03% 63.64%

Standard Deviation 23.57% 13.52% 25.12%

85

Table A.3: Replication results on merge scenarios where unstructured merge reduced the
numbers.

Project Unstructured Semistructured Reduction

Textual Conf. Conf. Lines Conf. Files Textual Conf. Conf. Lines Conf. Files Textual Conf. Conf. Lines Conf. Files

CruiseControl.NET - - - - - - - - -
Dynamo 22 295 1 71 431 2 69.01% 31.55% 50.00%

EventStore 12 124 - 16 202 - 25.00% 38.61% -
monodevelop 493 36 - 747 98 - 34.00% 63.27% -

Nancy 3 4 - 4 14 - 25.00% 71.43% -
NRefactory - - - - - - - - -

NServiceBus 22 43 - 29 77 - 24.14% 44.16% -
opensimulator - 43 - - 66 - - 34.85% -

Questor 10 - - 14 - - 28.57% - -
ReactiveUI - - - - - - - - -

Rebus - - - - - - - - -
Rock 6 298 - 11 356 - 45.45% 16.29% -

SharpDevelop 517 44 - 780 85 - 33.72% 48.24% -
SignalR - - - - - - - - -

SparkleShare 20 18 - 23 24 - 13.04% 25% -
Umbraco-CMS 71 1163 - 106 1894 - 33.02% 38.60% -

WowPacketParser - - - - - - - - -
astropy 1 236 - 4 245 - 75.00% 3.67% -
django - - - - - - - - -

edx-platform 21 37 - 34 101 - 38.24% 63.37% -
flask - - - - - - - - -

ipython 6 18 0 26 29 1 76.92% 37.93% 100.00%
matplotlib 11 232 - 13 309 - 15.38% 24.92% -

nova 112 1357 1 226 3290 5 50.44% 58.75% 80.00%
nupic 9 56 - 41 87 - 78.05% 35.63% -

pandas 0 241 0 2 321 1 100.00% 24.92% 100.00%
requests 4 52 - 5 86 - 20.00% 39.53% -
scrapy - - - - - - - - -
slapos 3 - - 6 - - 50.00% - -
sympy 645 197 - 777 1743 - 16.99% 88.70% -

taiga-back - - - - - - - - -
testrunner - - - - - - - - -
tornado - - - - - - - - -
zamboni - - - - - - - - -

atmosphere - 72 - - 299 - - 75.92% -
Bukkit 18 - - 25 - - 28% - -

cassandra 93 5395 3 174 13284 5 46.55% 59.39% 40.00%
clojure - - - - - - - - -

cloudify 3 101 - 6 247 - 50.00% 59.11% -
cxf - - - - - - - - -

dropwizard 2 4 - 3 28 - 33.33% 85.71% -
gradle 22 126 - 32 244 - 31.25% 48.36% -

graylog2-server 20 290 - 33 405 - 39.39% 28.40% -
infinispan - - - - - - - - -

jedis 153 438 - 183 516 - 16.39% 15.12% -
jsoup - - - - - - - - -
junit - - - - - - - - -
kotlin 4 362 - 6 515 - 33.33% 29.71% -

lucene-solr 16 1030 - 32 2038 - 50.00% 49.46% -
mct 16 15 - 17 29 - 5.88% 48.28% -

mockito - - - - - - - - -
netty - - - - - - - - -

OG-Platform 915 2146 - 1675 3902 - 45.37% 45.00% -
OpenRefine 43 199 - 92 220 - 53.26% 9.55% -

orientdb 93 216 - 185 262 - 49.73% 17.56% -
realm-java 75 218 - 143 465 - 47.55% 53.12% -

retrofit 3 - - 4 - - 25.00% - -
roboguice 35 40 - 54 65 - 35.19% 38.46% -

RxJava 1 4 - 2 21 - 50.00% 80.95% -
voldemort 29 622 - 54 987 - 46.30% 36.98% -

Average 40.49% 43.62% 74%
Median 36.71% 39.07% 80.00%

Standard Deviation 20.10% 21.13% 27.93%

868686

B
Integration Effort and Correctnesses
Study Appendix

In this appendix we provide integration effort and correctness study of Chapter 4 sample
projects characteristics and evaluation results. We also provide online links to source code of the
implementations mentioned in this work.

� Mining scripts: http://tinyurl.com/zszeftr

� Semistructured merge tool and execution scripts: http://tinyurl.com/j8jp4dt

� Analysis scripts: http://tinyurl.com/gmxmyl3

http://tinyurl.com/zszeftr
http://tinyurl.com/j8jp4dt
http://tinyurl.com/gmxmyl3

87

Table B.1: Java sample project list and characteristics.

Name URL KLOC Collaborators Commits Merge Commits

Activiti https://github.com/Activiti/Activiti 387 112 5541 786
AndEngine https://github.com/nicolasgramlich/AndEngine 40.7 20 1800 115
andlytics https://github.com/AndlyticsProject/andlytics 48.5 27 1388 560

AntennaPod https://github.com/AntennaPod/AntennaPod 54.9 52 2368 519
antlr4 https://github.com/antlr/antlr4 11.4 48 4350 656

atmosphere https://github.com/Atmosphere/atmosphere 84 81 5091 244
BroadleafCommerce https://github.com/BroadleafCommerce/BroadleafCommerce 219 43 9292 898

Bukkit https://github.com/Bukkit/Bukkit 67 106 1509 19
cassandra https://github.com/apache/cassandra 173 63 15427 3360

cgeo https://github.com/cgeo/cgeo 53 77 8532 1890
clojure https://github.com/clojure/clojure 95 101 2667 37

closure-compiler https://github.com/google/closure-compiler 467 156 5880 233
cloudify https://github.com/CloudifySource/cloudify 168 25 11048 213

commafeed https://github.com/Athou/commafeed 20.2 65 2420 241
commons https://github.com/twitter/commons 67.5 82 1618 208

Conversations https://github.com/siacs/Conversations 39,2 60 2738 481
cxf https://github.com/apache/cxf 1.206 25 9824 71

deeplearning4j https://github.com/deeplearning4j/deeplearning4j 265 57 3161 731
dropwizard https://github.com/dropwizard/dropwizard 55 141 2502 256

Equivalent-Exchange-3 https://github.com/pahimar/Equivalent-Exchange-3 28.8 97 1955 387
Essentials https://github.com/essentials/Essentials 68.7 69 4328 572

gradle https://github.com/gradle/gradle 855 132 22418 554
graylog2-server https://github.com/Graylog2/graylog2-server 142 35 2947 212

groovy-core https://github.com/groovy/groovy-core 224.3 137 12377 678
infinispan https://github.com/danberindei/infinispan 724 76 6792 23

jedis https://github.com/xetorthio/jedis 34 71 962 192
jenkins https://github.com/jenkinsci/jenkins 996 366 21170 2008

jitsi https://github.com/jitsi/jitsi 381 37 12182 78
jsoup https://github.com/jhy/jsoup 33 33 754 42
junit https://github.com/junit-team/junit 47 89 1973 350
k-9 https://github.com/k9mail/k-9 103 135 5743 426

kotlin https://github.com/JetBrains/kotlin 1.171 88 18762 499
lucene-solr https://github.com/apache/lucene-solr 1.751 23 13422 209

mct https://github.com/nasa/mct 217 13 975 199
mockito https://github.com/mockito/mockito 68 37 2363 38

netty https://github.com/netty/netty 295 132 6348 175
OG-Platform https://github.com/OpenGamma/OG-Platform 2.035 33 26700 4522

okhttp https://github.com/square/okhttp 43.7 91 2003 1038
OpenRefine https://github.com/OpenRefine/OpenRefine 526 21 1997 70

OpenTripPlanner https://github.com/opentripplanner/OpenTripPlanner 124 69 8367 683
orientdb https://github.com/orientechnologies/orientdb 435 60 8744 817
Osmand https://github.com/osmandapp/Osmand 646 302 22939 3864

realm-java https://github.com/realm/realm-java 86 18 2924 782
retrofit https://github.com/square/retrofit 12 59 817 280

roboguice https://github.com/roboguice/roboguice 217 16 1049 73
robolectric https://github.com/robolectric/robolectric 74.4 246 5041 1463

rstudio https://github.com/rstudio/rstudio 494 34 13592 549
RxJava https://github.com/ReactiveX/RxJava 105 97 3230 418
Spout https://github.com/SpoutDev/Spout 70.5 66 5912 854

voldemort https://github.com/voldemort/voldemort 283 54 3832 457

Total 15.058 339774 34030

88

Table B.2: False positives added by semistructured merge in terms of merge scenarios.

Project Merge Scenarios Merge Scenarios with
Renaming or Deletion Conflicts (%)

Activiti 786 10 1.27
AndEngine 115 4 3.48
andlytics 560 5 0.89

AntennaPod 519 11 2.12
antlr4 656 21 3.2

atmosphere 244 6 2.46
BroadleafCommerce 898 57 6.35

Bukkit 19 2 10.53
cassandra 3360 299 8.9

cgeo 1890 46 2.43
clojure 37 1 2.7

closure-compiler 233 0 0
cloudify 213 5 2.35

commafeed 241 0 0
commons 208 0 0

Conversations 481 1 0.21
cxf 71 2 2.82

deeplearning4j 731 13 1.78
dropwizard 256 3 1.17

Equivalent-Exchange-3 387 1 0.26
Essentials 572 0 0

gradle 554 33 5.96
graylog2-server 212 11 5.19

groovy-core 678 22 3.24
infinispan 23 1 4.35

jedis 192 13 6.77
jenkins 2008 19 0.95

jitsi 78 2 2.56
jsoup 42 0 0
junit 350 7 2
k-9 426 18 4.23

kotlin 499 16 3.21
lucene-solr 209 40 19.14

mct 199 2 1.01
mockito 38 1 2.63

netty 175 5 2.86
OG-Platform 4522 176 3.89

okhttp 1038 2 0.19
OpenRefine 70 0 0

OpenTripPlanner 683 45 6.59
orientdb 817 23 2.82
Osmand 3864 14 0.36

realm-java 782 25 3.2
retrofit 280 2 0.71

roboguice 73 9 12.33
rstudio 1463 6 0.41
rundeck 549 2 0.36
RxJava 418 6 1.44
Spout 854 14 1.64

voldemort 457 23 5.03

Total 34030 1024 3.01
Mean 3.12

Standard Deviation 3.55

89

Table B.3: False positives added by semistructured merge in terms of conflicts.

Project Conflicts Renaming or Deletion Conflicts (%)
Activiti 123 56 45.53

AndEngine 37 4 10.81
andlytics 49 16 32.65

AntennaPod 152 84 55.26
antlr4 115 58 50.43

atmosphere 89 10 11.24
BroadleafCommerce 516 158 30.62

Bukkit 12 8 66.67
cassandra 4191 788 18.8

cgeo 235 88 37.45
clojure 5 1 20

closure-compiler 1 0 0
cloudify 154 31 20.13

commafeed 1 0 0
commons 0 0 0

Conversations 25 1 4
cxf 45 9 20

deeplearning4j 100 25 25
dropwizard 9 3 33.33

Equivalent-Exchange-3 78 67 85.9
Essentials 20 0 0

gradle 159 67 42.14
graylog2-server 78 37 47.44

groovy-core 193 124 64.25
infinispan 71 18 25.35

jedis 280 59 21.07
jenkins 178 35 19.66

jitsi 21 7 33.33
jsoup 1 0 0
junit 58 14 24.14
k-9 188 98 52.13

kotlin 112 28 25
lucene-solr 1171 278 23.74

mct 40 2 5
mockito 6 1 16.67

netty 111 72 64.86
OG-Platform 3572 2224 62.26

okhttp 9 3 33.33
OpenRefine 138 0 0

OpenTripPlanner 513 226 44.05
orientdb 445 134 30.11
Osmand 216 30 13.89

realm-java 303 138 45.54
retrofit 13 5 38.46

roboguice 105 56 53.33
rstudio 72 9 12.5
rundeck 16 10 62.5
RxJava 31 10 32.26
Spout 139 42 30.22

voldemort 348 67 19.25

Total 14544 5201 35.76
Mean 30.21

Standard Deviation 20.68

90

Table B.4: False positives added by unstructured merge in terms of merge scenarios.

Project Merge Scenarios Merge Scenarios with
Ordering Conflicts (%)

Activiti 786 22 2.8
AndEngine 115 4 3.48
andlytics 560 9 1.61

AntennaPod 519 17 3.28
antlr4 656 21 3.2

atmosphere 244 7 2.87
BroadleafCommerce 898 123 13.7

Bukkit 19 3 15.79
cassandra 3360 455 13.54

cgeo 1890 77 4.07
clojure 37 0 0

closure-compiler 233 0 0
cloudify 213 7 3.29

commafeed 241 1 0.41
commons 208 1 0.48

Conversations 481 7 1.46
cxf 71 2 2.82

deeplearning4j 731 46 6.29
dropwizard 256 5 1.95

Equivalent-Exchange-3 387 1 0.26
Essentials 572 2 0.35

gradle 554 51 9.21
graylog2-server 212 21 9.91

groovy-core 678 32 4.72
infinispan 23 3 13.04

jedis 192 23 11.98
jenkins 2008 66 3.29

jitsi 78 2 2.56
jsoup 42 4 9.52
junit 350 22 6.29
k-9 426 27 6.34

kotlin 499 26 5.21
lucene-solr 209 48 22.97

mct 199 5 2.51
mockito 38 3 7.89

netty 175 7 4
OG-Platform 4522 257 5.68

okhttp 1038 2 0.19
OpenRefine 70 2 2.86

OpenTripPlanner 683 82 12.01
orientdb 817 44 5.39
Osmand 3864 51 1.32

realm-java 782 49 6.27
retrofit 280 2 0.71

roboguice 73 9 12.33
rstudio 1463 42 2.87
rundeck 549 5 0.91
RxJava 418 23 5.5
Spout 854 29 3.4

voldemort 457 31 6.78

Total 34030 1778 5.22
Mean 5.35

Standard Deviation 4.85

91

Table B.5: False positives added by unstructured merge in terms of conflicts.

Project Conflicts Ordering Conflicts (%)

Activiti 166 59 35.54
AndEngine 39 23 58.97
andlytics 82 29 35.37

AntennaPod 142 0 0
antlr4 127 45 35.43

atmosphere 118 50 42.37
BroadleafCommerce 851 299 35.14

Bukkit 12 3 25
cassandra 6796 1496 22.01

cgeo 304 136 44.74
clojure 4 4 100

closure-compiler 0 0 0
cloudify 163 69 42.33

commafeed 2 1 50
commons 1 0 0

Conversations 21 21 100
cxf 77 24 31.17

deeplearning4j 253 69 27.27
dropwizard 19 6 31.58

Equivalent-Exchange-3 68 11 16.18
Essentials 23 0 0

gradle 288 71 24.65
graylog2-server 145 30 20.69

groovy-core 215 56 26.05
infinispan 90 53 58.89

jedis 293 155 52.9
jenkins 429 121 28.21

jitsi 29 10 34.48
jsoup 7 1 14.29
junit 134 39 29.1
k-9 266 73 27.44

kotlin 171 70 40.94
lucene-solr 1677 833 49.67

mct 44 38 86.36
mockito 57 5 8.77

netty 167 31 18.56
OG-Platform 3066 1235 40.28

okhttp 6 4 66.67
OpenRefine 59 59 100

OpenTripPlanner 649 241 37.13
orientdb 509 240 47.15
Osmand 311 180 57.88

realm-java 322 126 39.13
retrofit 35 6 17.14

roboguice 100 49 49
rstudio 145 58 40
rundeck 18 5 27.78
RxJava 76 21 27.63
Spout 224 91 40.62

voldemort 438 268 61.19

Total 19238 6514 33.86
Mean 38.11

Standard Deviation 23.49

92

Table B.6: False negatives added by semistructured merge in terms of merge scenarios.

Project Merge Scenarios Merge Scenarios with
Type Ambiguity Error

Merge Scenarios with
New Artefact Referencing

Edited One
(%)

Activiti 786 0 0 0
AndEngine 115 0 0 0
andlytics 560 0 0 0

AntennaPod 519 0 4 0.77
antlr4 656 0 1 0.15

atmosphere 244 0 0 0
BroadleafCommerce 898 0 4 0.45

Bukkit 19 0 0 0
cassandra 3360 2 8 0.3

cgeo 1890 0 0 0
clojure 37 0 0 0

closure-compiler 233 0 0 0
cloudify 213 0 0 0

commafeed 241 0 0 0
commons 208 0 0 0

Conversations 481 0 0 0
cxf 71 0 0 0

deeplearning4j 731 0 0 0
dropwizard 256 0 0 0

Equivalent-Exchange-3 387 0 0 0
Essentials 572 0 0 0

gradle 554 0 1 0.18
graylog2-server 212 0 2 0.94

groovy-core 678 0 1 0.15
infinispan 23 0 0 0

jedis 192 0 1 0.52
jenkins 2008 0 2 0.1

jitsi 78 0 0 0
jsoup 42 0 0 0
junit 350 0 0 0
k-9 426 0 0 0

kotlin 499 0 0 0
lucene-solr 209 0 5 2.39

mct 199 0 1 0.5
mockito 38 0 0 0

netty 175 0 1 0.57
OG-Platform 4522 1 13 0.31

okhttp 1038 0 0 0
OpenRefine 70 0 0 0

OpenTripPlanner 683 0 3 0.44
orientdb 817 0 5 0.61
Osmand 3864 0 1 0.03

realm-java 782 0 0 0
retrofit 280 0 0 0

roboguice 73 0 0 0
rstudio 1463 0 0 0
rundeck 549 0 0 0
RxJava 418 0 0 0
Spout 854 0 1 0.12

voldemort 457 0 2 0.44

Total 34030 3 56 0.17
Mean 0.18

Standard Deviation 0.39

93

Table B.7: False negatives added by semistructured merge in terms of conflicts.

Project Conflicts Type Ambiguity Errors New Artefact Referencing
Edited One (%)

Activiti 123 0 0 0
AndEngine 37 0 0 0
andlytics 49 0 0 0

AntennaPod 152 0 166 52.2
antlr4 115 0 2 1.71

atmosphere 89 0 0 0
BroadleafCommerce 516 0 18 3.37

Bukkit 12 0 0 0
cassandra 4191 14 194 4.75

cgeo 235 0 0 0
clojure 5 0 0 0

closure-compiler 1 0 0 0
cloudify 154 0 0 0

commafeed 1 0 0 0
commons 0 0 0 0

Conversations 25 0 0 0
cxf 45 0 0 0

deeplearning4j 100 0 0 0
dropwizard 9 0 0 0

Equivalent-Exchange-3 78 0 0 0
Essentials 20 0 0 0

gradle 159 0 1 0.62
graylog2-server 78 0 2 2.5

groovy-core 193 0 1 0.52
infinispan 71 0 0 0

jedis 280 0 1 0.36
jenkins 178 0 2 1.11

jitsi 21 0 0 0
jsoup 1 0 0 0
junit 58 0 0 0
k-9 188 0 0 0

kotlin 112 0 0 0
lucene-solr 1171 0 10 0.85

mct 40 0 2 4.76
mockito 6 0 0 0

netty 111 0 1 0.89
OG-Platform 3572 1 111 3.04

okhttp 9 0 0 0
OpenRefine 138 0 0 0

OpenTripPlanner 513 0 5 0.97
orientdb 445 0 8 1.77
Osmand 216 0 1 0.46

realm-java 303 0 0 0
retrofit 13 0 0 0

roboguice 105 0 0 0
rstudio 72 0 0 0
rundeck 16 0 0 0
RxJava 31 0 0 0
Spout 139 0 1 0.71

voldemort 348 0 9 2.52

Total 14544 15 535 3.78
Mean 1.66

Standard Deviation 7.32

94

Table B.8: False negatives added by unstructured merge in terms of merge scenarios.

Project Merge Scenarios Merge Scenarios with
Duplicated Declaration Errors (%)

Activiti 786 3 0.38
AndEngine 115 3 2.61
andlytics 560 2 0.36

AntennaPod 519 1 0.19
antlr4 656 4 0.61

atmosphere 244 4 1.64
BroadleafCommerce 898 14 1.56

Bukkit 19 1 5.26
cassandra 3360 58 1.73

cgeo 1890 6 0.32
clojure 37 0 0

closure-compiler 233 1 0.43
cloudify 213 5 2.35

commafeed 241 0 0
commons 208 0 0

Conversations 481 0 0
cxf 71 2 2.82

deeplearning4j 731 3 0.41
dropwizard 256 0 0

Equivalent-Exchange-3 387 0 0
Essentials 572 3 0.52

gradle 554 8 1.44
graylog2-server 212 2 0.94

groovy-core 678 4 0.59
infinispan 23 0 0

jedis 192 4 2.08
jenkins 2008 16 0.8

jitsi 78 3 3.85
jsoup 42 0 0
junit 350 4 1.14
k-9 426 3 0.7

kotlin 499 2 0.4
lucene-solr 209 3 1.44

mct 199 0 0
mockito 38 0 0

netty 175 1 0.57
OG-Platform 4522 31 0.69

okhttp 1038 1 0.1
OpenRefine 70 1 1.43

OpenTripPlanner 683 9 1.32
orientdb 817 15 1.84
Osmand 3864 4 0.1

realm-java 782 14 1.79
retrofit 280 1 0.36

roboguice 73 0 0
rstudio 1463 2 0.14
rundeck 549 1 0.18
RxJava 418 0 0
Spout 854 3 0.35

voldemort 457 3 0.66

Total 34030 245 0.72
Mean 0.88

Standard Deviation 1.07

95

Table B.9: False negatives added by unstructured merge in terms of conflicts.

Project Conflicts Duplicated Declaration Errors (%)

Activiti 166 8 4.6
AndEngine 39 10 20.41
andlytics 82 4 4.65

AntennaPod 142 2 1.39
antlr4 127 12 8.63

atmosphere 118 29 19.73
BroadleafCommerce 851 59 6.48

Bukkit 12 1 7.69
cassandra 6796 1907 21.91

cgeo 304 11 3.49
clojure 4 0 0

closure-compiler 0 4 100
cloudify 163 54 24.88

commafeed 2 0 0
commons 1 0 0

Conversations 21 0 0
cxf 77 12 13.48

deeplearning4j 253 6 2.32
dropwizard 19 0 0

Equivalent-Exchange-3 68 0 0
Essentials 23 23 50

gradle 288 21 6.8
graylog2-server 145 11 7.05

groovy-core 215 13 5.7
infinispan 90 0 0

jedis 293 66 18.38
jenkins 429 22 4.88

jitsi 29 4 12.12
jsoup 7 0 0
junit 134 5 3.6
k-9 266 17 6.01

kotlin 171 14 7.57
lucene-solr 1677 60 3.45

mct 44 0 0
mockito 57 0 0

netty 167 8 4.57
OG-Platform 3066 113 3.55

okhttp 6 2 25
OpenRefine 59 27 31.4

OpenTripPlanner 649 46 6.62
orientdb 509 71 12.24
Osmand 311 6 1.89

realm-java 322 39 10.8
retrofit 35 2 5.41

roboguice 100 0 0
rstudio 145 5 3.33
rundeck 18 1 5.26
RxJava 76 0 0
Spout 224 6 2.61

voldemort 438 13 2.88

Total 19238 2714 14.10
Mean 9.62

Standard Deviation 16.12

96

Table B.10: Spacing conflicts in terms of merge scenarios.

Project Merge Scenarios Merge Scenarios with Spacing Conflicts (%)
Activiti 786 8 1.02

AndEngine 115 1 0.87
andlytics 560 6 1.07

AntennaPod 519 7 1.35
antlr4 656 4 0.61

atmosphere 244 4 1.64
BroadleafCommerce 898 23 2.56

Bukkit 19 1 5.26
cassandra 3360 55 1.64

cgeo 1890 5 0.26
clojure 37 0 0

closure-compiler 233 0 0
cloudify 213 5 2.35

commafeed 241 0 0
commons 208 0 0

Conversations 481 2 0.42
cxf 71 2 2.82

deeplearning4j 731 7 0.96
dropwizard 256 0 0

Equivalent-Exchange-3 387 1 0.26
Essentials 572 4 0.7

gradle 554 2 0.36
graylog2-server 212 2 0.94

groovy-core 678 13 1.92
infinispan 23 0 0

jedis 192 13 6.77
jenkins 2008 5 0.25

jitsi 78 0 0
jsoup 42 0 0
junit 350 6 1.71
k-9 426 8 1.88

kotlin 499 4 0.8
lucene-solr 209 13 6.22

mct 199 3 1.51
mockito 38 1 2.63

netty 175 2 1.14
OG-Platform 4522 76 1.68

okhttp 1038 0 0
OpenRefine 70 3 4.29

OpenTripPlanner 683 20 2.93
orientdb 817 10 1.22
Osmand 3864 10 0.26

realm-java 782 17 2.17
retrofit 280 1 0.36

roboguice 73 3 4.11
rstudio 1463 7 0.48
rundeck 549 1 0.18
RxJava 418 1 0.24
Spout 854 6 0.7

voldemort 457 20 4.38

Total 34030 382 1.12
Mean 1.46

Standard Deviation 1.63

97

Table B.11: Spacing conflicts in terms of conflicts. (Based on the number of reported
conflicts of Semistructured Merge)

Project Conflicts Spacing Conflicts (%)
Activiti 123 12 9.76

AndEngine 37 2 5.41
andlytics 49 12 24.49

AntennaPod 152 44 28.95
antlr4 115 12 10.43

atmosphere 89 6 6.74
BroadleafCommerce 516 66 12.79

Bukkit 12 5 41.67
cassandra 4191 172 4.1

cgeo 235 7 2.98
clojure 5 0 0

closure-compiler 1 0 0
cloudify 154 50 32.47

commafeed 1 0 0
commons 0 0 0

Conversations 25 4 16
cxf 45 2 4.44

deeplearning4j 100 18 18
dropwizard 9 0 0

Equivalent-Exchange-3 78 2 2.56
Essentials 20 6 30

gradle 159 2 1.26
graylog2-server 78 4 5.13

groovy-core 193 44 22.8
infinispan 71 0 0

jedis 280 83 29.64
jenkins 178 6 3.37

jitsi 21 0 0
jsoup 1 0 0
junit 58 9 15.52
k-9 188 42 22.34

kotlin 112 7 6.25
lucene-solr 1171 45 3.84

mct 40 4 10
mockito 6 1 16.67

netty 111 2 1.8
OG-Platform 3572 259 7.25

okhttp 9 0 0
OpenRefine 138 39 28.26

OpenTripPlanner 513 30 5.85
orientdb 445 32 7.19
Osmand 216 35 16.2

realm-java 303 35 11.55
retrofit 13 1 7.69

roboguice 105 6 5.71
rstudio 72 7 9.72
rundeck 16 2 12.5
RxJava 31 1 3.23
Spout 139 37 26.62

voldemort 348 43 12.36

Total 14544 1196 8.22
Mean 10.87

Standard Deviation 10.44

98

Table B.12: Consecutive lines conflicts in terms of merge scenarios.

Project Merge Scenarios Merge Scenarios with
Consecutive Lines Conflicts (%)

Activiti 786 9 1.15
AndEngine 115 1 0.87
andlytics 560 5 0.89

AntennaPod 519 9 1.73
antlr4 656 7 1.07

atmosphere 244 2 0.82
BroadleafCommerce 898 42 4.68

Bukkit 19 0 0
cassandra 3360 240 7.14

cgeo 1890 31 1.64
clojure 37 2 5.41

closure-compiler 233 0 0
cloudify 213 5 2.35

commafeed 241 0 0
commons 208 0 0

Conversations 481 2 0.42
cxf 71 0 0

deeplearning4j 731 10 1.37
dropwizard 256 1 0.39

Equivalent-Exchange-3 387 0 0
Essentials 572 4 0.7

gradle 554 19 3.43
graylog2-server 212 9 4.25

groovy-core 678 8 1.18
infinispan 23 3 13.04

jedis 192 16 8.33
jenkins 2008 20 1

jitsi 78 1 1.28
jsoup 42 1 2.38
junit 350 10 2.86
k-9 426 10 2.35

kotlin 499 8 1.6
lucene-solr 209 23 11

mct 199 7 3.52
mockito 38 2 5.26

netty 175 3 1.71
OG-Platform 4522 120 2.65

okhttp 1038 0 0
OpenRefine 70 4 5.71

OpenTripPlanner 683 28 4.1
orientdb 817 28 3.43
Osmand 3864 18 0.47

realm-java 782 25 3.2
retrofit 280 1 0.36

roboguice 73 3 4.11
rstudio 1463 10 0.68
rundeck 549 0 0
RxJava 418 0 0
Spout 854 12 1.41

voldemort 457 31 6.78

Total 34030 790 2.32
Mean 2.53

Standard Deviation 2.84

99

Table B.13: Consecutive lines conflicts in terms of conflicts. (Based on the number of
reported conflicts of Semistructured Merge)

Project Conflicts Consecutive Lines Conflicts (%)
Activiti 123 15 12.2

AndEngine 37 1 2.7
andlytics 49 9 18.37

AntennaPod 152 24 15.79
antlr4 115 15 13.04

atmosphere 89 7 7.87
BroadleafCommerce 516 84 16.28

Bukkit 12 0 0
cassandra 4191 451 10.76

cgeo 235 56 23.83
clojure 5 4 80

closure-compiler 1 0 0
cloudify 154 35 22.73

commafeed 1 0 0
commons 0 0 0

Conversations 25 2 8
cxf 45 0 0

deeplearning4j 100 15 15
dropwizard 9 1 11.11

Equivalent-Exchange-3 78 0 0
Essentials 20 4 20

gradle 159 22 13.84
graylog2-server 78 12 15.38

groovy-core 193 11 5.7
infinispan 71 5 7.04

jedis 280 69 24.64
jenkins 178 29 16.29

jitsi 21 1 4.76
jsoup 1 1 100
junit 58 14 24.14
k-9 188 15 7.98

kotlin 112 13 11.61
lucene-solr 1171 54 4.61

mct 40 27 67.5
mockito 6 2 33.33

netty 111 7 6.31
OG-Platform 3572 228 6.38

okhttp 9 0 0
OpenRefine 138 13 9.42

OpenTripPlanner 513 67 13.06
orientdb 445 54 12.13
Osmand 216 29 13.43

realm-java 303 43 14.19
retrofit 13 5 38.46

roboguice 105 3 2.86
rstudio 72 12 16.67
rundeck 16 0 0
RxJava 31 0 0
Spout 139 19 13.67

voldemort 348 58 16.67

Total 14544 1536 10.56
Mean 15.56

Standard Deviation 19.25

100

Figure B.1: Boxplots describing false positives added by unstructured/semistructured
merge per project in terms of merge scenarios and conflicts in relation to Structured

Merge.

(a)

(b)
Source: the authors.

	Introduction
	Background
	Version Control Systems
	Merging Software Artefacts
	Unstructured merge tools
	Semistructured merge tools

	Checking Interference
	False positives added by Unstructured Merge
	False positives added by Semitructured Merge
	False negatives added by Semistructured Merge
	False negatives added by Unstructured Merge

	Replication Study
	Replication Design
	Mining Step
	Execution Step

	Evaluation Results
	Discussion
	Semistructured merge play to its strengths
	Semistructured keeps or increases the number of conflicts

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Integration Effort and Correctness
	Empirical Evaluation
	Experimental Setup
	Mining Step
	Execution and Analysis Steps
	False Negatives Added by Unstructured Merge — FNa(UN)
	Maximum Number of False Negatives Added by Semistructured Merge — FNa(SS)
	Maximum Number of False Positives Added by Semistructured Merge — FPa(SS)
	Minimum Number of False Positives Added by Unstructured Merge — FPa(UN)

	Evaluation Results
	When compared to unstructured merge, does semistructured merge reduce unnecessary integration effort?
	When compared to unstructured merge, does semistructured merge compromise integration correctness by missing more task interferences?

	Discussion
	Integration Effort
	Correctness
	Unstructured or Semistructured merge?

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	The Structured Merge Approach

	Conclusions
	Contributions
	Related Work
	Future Work

	References
	Appendix
	Replication Study Appendix
	Integration Effort and Correctnesses Study Appendix

