
Universidade Federal de Pernambuco

Centro de Informática

Pós-graduação em Ciência da Computação

DATAFLOW ANALYSIS FOR SOFTWARE

PRODUCT LINES

Társis Wanderley Tolêdo

DISSERTAÇÃO DE MESTRADO

Recife - PE

21 de fevereiro de 2013

Universidade Federal de Pernambuco

Centro de Informática

Társis Wanderley Tolêdo

DATAFLOW ANALYSIS FOR SOFTWARE PRODUCT LINES

Trabalho apresentado ao Programa de Pós-graduação em

Ciência da Computação do Centro de Informática da Uni-

versidade Federal de Pernambuco como requisito parcial

para obtenção do grau de Mestre em Ciência da Com-

putação.

Orientador: Paulo Henrique Monteiro Borba

Recife - PE

21 de fevereiro de 2013

ACKNOWLEDGEMENTS

À minha famı́lia pelo apoio nos momentos em que precisei e pela compreensão nos

momentos em que precisou e não pude estar lá para apoiá-la.

Ao professor Paulo Borba pela indiscut́ıvel competência com que orienta seus alunos.

A todos os amigos que contribúıram para a conclusão deste trabalho: Henrique Rebêlo,

Jean Melo, Jefferson Almeida, Láıs Neves, Leopoldo Teixeira, Paola Accioly, Rodrigo

Andrade e em especial Márcio Ribeiro, com quem pude dividir tantas conquistas.

Agradeço ainda aos professores Claus Brabrand e Eric Bodden pela brilhante forma

de construir e compartilhar conhecimento.

v

RESUMO

Linhas de produto de software (LPS) são frequentemente constrúıdas com o uso de

diretivas de pré-processador como #ifdefs, por exemplo, para implementar a variabilidade

das features. Estas diretivas impedem o uso de técnicas de análise de fluxo de dados e

forçam os desenvolvedores a gerar de forma expĺıcita todos os produtos da linha a fim

de analisá-los individualmente. Devido à natureza combinatorial do número de produtos

em uma LPS, isto rapidamente se torna impraticável. Neste trabalho, demonstra-se

como dois frameworks de análise de fluxo de dados podem ser transformados para dar

suporte à análise de fluxo de dados senśıvel a features sem a necessidade de utilizar-

se de força-bruta e gerar todos os produtos da linha explicitamente. Especificamente,

descreve-se quatro maneiras diferentes de se implementar análises de fluxo de dados

intraprocedural senśıveis a features dentro do framework de Killdall para análise estática;

e também como análises interprocedurais pode ser transformadas em análises senśıveis

a features dentro do framework IFDS. O desempenho das técnicas propostas é avaliado

através de experimentos que envolvem aplicar análises senśıveis à features em quatro LPS.

Através destes experimentos, apresenta-se evidência de que é posśıvel conseguir um ganho

significativo no desempenho das análises ao utilizar as técnicas propostas.

Palavras-chave: Linhas de Produtos de Software, Pré-processadores, Análise de fluxo

de dados.

vii

ABSTRACT

Software product lines (SPLs) that use preprocessor directives such as #ifdefs to define

code-level variability suffer from the lack of techniques of dataflow analyses. Developers are

forced to explicitly generate all products from the SPL in order to apply dataflow analyses.

That quickly becomes prohibitive as the number of possible products increases due to the

combinatorial nature of SPLs. In this work, we describe how two different dataflow analysis

frameworks, Kildall’s and IFDS, are lifted to support feature-sensitive dataflow analyses

without using brute-force to explicitly generate all possible products in the product line.

Specifically, we describe four different ways of implementing intraprocedural analyses within

Kildall’s framework that are feature-sensitive; and how interprodecural dataflow analyses

can also be lifted to feature-sensitivity within the IFDS framework. We experimented

with the performance of the proposed techniques by applying feature-sensitive dataflow

analyses to four different SPLs. We found that it is possible to significantly speed up

intraprocedural and interprocedural analyses, the latter by several orders of magnitude.

Keywords: Software Product Lines, Preprocessors, Dataflow analysis

ix

CONTENTS

Chapter 1—Introduction 1

1.1 Outline . 2

Chapter 2—Background 3

2.1 Software Product Lines . 3

2.2 Preprocessors . 4

2.3 Intraprocedural Dataflow Analysis . 6

2.3.1 Control flow graph . 6

2.3.2 Lattice . 6

2.3.3 Transfer functions . 7

2.3.4 Reaching definitions . 8

2.3.5 Intraprocedural dataflow analysis with Soot 9

2.4 Interprocedural dataflow analysis with IFDS 12

Chapter 3—Feature-sensitive intraprocedural dataflow analysis 17

3.1 Motivation . 17

3.2 Consecutive . 18

3.2.1 Implementation . 22

3.3 Simultaneous . 26

3.3.1 Implementation . 27

3.4 Shared simultaneous . 30

3.4.1 Implementation . 30

3.5 Reversed shared simultaneous . 35

3.5.1 Implementation . 35

3.6 Evaluation . 40

3.6.1 Study settings . 40

xi

xii CONTENTS

3.6.2 Previous experiments . 41

3.6.3 Revisiting the experiments . 43

3.6.4 Results discussion . 44

3.6.5 No JIT results discussion . 48

3.6.5.1 Benchmark 1: GPL . 52

3.6.5.2 Benchmark 2: MobileMedia08 55

3.6.5.3 Benchmark 3: Lampiro 57

3.6.5.4 Benchmark 4: BerkeleyDB 58

3.6.6 Synthetic benchmarks . 61

3.6.7 Evaluation summary . 67

3.7 Threats to validity . 67

Chapter 4—Feature-sensitive interprocedural dataflow analysis for SPL 69

4.1 Motivation . 69

4.2 Lifting IFDS-based analyses . 70

4.3 Evaluation . 74

4.3.1 Study settings . 74

4.3.2 Results discussion . 76

4.4 Threats to validity . 78

Chapter 5—Related Work 81

Chapter 6—Concluding Remarks 83

6.1 Summary of contributions . 84

6.2 Limitations . 84

6.3 Future work . 85

LIST OF FIGURES

2.1 A simple feature diagram. 4

2.2 A toy program and its CFG. 7

2.3 A Hasse diagram representing a lattice with all the possible assignments in

our toy program. 7

2.4 The effect of applying a transfer function of an assignment to the ⊥ lattice

value. 8

2.5 The assignment x = 0 does not reach the skip statement. All paths from

the assignment to the skip statement contains new assignments to x. . . . 8

2.6 An interprocedural control flow graph. 12

2.7 Transfer function encoding in IFDS. 13

2.8 An exploded super-graph showcasing the taint analysis. 15

3.1 Partial CFG with one node instrumented. 19

3.2 A statement with a nested complex conditional expression. 19

3.3 Result of the reaching definitions analysis using the consecutive approach. . 21

3.4 Result of the reaching definitions analysis using the simultaneous approach. 27

3.5 Result of the reaching definitions analysis using the shared approach. . . . 31

3.6 Result of the reaching definitions analysis using the reversed shared approach. 36

3.7 Histogram of the number of configurations of methods in the GPL benchmark. 41

3.8 Histogram of the number of configurations of methods in the MobileMedia08

benchmark. 42

3.9 Histogram of the number of configurations of methods in the Lampiro

benchmark. 42

3.10 Histogram of the number of configurations of methods in the BerkeleyDB

benchmark. 43

3.11 Median (over the 10 runs) of the sums of the analysis time of methods in

each benchmark . 46

xiii

xiv LIST OF FIGURES

3.12 Time measurements of the consecutive analysis on one method in the GPL

benchmark. This is the method with the largest number of configurations

in GPL: 106. 47

3.13 Time measurements of the consecutive analysis on one method in the GPL

benchmark with the JIT compiler disabled. This is the method with the

largest number of configurations in GPL: 106. 49

3.14 Time measurements of all approaches on a method with 2 configurations

and 5 statements. Variations are easily spotted in the measurements of all

approaches. 49

3.15 Sum of medians of analysis time in the benchmarks, with the JIT compiler

disabled. 50

3.16 Number of times each approach performed the fastest on methods with 2

configurations in the GPL benchmark, averaged over the 10 runs. 52

3.17 Number of times each approach performed the fastest on methods with 4

configurations in the GPL benchmark, averaged over the 10 runs. 54

3.18 Number of times each approach performed the fastest on methods with

more than 4 configurations in the GPL benchmark, averaged over the 10

runs. 54

3.19 Number of times each approach performed the fastest on methods with 2

configurations in the MobileMedia08 benchmark, averaged over the 10 runs. 55

3.20 Number of times each approach performed the fastest on methods with 4

configurations in the MobileMedia08 benchmark, averaged over the 10 runs. 56

3.21 Number of times each approach performed the fastest on methods with

more than 4 configurations in the MobileMedia08 benchmark, averaged

over the 10 runs. 58

3.22 Number of times each approach performed the fastest on methods with 2

configurations in the Lampiro benchmark, averaged over the 10 runs. . . 59

3.23 Number of times each approach performed the fastest on methods with 2

configurations in the BerkeleyDB benchmark, averaged over the 10 runs. 59

3.24 Number of times each approach performed the fastest on methods with 4

configurations in the BerkeleyDB benchmark, averaged over the 10 runs. . 61

3.25 Number of times each approach performed the fastest on methods with

more than 4 configurations in the BerkeleyDB benchmark, averaged over

the 10 runs. 62

LIST OF FIGURES xv

3.26 Methods in the synthetic benchmark. 62

3.27 A beanplot with time measurements on method m. 64

3.28 Medians over the 50 runs of each method in the synthetic benchmark. . . 65

3.29 Methods in the modified synthetic benchmark with a higher number of

assignments. 66

3.30 Medians of each method in the modified synthetic benchmark. 66

4.1 All cases of transfer function lifting by SPLLIFT, from [17, Figure 4, page 4]. 72

4.2 Application of the lifted flow functions of the taint analysis to the example

in Listing 4.1. An insecure flow of information is highlighted in thick, red

arrows. Figure taken from [17, Figure 5]. 74

LIST OF TABLES

3.1 A summary of key characteristics in the benchmarks used in the experiments. 41

3.2 A demonstration of the measurements taken by the experiments. 44

3.3 For methods with 4 configurations, p-values output by the Wilcoxon test

for the GPL benchmark on 3 of the 10 executions. 45

4.1 Number of features, total number of configurations and valid configurations

reached by the solver on each benchmark. The highlighted cells indicate

discrepancies from the original experiment performed by Bodden et al. . 76

4.2 Performance of the SPLLIFT approach vs. the naive, brute-force approach.

Highlighted values are estimates based on partial progress. 77

4.3 The effects in time performance of regarding/ignoring the feature model in

each benchmark. 78

xvii

CHAPTER 1

INTRODUCTION

A software product line (SPL) describes a set of related products which are based on the

same reusable code. Variations in this code, called features, are pieces of code that build

on top of the common code base to provide different functionalities to the products.

Many important applications implement their variations using conditional compilation

constructs, like #ifdefs. Conditional compilation has the property of being independent of

the underlying language. Because of this, developers can mix common, optional and even

conflicting behavior in the same code asset. In order to generate individual products, the

code assets must be preprocessed before compilation can occur, and only then developers

can apply their static analyses techniques in search for bugs, for example.

Dataflow analysis is a form of static analysis used to perform optimizations [38] and to

support developers by providing useful and precise information about the program being

developed or maintained [48]. In general, standard dataflow analysis cannot be applied

to code assets that are not valid with respect to the underlying language. Until recently,

in order to make use of dataflow analysis in SPLs, developers were required to explicitly

generate products from the line so that dataflow analysis could be applied to them. This

changed with the introduction of intraprocedural and interprocedural feature-sensitive

dataflow analysis by Brabrand et al. [18] and Bodden et al. [17], respectively.

In this dissertation, we explain our participation and build upon these two works

and provide a deeper explanation to the challenges of the implementations, as well as a

statistically-based empirical evaluation of these techniques. Specifically, we present the

implementation of four different approaches to intraprocedural feature-sensitive dataflow

analysis, which are not covered in the publication by Brabrand et al. Then we evaluate

these implementations through a series of performance experiments and explore the data

in greater depth. We found further evidence that each approach behaves differently

depending on several characteristics of the method being analyzed. In the interprocedural

context, we discuss the proposal of Bodden et al. and present our own evaluation data.

We found evidence that the feature-sensitive approaches clearly outperforms the

1

2 INTRODUCTION

feature-oblivious, brute-force approaches, in all cases. Additionally, we provide evidence

that each of the four intraprocedural feature-sensitive approaches performs differently

depending on various characteristics of the method being analyzed, like size and number of

features. By examining their implementations and the data acquired with our executions of

the experiments, we discuss aspects such as ease of implementation and raw performance.

1.1 OUTLINE

The remainder of this work is organized as follows:

� In Chapter 2 we present the key concepts covered throughout this dissertation;

� We present the concepts of intraprocedural feature-sensitive dataflow analysis in

Chapter 3 and present our contributions;

� In Chapter 4 we describe interprocedural feature-sensitive analysis and our empirical

evaluation;

� In Chapter 5 we discuss other works that are related to the topics discussed in this

dissertation; and

� Lastly, in Chapter 6, we present our final remarks.

CHAPTER 2

BACKGROUND

In this chapter we present the main concepts we focus and extend in this dissertation.

2.1 SOFTWARE PRODUCT LINES

A Software Product Line (SPL) describes a set of software-intensive systems that share

a common, managed set of features satisfying the specific needs of a particular market

segment or mission and that are developed from a common set of core assets in a prescribed

way [21]. Core assets are artifacts we use to instantiate more than one product [28].

Examples of potential core assets are: requirements, binary files, test cases, image files,

and so on. A feature is a prominent and visible aspect, quality, or characteristic of a

software system or systems [30]. Features can describe the commonalities and variabilities

within the SPL scope. In this context, reuse plays an important role since products

frequently share commonalities between then. In fact, when adopting a SPL approach to

development, we may benefit from the following characteristics:

� Reduction of development costs: due to intensive reuse of artifacts, individual

products are not developed from scratch, which leads to cost reduction. Nevertheless,

it is important to note we need to design and implement the core assets beforehand

so that we can reuse them when building the other products in the future. Empirical

studies reveal that this initial investment pay off when having three products [21];

� Enhancement of quality: because we reuse the core assets between products, we

have more opportunities to test and validate such assets, increasing the chance of

finding bugs and correcting them earlier;

� Mid-term reduction of time-to-market: In initial stages, the time-to-market is high

since we first need to develop the core assets. As time passes and core assets are

consolidated, the time-to-market drops because we are able to deliver more products

faster due to the aforementioned reuse.

3

4 BACKGROUND

To enjoy these benefits, we must manage the product line features accordingly. Feature-

Oriented Domain Analysis (FODA) is a domain analysis that describes the SPL common-

alities and variabilities by means of feature diagrams. To better illustrate this approach,

Figure 2.1 shows an example of simple feature diagram. This diagram defines a hier-

archical decomposition of features with the following relationships: mandatory (filled

circle), optional (open circle) and alternative (open arc) relationships. Notice that this

model defines not only the features and their relationships, but also feature constraints.

For example, this feature diagram states (at the bottom) that A implies E. That is, an

instantiated product cannot have feature A without feature E.

Figure 2.1: A simple feature diagram.

Several techniques exist to support the development of SPL: preprocessors [35, 48, 22,

41], aspect-oriented programming [10, 34], design patterns [11], programming transfor-

mations [45, 9] etc. In this work, we focus on preprocessors since they are common in

industrial practice. We detail preprocessors in next section.

2.2 PREPROCESSORS

Preprocessors are a widely used mechanism to deal with software variabilities. Examples

of real systems that use preprocessors are: the Linux and FreeBSD operating systems,

the VIM text editor, and the gcc compiler. In general, preprocessors require that the

compiler preprocesses the code and decides—based on directive tags—which parts of

the source code should be compiled or not. Preprocessors are also known as conditional

compilation. Listing 2.1 depicts part of the code of a feature from the Lampiro product

line, called BT PLAIN SOCKET. Notice that we encompass the feature code by using an

#ifdef preprocessor directive. To build a product with the BT PLAIN SOCKET feature, we

define the BT PLAIN SOCKET tag and let the compiler consider the code for compilation.

Otherwise, the compiler ignores the code, which means we are building a product without

2.2 PREPROCESSORS 5

the BT PLAIN SOCKET feature.

1 xmlStream = new SocketStream () ;

2 . . .

3 // #i f d e f BT PLAIN SOCKET

4 Channel connect ion = new SocketChannel (” socke t : // ” + c fg . getProperty (Conf ig

.CONNECTING SERVER) , xmlStream) ;

5 // #e n d i f

6 . . .

7 ((SocketChannel) connect ion) .KEEP ALIVE = Long . parseLong (c f g . getProperty (

Config .KEEP ALIVE)) ;

Listing 2.1: Code snippet from the Lampiro product line. Lampiro uses preprocessors to

implement features.

Despite their widespread usage [41, 49], developers using preprocessors face several

problems [53, 25, 40, 33]. Depending on the number of #ifdef directives, it can be difficult

to read and understand the code, specially if they are nested. Consequently, developers

are prone to subtle errors, like when opening a bracket within the #ifdef scope and closing

it outside the #ifdef scope, or the variable that is defined in line 4 of Listing 2.1 and used

outside of the #ifdef block. In this case, the developer might only detect this problem

if he eventually compile the code for the problematic feature combination. Because the

number of possible products is combinatorial, finding such errors is expensive. Last but

not least, preprocessors do not provide separation of concerns. The directives are tangled

with the code base, which means that mandatory and optional features may reside in the

same code asset, which leads to maintainability and traceability problems.

To minimize these problems, Kästner et al. proposed the Colored IDE (CIDE) [33].

Instead of #ifdef directives, CIDE uses background colors to encompass feature code.

This avoids code pollution and decreases the system size in terms of source lines of code.

Also, CIDE only allows disciplined annotations. According to Liebig et al. [42], disciplined

annotations are:

Annotations on one or a sequence of entire functions are disciplined. Further-

more, annotations on one or a sequence of entire statements are disciplined.

All other annotations are undisciplined.

6 BACKGROUND

Additionally, CIDE implements the Virtual Separation of Concerns (VSoC) concept.

When using VSoC, developers can hide feature code not relevant to the current task.

Thus, developers can focus on a feature without the distraction caused by the code of

other features. The approach is called “virtual” because there is no physical separation.

The tool simply collapses the feature code, hiding it from the user, even though it is still

there in the original place. Listing 2.2 illustrates the BT PLAIN SOCKET feature hidden

according to the CIDE tool and the VSoC approach.

xmlStream = new SocketStream () ;

. . .

!

. . .

((SocketChannel) connect ion) .KEEP ALIVE = Long . parseLong (c f g . getProperty (

Config .KEEP ALIVE)) ;

Listing 2.2: The rectangle indicates that there is hidden feature code.

2.3 INTRAPROCEDURAL DATAFLOW ANALYSIS

In this section we review some key dataflow analysis concepts that are required later in

Chapter 3 and 4. The key concepts are the control flow graphs, lattices, and transfer

functions. Together they form the Kildall’s framework for dataflow analysis [38]. In what

follows we detail each of them.

2.3.1 Control flow graph

The control flow graph (CFG) is an abstract representation of the flow of control of a

program procedure. A CFG is a directed graph in which nodes are statements and edges

represents the flow of control between these statements. This flow must conform with the

language semantics. Figure 2.2 illustrates a toy program and its corresponding CFG.

2.3.2 Lattice

We use lattices to represent the information calculated during an analysis. A lattice can

be visualized as a Hasse diagram. Figure 2.3 shows a lattice for analyzing the value of the

variable x, whose possible values are 0 and 1. The x = 0 value represents the fact that x is

2.3 INTRAPROCEDURAL DATAFLOW ANALYSIS 7

x = 0 x = 1

;

x = 0;
if (…) {
 x = 1;
}
;

Figure 2.2: A toy program and its CFG.

> = {x = 0, x = 1}

{x = 0} {x = 1}

⊥ = {}

Figure 2.3: A Hasse diagram representing a lattice with all the possible assignments in

our toy program.

assigned to 0. Analogously, x = 1 represents the fact that the x is assigned to 1. Notice

that the lattice contains two additional elements: ⊥, which means “unknown”; and >,

which, in this case, means that x can be assigned to either 0 or 1. For example, unless we

execute the program, we do not know the value of the x variable at the skip command; it

might be either 0 or 1.

2.3.3 Transfer functions

Each statement in the program being analyzed is associated with a transfer function. A

transfer function simulates the execution of a given statement in the domain defined by

the lattices. To understand how these functions work, consider the statement x = 0 in

Figure 2.4. The lattice value ”flowing“ into the transfer function t is ⊥ which represents

the fact we know nothing about x right before the assignment at hand. This transfer

functions computes that the assignment to x results in the lattice value x = 0, representing

8 BACKGROUND

the fact that we now know that the value of x is 0.

t(⊥) = {x = 0}

⊥ {x = 0}x = 0

Figure 2.4: The effect of applying a transfer function of an assignment to the ⊥ lattice

value.

2.3.4 Reaching definitions

The reaching definitions analysis computes which variables definitions can reach a given

program point p. Hence, every assignment to any variable represents a definition d. A

definition d reaches a point p if there exists a path from d to p such that d is not redefined

(killed) along that path [8]. In other words, if along this path there is an assignment to

the variable corresponding to d, this definition does not reach the point p.

To better illustrate how this analysis works, consider the CFG illustrated in Figure 2.5.

Consider the definition x = 0. Notice that this definition does not reach the skip statement.

All paths from the definition to such a statement contains new assignments to x. On the

other hand, x = 2 reaches the skip statement: there is no new assignments to x along this

path.

x = 0

x = 2

x = 1

;

x = 0;
if (…) {
 x = 1;
} else {
 x = 2;
}
;

Figure 2.5: The assignment x = 0 does not reach the skip statement. All paths from the

assignment to the skip statement contains new assignments to x.

When executing the reaching definition analysis, the lattice arranges information with

respect to assignments, as illustrated in Figure 2.3. In this context, when simulating the

executing of a statement corresponding to a definition d, say, x = 0, we “generate” the new

2.3 INTRAPROCEDURAL DATAFLOW ANALYSIS 9

definition of the x variable. Additionally, we “kill” the other definitions of x. Therefore,

the transfer function of an assignment in the reaching definitions analysis is defined as:

fd(in) = gend ∪ (in− killd)

In this case, gend corresponds to the set of definitions generated by the definition d;

killd is the set of definitions killed by d ; and in is the set of definitions that flows into d.

2.3.5 Intraprocedural dataflow analysis with Soot

Soot [2] is a framework for analyzing and transforming Java programs. Soot uses inter-

mediate representations of programs, with the most prominent being Jimple, a typed

3-address representation designed for optimizations.

Intraprocedural dataflow analyses in Soot with the Jimple representation are typically

implemented by extending the ForwardFlowAnalysis <U,L> class, if the analysis being im-

plemented is a forward-analysis, e.g. reaching definitions, or BackwardsFlowAnalysis <U, L>

if the analysis is a backwards-analysis, e.g. live variables. The type parameters U and

V are for the type of statements in the CFG of the method being analyzed and the

type of lattice implementation, called FlowSets in Soot, respectively. Listing 2.3 shows an

implementation for a reaching definitions analysis. This class extends ForwardFlowAnalysis

<Unit, FlowSet>. In Soot, the interface Unit represents a generic statement or command in

any of the available intermediate representations, including Jimple. The contract behind

the ForwardFlowAnalysis class requires that the client implement the following template

methods that are called by the analysis solver:

� copy: this method is called when the analysis solver wants to copy the contents of

the value from the source argument to the dest argument. We delegate this operation

to the homonymous lattice operation, which copies the content of source into dest;

� merge: also known as the least upper bound operation. This method is called when

contents of lattices source1 and source2 must be combined in a confluence point.

Because this method returns no value, i.e. it is a void method, the contract for

this method expects the result of the merge operation to side-effect into the dest

argument. According to the FlowSet contracts, some lattice operation op between

two FlowSets, l1 and l2, is called with a third argument, l3 that receives the result

of the operation. That is: l1.op(l2, l3) results in l3 = l1 op l2. Because reaching

10 BACKGROUND

definitions is a may analysis, we delegate the merge operation to the union of the

FlowSets;

� newInitialFlow: the return of this function is used to initialize all points with a starting

lattice. In the reaching definition analysis, the starting lattice is ⊥ = {}. Thus we

return a new empty FlowSet of type ArraySparseSet;

� entryInitialFlow: similar to the newInitialFlow method, except the returned value is

used only at the entry point of the method. In the case of the reaching definitions,

it is also ⊥ = {}; and

� flowThrough: this method represents the application of the transfer function relative

to the unit parameter. The source argument is the lattice flowing into the transfer

function. This method expects the client to side-effect the resulting lattice into

the dest argument. In our reaching definitions analysis, if the statement for which

we are applying the transfer function is not an assignment (AssignStmt in Soot), we

simply copy the source lattice into the dest lattice untouched (cf. line 29). However,

if the statement is an assignment, then we must update the lattice accordingly.

We implement this with kill and gen functions shown in lines 33 – 48. In the kill

function, we store all preexisting assignments to the same variable that the assignment

parameter assigns to inside the kills FlowSet. We then put all the assignments that

are not in the kills FlowSet in the dest parameter by means of the difference operation

(cf. line 43). Lastly, the gen function simply adds the assignment parameter to the

dest parameter.

1 public class Reach ingDe f in i t i on s extends ForwardFlowAnalysis<Unit , FlowSet>

{
2 public Reach ingDe f in i t i on s (DirectedGraph<Unit> c f g) {
3 super (c f g) ;

4 super . doAnalys i s () ;

5 }
6

7 protected void copy (FlowSet source , FlowSet des t) {
8 source . copy (des t) ;

9 }
10

11 protected void merge (FlowSet source1 , FlowSet source2 , FlowSet dest) {

2.3 INTRAPROCEDURAL DATAFLOW ANALYSIS 11

12 source1 . union (source2 , des t) ;

13 }
14

15 protected FlowSet newIn i t i a lF low () {
16 return new ArraySparseSet () ;

17 }
18

19 protected FlowSet e n t r y I n i t i a l F l o w () {
20 return new ArraySparseSet () ;

21 }
22

23 protected void flowThrough (FlowSet source , Unit unit , FlowSet dest) {
24 i f (un i t instanceof AssignStmt) {
25 AssignStmt assignment = (AssignStmt) un i t ;

26 k i l l (source , assignment , des t) ;

27 gen (dest , ass ignment) ;

28 } else {
29 source . copy (des t) ;

30 }
31 }
32

33 private void k i l l (FlowSet source , AssignStmt assignment , FlowSet dest)

{
34 FlowSet k i l l s = new ArraySparseSet () ;

35 for (Object ea r l i e rAs s i gnment : source . t o L i s t ()) {
36 i f (ea r l i e rAs s i gnment instanceof AssignStmt) {
37 AssignStmt stmt = (AssignStmt) ea r l i e rAs s i gnment ;

38 i f (stmt . getLeftOp () . equivTo (ass ignment . getLeftOp ())) {
39 k i l l s . add (ea r l i e rAs s i gnment) ;

40 }
41 }
42 }
43 source . d i f f e r e n c e (k i l l s , des t) ;

44 }
45

46 private void gen (FlowSet dest , AssignStmt assignment) {
47 dest . add (ass ignment) ;

48 }
49 }

Listing 2.3: Implementation of an intraprocedural reaching definitions analysis in Soot

12 BACKGROUND

The constructor of the ReachingDefinitions class, shown in line 2, takes as parameter a

DirectedGraph representing the CFG of the method to be analyzed. The constructor then

delegates the computation of the fixed to the solver by calling the doAnalysis() method of

its superclass.

2.4 INTERPROCEDURAL DATAFLOW ANALYSIS WITH IFDS

An Interprocedural Control Flow Graph (ICFG) is a CFG in which method calls are

represented by the flow of control from the call-site to the CFG of the called method

and back again to the call-site. Figure 2.6 shows an example of such an ICFG. There

are two calls to the function f in it. The flow of control is transfered to the method in

both calls, whose solo content is the return z statement. In a CFG, all paths are valid

ones, but in an ICFG this is not always the case. For example, the path int x = 0 →
f(x) → return z → int y = f(3) is not a feasible one. This is known as the problem of lack

of context sensitivity, where interprocedural paths do not respect the context in which

functions calls were made. Considering infeasible paths leads to imprecise solution in

dataflow problems. For example, a taint analysis [26] works by defining a set of variables

that are initially tainted, e.g it holds sensitive data. Other variables get tainted if an

assignment to them uses a tainted variable. The infeasible path will cause the analysis to

imprecisely conclude that the y variable is tainted by x.

int x = 0;

f(x);

int y = f(3);

print(y);

return z;

f(int z)

Figure 2.6: An interprocedural control flow graph.

The IFDS framework [47] defines graph-based solution to interprocedural dataflow

flow analysis that is context-sensitive. The main idea behind this framework is to reduce a

2.4 INTERPROCEDURAL DATAFLOW ANALYSIS WITH IFDS 13

program-analysis problem into a graph-reachability problem that ignores infeasible paths.

The IFDS frameworks works on a so-called exploded super-graph, where nodes have the

form (s, d), where s is a statement and the d is dataflow fact. The dataflow fact d at a

statement s only holds if there is a path from the special starting node (s0,0) to (s, d). To

accomplish this, the framework requires that transfer functions be represented as nodes

and edges.

Figure 2.7 shows how transfer functions in the IFDS framework are encoded. The

identity transfer function, depicted in Figure 2.7a, shows how all dataflow facts, 0, x and

y, are mapped to themselves. The nodes at the top of the transfer function represent

the facts that hold before the transfer function execution and the values at the bottom

represent the facts that hold after the transfer function. The 0 fact is a special dataflow

fact unrelated to the domain of the analysis that represents a fact that is always true.

Figure 2.7b shows a typical gen/kill transfer function, where some values are killed and

others generated. The generation of the y value is represented by the arrow from 0 to y;

and the killing of x is represented by the lack of arrows from other nodes to it.

•0

•
0

•x

•
x

•
y

•
y

(a) Identify transfer function: λS.S

•0

•
0

•x

•
x

•
y

•
y

(b) A gen/kill transfer function:

λS.(S − {x}) ∪ {y}. Here, x is killed

and y is gen’ed.

Figure 2.7: Transfer function encoding in IFDS.

As an interprocedural dataflow analysis framework, IFDS represents interprocedural

flow of data by subdividing transfer functions into four classes of flow functions :

� normal flow functions model intraprocedural flow, i.e. flow that is not in a function

call or return;

� call flow functions model flow of data from the call-site to the entry statement of

the called function;

� return are flow functions that model the flow of data from the exit node of the called

functions to the successor of the call-site statement; and

14 BACKGROUND

� call-to-return which models a summary-like intraprocedural flow of data from the

antecessor of the call-site to the return-site.

In a taint analysis, we generate a variable as dataflow fact in order to represent that

variable as tainted. A tainted variable t1 taints another variable t2 when t1 is used in the

right hand side of an assignment to t2. Conversely, we kill the variable if it is assigned

to another variable that is not tainted. Figure 2.8 shows an example of this analysis

applied to the exploded super-graph generated from the program in Figure 2.6. The

analysis begins at the top statement, int x = 0;. To illustrate the analysis, we consider

the assignment to 0 as the tainting of the variable x. Thus the flow function generates

this fact, which is represented by the arrow connecting the topmost 0 to the x below it.

The next statement is the call to f(x). The call flow function carries the fact that x is

tainted to the formal parameter z, in the f function. Because the statement f(x) does

not assign the result value from f, which simply returns its parameter, the return flow

function does not connect the dataflow fact z to the program point immediately after the

function call f(x). However, x is still tainted, which is represented by the call-to-return

flow function not killing the dataflow fact x. In the next statement there is a new call to

f, int y = f(3). Unlike the other call to f, this one does not pass the tainted value x as a

parameter to f. Thus, in this case, the data flow fact x does not connect to the formal

parameter z in f. The return flow function from this specific call to f connects the formal

parameter z to y. Again, x is still tainted at this point because there is no assignment to

the x variable that could kill the fact that it is tainted. The IFDS problem solver would

solve the equations for these transfer function and compute that, in fact, although the

y dataflow fact is reachable from the starting node, the paths in which that happens are

infeasible paths, because the call and return edges do not match.

2.4 INTERPROCEDURAL DATAFLOW ANALYSIS WITH IFDS 15

int x = 0;

f(x);

int y = f(3);

print(y);

return z;

•0 •x •y

•0 •x •y

•0 •x •y

•0 •x •y

•0 •z

•0 •z

f(int z)

call

return

normal

call-to-return

call-to-return

return

control-flow edge

data-flow edge

Figure 2.8: An exploded super-graph showcasing the taint analysis.

CHAPTER 3

FEATURE-SENSITIVE INTRAPROCEDURAL

DATAFLOW ANALYSIS

As we discussed in Section 2.3, one can use Kildall’s dataflow analysis framework to

define dataflow analyses that can compute a set of properties from procedures in a given

input program. When trying to analyze the products of a software product line, however,

developers were required to generate all programs explicitly so that its procedures could

be analyzed. Brabrand et al. [18] showed that doing so could be prohibitive for a program

family with a large amount of products. They also show how an intraprocedural dataflow

analysis can be lifted to perform the same analysis on all procedure without explicitly

having to generate all possible products.

In this chapter we discuss Brabrand and colleague’s proposal of feature-sensitive

dataflow analysis. In the following sections we review their proposals and present the

actual implementation, which is not discussed in the aforementioned paper by Brabrand

et al. Then we present a new, deeper evaluation of their proposal.

3.1 MOTIVATION

Consider the method fragment in Listing 3.1, written in a language similar to C++,

where memory is allocated with the new operator, in which memory for the obj is only

deallocated if the preprocessor variable F is defined. For a standard dataflow analysis to

even try to figure out that this could lead to a memory leak, the method that contains

this code fragment would have to be preprocessed first in order to generate its variants :

one that has the delete obj instruction, and the other that does not, and then analyze

each one individually. We henceforth denominate this the brute-force approach.

The number of method variants is exponentially proportional to the number of prepro-

cessor variables present in method, considering there is no constraints between the features

imposed by a feature model. This means that a method with 10 different variables has

up to 1024 different variants. Generating each possible configuration so that they can be

17

18 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

Object obj = new Object () ;

// . . .

#ifde f F

delete obj ;

#endif

// . . .

Listing 3.1: Hypothetical procedure fragment with potential memory leak.

compiled and analyzed can quickly become intractable due to this exponential nature.

Even though the term configuration is more commonly used to refer to an individual

product in a product line, from now on we use the same term when referring to a method

variant as well.

Brabrand et al. [18] describe theoretically how one can implement feature-sensitive

dataflow analysis in four ways. In the next sections we progressively discuss each of them

in greater detail.

3.2 CONSECUTIVE

The consecutive approach to feature sensitive analysis analyzes every configuration of a

method individually. However, we must somehow encode the variability present in form

of #ifdefs in order to avoid generating all possible variants of a method. We call this

encoding the instrumentation process. It revolves on attaching information about the

variability to the CFG nodes of the method. Figure 3.1 displays the instrumented CFG

from Listing 3.1.

The instrumentation process consists of annotating the CFG nodes that are encom-

passed by an #ifdef F, where F could be any preprocessor variable or expression of

variables, with the boolean expression [[F]].

More complex boolean expressions are also allowed and nested #ifdef are handled by

conjunction. For example, the code fragment in Listing 3.2 can be represented by the

CFG in Figure 3.2.

In general, #ifdefs can be used in any part of the source because they are not bound to

the syntax of the underlying language. In this work and that of Brabrand et al., however,

we only consider SPLs that use a special case of disciplined annotations [33].

3.2 CONSECUTIVE 19

Object obj = new Object()

...

delete obj

...

[[F]]

Figure 3.1: Partial CFG with one node instrumented.

// . . .

#ifde f F | | G

#ifde f H

delete obj ;

#endif

#endif

// . . .

Listing 3.2: A statement encompassed by several conditional compilation directives.

...

delete obj

...

[[(F ∨G) ∧H]]

Figure 3.2: A statement with a nested complex conditional expression.

20 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

More generally, the expression [[ψ]] represents the set of configurations that a statement

is bound to. We assume that nodes in the CFG that have no conditional constraint are

annotated with a special constraint true. The annotations are representations of the

configuration sets associated with each statement, i.e. the configurations in which that

statement is always present. The special true means that the annotated statement should

be present in all possible configurations.

Thus the code variability denoted by the #ifdefs is encoded in the CFG of a method.

That alone, however, is not enough to allow dataflow analysis to be feature-sensitive;

we must address the other components of our analysis: the lattices and the transfer

functions. How we define these is what differentiates the approaches to intraprocedural

feature-sensitive dataflow analysis, as they all required an instrumented CFG.

We mentioned that the consecutive approach computes the analysis by analyzing

each configuration individually. This means that the analysis is instantiated for each

configuration c. So, before applying the transfer function relative to some statement,

the analysis checks for applicability of that transfer function against the associated

configuration set, [[ψ]], of that statement by deciding if c ∈ [[ψ]]. For example, the transfer

function associated with the statement delete obj in Figure 3.2 would not be applied for

the configuration c = {H}, that is, a configuration in which the feature H is enabled and

F and G are disabled, because c /∈ [[(F ∨G) ∧H]].

To illustrate this, consider the code fragment in Listing 3.3, where the #ifdef F

encompasses the definition of the variable obj. Figure 3.3 shows the result of the reaching

definitions analysis for that listing. In this figure the #ifdef statement has been removed

and the associated configuration set, [[F]], is represented in the leftmost column, meaning

that the statement Object obj = new Object(); has the associated configuration set [[F]].

In the middle column, the analysis is instantiated with the configuration c = {F}. The

result of the transfer function of the Object obj = new Object(); command is that the

applicability test, c ∈ [[F]], succeeds so the assignment is stored in the out-flowing lattice

{Object obj = new Object()}. On the rightmost column, however, the same applicability

test for the transfer function is not successful, so the assignment is not stored in the

lattice, which gets copied below untouched. The result of this analysis could be used to

prove that for configuration c = {}, the delete operator is being called on a object that

was not defined.

3.2 CONSECUTIVE 21

#ifde f F

Object obj = new Object () ;

#endif

// . . .

delete obj ;

Listing 3.3: Possibly undefined variable

c = {F} c = {}
{} {}
↓ ↓

[[F]] Object obj = new Object(); Object obj = new Object();

↓ ↓
{Object obj = new Object()} {}

↓ ↓
... ...

↓ ↓
{Object obj = new Object(), ...} {...}

↓ ↓
delete obj; delete obj;

Figure 3.3: Result of the reaching definitions analysis using the consecutive approach.

22 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

3.2.1 Implementation

Recall from Section 2.3.5 that statements in Soot’s intermediate representations have a

common interface, Unit. Soot also provides a tagging mechanism that allows one to attach

arbitrary information to Units. We exploit this to attach feature information to individual

Jimple statements. And since the CFG is composed of Jimple statements, the CFG itself

is said to be instrumented. We use CIDE’s API to query what features are color a given

portion of code.

We instrument each method by iterating over all Jimple statements and attaching

feature information to it. The container for this information is the FeatureTag class, shown

in Listing 3.4. The remainder of the class is omitted for brevity, as this class is merely a

container for the object of type IFeatureRep, which is a representation of a set of features.

public class FeatureTag implements Tag {
private IFeatureRep rep ;

// . . .

}

Listing 3.4: The container class for the instrumented information.

CIDE uses a restricted form of conditional compilation in which only conjunction

is permitted. Under this restriction, we implement an efficient representation for a set

of configurations as a bit vector. Given a set of features that occur in a method, we

incrementally map each of them to powers of 2. For example:

F =


A→ 1

B → 2

C → 4

Thus we can represent a single configuration as a bit vector; the configuration {A,B},
for instance, can be represented as the bit vector [1 1 0], or with the integer 1 ⊕ 2 = 31.

Moreover, we can represent a set of configurations while preserving this compact

representation. For example, the bit vector [0 0 0 1 0 0 1 0] can be seen as the config-

uration set {{A,B}, {B,C}}. The indices set to true are 3 and 6, which correspond to

F(A) ⊕ F(B) = 1 ⊕ 2 = 3 and F(B) ⊕ F(C) = 2 ⊕ 4 = 6. The fact that each feature

1⊕ is the bitwise AND operator.

3.2 CONSECUTIVE 23

is mapped to a power of 2 guarantees the uniqueness of the representations of this set.

We can also exploit this representation to avoid generating configurations that are invalid

according to the feature model. For example, if the configuration represented by the bit

with index 6 bit in this bit vector is deemed invalid by the feature model, we set it to 0.

The classes BitVectorFeatureRep and BitVectorConfigRep, shown in Listing 3.5, are im-

plementations of the IFeatureRep and the IConfigRep interfaces. These are interfaces for

representing a set of features and a set of configurations, respectively. The attributes

atoms in both classes is the mapping F we just discussed above. It is a bidirectional

map from Strings (feature names) to Integers. The BitVector bits attributes are used to

represent a configuration in the BitVectorFeatureRep class and sets of configurations in the

BitVectorConfigRep, as discussed above. The bit vector representation allows for an efficient

implementation of the of operations like union and intersection (cf. lines 10 and 11) over

the sets of configurations.

The separation of these concepts in terms of interfaces allows for greater flexibility;

should we chose to provide a new representation for these sets using binary decision

diagrams [24], for example, the analyses that rely on them would continue working

seamlessly, because they rely solely on the interfaces, not the actual implementations.

public class BitVectorFeatureRep implements IFeatureRep {
private BidiMap atoms ;

private BitVector b i t s ;

// . . .

}

public class BitVectorConfigRep implements IConfigRep {
private BidiMap atoms ;

private BitVector b i t s ;

public IConfigRep union (IConfigRep other) { /* omitted */ }
public IConfigRep i n t e r s e c t i o n (IConfigRep other) { /* omitted */ }

}

Listing 3.5: An implementation of the IFeatureRep interface using a bit vector.

Concretely, the instrumentation process consists of attaching a FeatureTag containing

an IFeatureRep to every Jimple statement in the method. The fragment in Listing 3.6

shows part of the implementation, with some parts omitted. The integer idGen in line 2

24 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

1 // . . .

2 int idGen = 1 ;

3 Map<Str ing , Integer> a l lFeature sSoFar = new HashMap () ;

4 for (Unit nextUnit : body . getUni t s ()) {
5 Set<Str ing> nextUnitFeatures = currentColorMap . get (nextUnit) ;

6 i f (nextUnitFeatures != null) {
7 for (S t r ing featureName : nextUnitFeatures) {
8 i f (! a l lFeature sSoFar . containsKey (featureName)) {
9 a l lFeature sSoFar . put (featureName , idGen) ;

10 idGen = idGen << 1 ;

11 }
12 }
13 IFeatureRep featureRep = featureRep (nextUnitFeatures , a l lFeature sSoFar) ;

14 nextUnit . addTag (new FeatureTag (featureRep)) ;

15 }
16 }
17 // . . .

Listing 3.6: Main loop for the instrumentation process.

will be used to generate the powers of 2 to uniquely identify every feature encountered

(cf. F above). The identifiers generated are stored in the Map defined in line 3. Lines 4

through 16 comprise the main loop that iterates over all the statements (objects of type

Unit) in the body of the method being instrumented. In line 5 we retrieve the features

that nextUnit belongs to, according to CIDE. Because CIDE implements this operation

inefficiently, we pre-fetch this information and store it in currentColorMap. Lines 7 through

12 handle the generation and storage of the generated identifiers for the features. Lastly,

lines 13 and 14 instantiates the IFeatureRep, wrap it in a FeatureTag instance and then add

it to the Unit. The information attached to the Jimple statements can later be retrieved

by using Soot’s Tag facilities.

Like in the case of sets of features/configurations, the judicious use of interfaces

shield the analyses from currently used preprocessor technology, CIDE, giving us greater

flexibility over the implementation.

Making use of the instrumentation process, Listing 3.7 shows part of the code for the

consecutive reaching definitions analysis. The class ConsecutiveReachingDefinitions extends

Soot’s default forward dataflow analysis base implementation, ForwardFlowAnalysis. The

3.2 CONSECUTIVE 25

constructor in line 3 has two parameters: the DirectedGraph<Unit> graph, which is the

CFG where the analysis will execute, standard to other Soot analysis; and the IConfigRep

configuration, which represents the individual configuration the instance will analyze. The

transfer function in lines 8–24 is very similar to the one described in Section 2.3.5, Listing

2.3, except for the applicability test in line 15. If the test succeeds then the base kill and

gen functions, which operate on normal lattices, are executed. Otherwise, the lattice is

simply copied untouched (line 19) by the transfer function.

1 public class Consecut iveReach ingDe f in i t i ons extends ForwardFlowAnalysis<

Unit , FlowSet> {
2 private IConfigRep c o n f i g u r a t i o n ;

3 public Consecut iveReach ingDe f in i t i ons (DirectedGraph<Unit> graph ,

IConfigRep c o n f i g u r a t i o n) {
4 this . c o n f i g u r a t i o n = c o n f i g u r a t i o n ;

5 // . . .

6 }
7

8 protected void flowThrough (FlowSet source , Unit unit , FlowSet dest) {
9 i f (un i t instanceof AssignStmt) {

10 AssignStmt ass ignment = (AssignStmt) un i t ;

11

12 FeatureTag tag = (FeatureTag) ass ignment . getTag (FeatureTag .

FEAT TAG NAME) ;

13 IFeatureRep featureRep = tag . getFeatureRep () ;

14

15 i f (featureRep . be longsToConf igurat ion (c o n f i g u r a t i o n)) {
16 k i l l (source , assignment , des t) ;

17 gen (dest , ass ignment) ;

18 } else {
19 source . copy (des t) ;

20 }
21 } else {
22 source . copy (des t) ;

23 }
24 }
25 }

Listing 3.7: A consecutive implementation of the reaching definitions analysis.

26 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

The IConfigRep is an interface that represents one or a set of configurations by using

single integer or a bit vector, respectively. While we just showed the application of the

former in the consecutive reaching definitions implementation above, the latter is specially

useful in the other feature-sensitive approaches we discuss in Sections 3.4 and 3.5.

3.3 SIMULTANEOUS

The simultaneous analysis, unlike the consecutive one, is capable of analyzing all configu-

rations in a single analysis computation. To do so, it requires what we call a lifted lattice:

a lattice that is adjusted to contain information about all configurations. Thus, a lifted

lattice, L, is a mapping between configurations, [[ψ]], and base lattices, l, shown below.

L = [[ψ]]→ l

The mapping between configurations and base lattices allows one to represent informa-

tion regarding many configurations in a single lattice. These lattices represent dataflow

facts relative to each configuration they are mapped by. Each transfer function must

iterate over each of these configurations in order to decide whether the lattice should be

updated or not. This way, the dataflow facts with respect to many configurations are

propagated as one.

Thus the transfer functions must also be lifted to operate on the mappings between

configurations and base lattices instead of only operating on base lattices. To do so, the

transfer functions must operate in a point-wise manner by i) taking every configuration-

lattice pair in the lifted lattice, c → l; ii) checking the applicability of c against the

associated configuration set of the statement; iii) either applying the transfer function to

l if the applicability test succeeds or copying the lattice untouched to the corresponding

configuration in the output otherwise.

To better illustrate this, consider Listing 3.3 and the analysis result for the reaching

definition analysis in Figure 3.4. Again we use the leftmost column to denote the associated

configuration set of statement Object obj = new Object(); . In the first line of the rightmost

column is the lifted lattice {{¬F} → {}, {F} → {}}. We use {¬F} to denote the

empty configuration to keep it distinct from the empty base lattice {}. This lifted lattice

represents the fact that before the statement Object obj = new Object(); , no other variable

has been defined in the configurations we are analyzing, {¬F} and {F}. The next

lattice value, {¬F} → {}, {F} → {Object obj = new Object()}, represents the fact that the

variable obj was defined only for configuration {F}.

3.3 SIMULTANEOUS 27

{{¬F} → {}, {F} → {}}
↓

[[F]] Object obj = new Object();

↓
{{¬F} → {}, {F} → {Object obj = new Object()}}

↓
...

↓
{{¬F} → {...}, {F} → {Object obj = new Object(), ...}}

↓
delete obj;

Figure 3.4: Result of the reaching definitions analysis using the simultaneous approach.

3.3.1 Implementation

We implemented the lifted lattice for the simultaneous approach by using a combination

of inheritance and aggregation. To plug our feature-sensitive components in the existing

infrastructure of Soot, we must abide to the existing contracts. That means, for instance,

that lifted lattices must implement the FlowSet interface. The lifted lattice we just discussed

is in fact a mapping from configurations to base lattices, thus we use aggregation to

implement a lifted lattice.

Listing 3.8 shows the lifted lattice used in the simultaneous implementation. The

AbstractMapLiftedFlowSet in line 1 is the superclass of the EagerMapLiftedFlowSet, shown in

lines 8–28. The abstract class has the Map<IConfigRep, FlowSet> map attribute, which

represents the mapping between configurations and lattices (FlowSets). The FlowSet

interface requires the implementation of multiple methods like intersection (line 3) and

union (line 4), which are implemented by the subclasses, in this case, EagerMapLiftedFlowSet.

The implementation of the union method from lines 9 through 26 show how the operation

is delegated in a point-wise manner to the inner lattices, inside the map, according to our

informal definition in the begining of this section.

1 public abstract class AbstractMapLiftedFlowSet extends AbstractFlowSet {
2 protected Map<IConfigRep , FlowSet> map ;

3 public abstract void i n t e r s e c t i o n (FlowSet aOther , FlowSet aDest) ;

28 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

4 public abstract void union (FlowSet other , FlowSet des t) ;

5 // . . .

6 }
7

8 public class EagerMapLiftedFlowSet extends AbstractMapLiftedFlowSet {
9 public void union (FlowSet aOther , FlowSet aDest) {

10 EagerMapLiftedFlowSet o t h e r L i f t e d = (EagerMapLiftedFlowSet) aOther ;

11 EagerMapLiftedFlowSet d e s t L i f t e d = (EagerMapLiftedFlowSet) aDest ;

12

13 Set<Entry<IConfigRep , FlowSet>> entrySet = map . entrySet () ;

14 // f o r each con f i gu ra t i on− l a t t i c e mapping . . .

15 for (Entry<IConfigRep , FlowSet> entry : entrySet) {
16 IConfigRep c o n f i g = entry . getKey () ;

17 FlowSet thisNormal = entry . getValue () ;

18 FlowSet otherNormal = o t h e r L i f t e d . map . get (c o n f i g) ;

19

20 /* destNewFlowSet conta in s the r e s u l t o f the i n t e r s e c t i o n between

thisNormal and otherNormal . */

21 ArraySparseSet destNewFlowSet = new ArraySparseSet () ;

22 thisNormal . i n t e r s e c t i o n (otherNormal , destNewFlowSet) ;

23 // the r e s u l t i s added to the d e s t L i f t e d l a t t i c e

24 d e s t L i f t e d . map . put (con f i g , destNewFlowSet) ;

25 }
26 }
27 // . . .

28 }

Listing 3.8: A simultaneous lifted lattice implementation and its base class.

Listing 3.9 shows the implementation for a simultaneous reaching definitions analysis,

the SimultaneousReachingDefinitions class. It is a ForwardFlowAnalysis, but instead of using

regular FlowSets, it uses EagerMapLiftedFlowSets (cf. line 1). The constructor in line 3

accepts as parameters a graph, i.e. the CFG, and a set of configurations, Set<IConfigRep

> configurations. Each of these configurations will be used to map base lattices when the

analysis starts. The transfer function, shown in lines 9–30 operates on instances of the

lifted simultaneous lattice implementation, EagerMapLiftedFlowSet. The main work of the

transfer function is done in the loop shown in lines 17 through 26. There, the analysis

iterates over all the configurations present in the lifted lattice and, if the applicability test

succeeds (cf. line 20), the kill and gen functions are executed, otherwise the base lattice is

3.3 SIMULTANEOUS 29

copied untouched.

1 public class Simul taneousReach ingDef in i t i ons extends ForwardFlowAnalysis<

Unit , EagerMapLiftedFlowSet> {
2 private Set<IConfigRep> c o n f i g u r a t i o n s ;

3 public Simul taneousReach ingDef in i t i ons (DirectedGraph<Unit> graph , Set<

IConfigRep> c o n f i g u r a t i o n s) {
4 super (graph) ;

5 this . c o n f i g u r a t i o n s = c o n f i g u r a t i o n s ;

6 super . doAnalys i s () ;

7 }
8 // . . .

9 protected void flowThrough (EagerMapLiftedFlowSet source , Unit unit ,

EagerMapLiftedFlowSet dest) {
10 i f (un i t instanceof AssignStmt) {
11 AssignStmt ass ignment = (AssignStmt) un i t ;

12

13 FeatureTag tag = (FeatureTag) ass ignment . getTag (FeatureTag .

FEAT TAG NAME) ;

14 IFeatureRep featureRep = tag . getFeatureRep () ;

15

16 Co l l e c t i on<IConfigRep> c o n f i g s = source . g e tCon f i gu ra t i on s () ;

17 for (IConfigRep c o n f i g : c o n f i g s) {
18 FlowSet sourceFlowSet = source . g e t L a t t i c e (c o n f i g) ;

19 FlowSet destFlowSet = dest . g e t L a t t i c e (c o n f i g) ;

20 i f (c o n f i g . be longsToConf igurat ion (featureRep)) {
21 k i l l (sourceFlowSet , assignment , destFlowSet) ;

22 gen (destFlowSet , ass ignment) ;

23 } else {
24 sourceFlowSet . copy (destFlowSet) ;

25 }
26 }
27 } else {
28 source . copy (des t) ;

29 }
30 }
31 // . . .

32 }

Listing 3.9: A concrete implementation of a simultaneous reaching definitions.

30 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

3.4 SHARED SIMULTANEOUS

The shared simultaneous analysis, just like the simultaneous, can analyze all possible

configurations of a method but represents exactly the same lattices in a more compact

manner. Note the first simultaneous lifted lattice, {{¬F} → {}, {F} → {}}, in Figure 3.4.

Both configurations map to the same lattice value, the empty lattice {}. We can merge

both lattices into one lifted lattice that share the base lattice value by their configurations:

{{¬F ∨ F} → {}}. The lattice is thus mapped by a set of configurations, instead of

only by a configuration like in the simultaneous approach. More generally, the effect of

a transfer function f on a statement S and its associated configuration set [[φ]], over a

shared lifted lattice can be seen as follows:

{[[ψ]]→ l, ...}
↓

[[φ]]: S

↓
{[[ψ ∧ φ]]→ f(l), [[ψ ∧ ¬φ]]→ l, ...}

The lifted lattice key, the set of configurations [[ψ]], is “split” into two disjoint sets

parameterized by the associated configuration set [[φ]] of the statement. The transfer

function f is only applied to one of the sets, with the lattice value l simply being copied over

untouched to the other set. Much like the simultaneous transfer function, these transfer

functions must operate in a point-wise manner, but taking pairs of set of configurations

and lattices and splitting them into disjoint parts as the analysis progresses.

Figure 3.5 shows, again, the result of the reaching definitions analysis using the shared

simultaneous approach. The end result is similar to the one in Figure 3.4, except for the

fact that the first lifted lattice is sharing the same base lattice between the configuration

set [[¬F ∨ F]].

3.4.1 Implementation

Listing 3.10 shows the class that implements the shared lifted flow set, LazyMapLiftedFlowSet.

Just like the EagerMapLiftedFlowSet, it inherits from AbstractMapLiftedFlowSet. And because

the IConfigRep interface can either represent a single configuration or a set thereof, the

structure of the LazyMapLiftedFlowSet is nearly identical to that of the EagerMapLiftedFlowSet,

except for the implementation of the required operations. Shown in lines 9–38 is the

3.4 SHARED SIMULTANEOUS 31

{{¬F ∨ F} → {}}
↓

[[F]] Object obj = new Object();

↓
{{¬F} → {}, {F} → {Object obj = new Object()}}

↓
...

↓
{{¬F} → {...}, {F} → {Object obj = new Object(), ...}}

↓
delete obj;

Figure 3.5: Result of the reaching definitions analysis using the shared approach.

implementation for the union operation. Two distinct instances of EagerMapLiftedFlowSet,

L1 and L2, are guaranteed to have the same number of configurations pointing to base

lattices:

L1 = {c1 → l1, c2 → l2 ..., ck → lk}
↓

[[ψ]] : S

↓
L2 = {c1 → l′1, c2 → l′2 ..., ck → l′k}

On the other hand, because of the sharing and splitting, two distinct instances of

LazyMapLiftedFlowSet do not necessarily have the same size. Thus a different implementation

of the union method is needed.

1 public abstract class AbstractMapLiftedFlowSet extends AbstractFlowSet {
2 protected Map<IConfigRep , FlowSet> map ;

3 public abstract void i n t e r s e c t i o n (FlowSet aOther , FlowSet aDest) ;

4 public abstract void union (FlowSet other , FlowSet des t) ;

5 // . . .

6 }
7

8 public class LazyMapLiftedFlowSet extends AbstractMapLiftedFlowSet {
9 public void union (FlowSet aOther , FlowSet aDest) {

32 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

10 LazyMapLiftedFlowSet other = (LazyMapLiftedFlowSet) aOther ;

11 LazyMapLiftedFlowSet dest = (LazyMapLiftedFlowSet) aDest ;

12

13 Set<Entry<IConfigRep , FlowSet>> entrySet = this . map . entrySet () ;

14 Set<Entry<IConfigRep , FlowSet>> otherEntrySet = other .map . entrySet () ;

15

16 Map<IConfigRep , FlowSet> destMap = new HashMap<IConfigRep , FlowSet>() ;

17

18 // f o r every 2 s e t s o f c o n f i g u r a t i o n s in every l a t t i c e . . .

19 for (Entry<IConfigRep , FlowSet> entry : entrySet) {
20 for (Entry<IConfigRep , FlowSet> otherEntry : otherEntrySet) {
21 ILazyConfigRep key = (ILazyConfigRep) entry . getKey () ;

22 ILazyConfigRep otherKey = (ILazyConfigRep) otherEntry . getKey () ;

23

24 // take the i n t e r s e c t i o n between the s e t s o f c o n f i g u r a t i o n s

25 ILazyConfigRep i n t e r s e c t i o n = (ILazyConfigRep) key . i n t e r s e c t i o n (

otherKey) ;

26

27 // i f the i n t e r s e c t i o n i s not empty , i . e 6= ∅
28 i f (i n t e r s e c t i o n . s i z e () != 0) {
29 FlowSet otherFlowSet = otherEntry . getValue () ;

30 ArraySparseSet destFlowSet = new ArraySparseSet () ;

31 // take the l a t t i c e i n t e r s e c t i o n and s t o r e i t in destMap

32 entry . getValue () . union (otherFlowSet , destFlowSet) ;

33 destMap . put (i n t e r s e c t i o n , destFlowSet) ;

34 }
35 }
36 }
37 dest . map = destMap ;

38 }
39

40 public void i n t e r s e c t i o n (FlowSet aOther , FlowSet aDest) {
41 /* Omitted . The i n t u i t i o n behind t h i s method i s the as the method above

, except i t d e l e g a t e s the point−wise opera t i on to the i n t e r s e c t i o n o f

the FlowSets in s t ead o f union . */

42 }
43 }

Listing 3.10: An implementation for a shared lifted lattice and its base class.

3.4 SHARED SIMULTANEOUS 33

The implementation of the shared reaching definitions, class SharedReachingDefinitions is

shown in Listing 3.11. This class also extends ForwardFlowAnalysis, but it uses the shared

version of the lifted lattice, LazyMapLiftedFlowSet. Its constructor, shown in line 4, in

addition to the usual DirectedGraph<Unit> graph representing the CFG, takes the single set

of configurations, ILazyConfigRep configs, representing all possible configurations for this

method. This is the configuration set that will be split along the way as the analysis

progresses. The main work done in the transfer function is carried out by the loop in lines

19–53.

1 public class SharedReach ingDef in i t i ons extends ForwardFlowAnalysis<Unit ,

LazyMapLiftedFlowSet> {
2 private ILazyConfigRep c o n f i g u r a t i o n s ;

3

4 public SharedReach ingDef in i t i ons (DirectedGraph<Unit> graph ,

ILazyConfigRep c o n f i g s) {
5 // . . .

6 }
7

8 protected void flowThrough (LazyMapLiftedFlowSet source , Unit unit ,

LazyMapLiftedFlowSet des t) {
9 // pre−copy the in fo rmat ion from source to dest

10 source . copy (des t) ;

11 i f (un i t instanceof AssignStmt) {
12 AssignStmt ass ignment = (AssignStmt) un i t ;

13 IFeatureRep featureRep = . . . // r e t r i e v e tag from Unit

14 Map<IConfigRep , FlowSet> destMapping = dest . getMapping () ;

15

16 // i t e r a t e over a l l e n t r i e s o f the source l a t t i c e

17 Map<IConfigRep , FlowSet> sourceMapping = source . getMapping () ;

18 I t e r a t o r<Entry<IConfigRep , FlowSet>> i t e r a t o r = sourceMapping .

entrySet () . i t e r a t o r () ;

19 while (i t e r a t o r . hasNext ()) {
20 Entry<IConfigRep , FlowSet> entry = i t e r a t o r . next () ;

21 ILazyConfigRep lazyConf ig = (ILazyConfigRep) entry . getKey () ;

22 FlowSet sourceFlowSet = entry . getValue () ;

23 FlowSet destFlowSet = destMapping . get (lazyConf ig) ;

24

25 /* s p l i t the c o n f i g u r a t i o n s e t being c u r r e n t l y i t e r a t e d in to a pa i r

o f c o n f i g u r a t i o n s s e t s . the t r a n s f e r func t i on i s app l i ed only to

34 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

the f i r s t s e t o f the pair , the other i s mapped to the untouched

l a t t i c e . */

26 Pair<ILazyConfigRep , ILazyConfigRep> s p l i t = lazyConf ig . s p l i t (

featureRep) ;

27 ILazyConfigRep f i r s t = s p l i t . g e t F i r s t () ;

28

29 // in case the f i r s t c o n f i g u r a t i o n s e t i s empty , do nothing

30 i f (f i r s t . s i z e () != 0) {
31 /* i f the f i r s t c o n f i g u r a t i o n s e t i s ” everyth ing ” , s imply apply

the t r a n s f e r func t i on . . . */

32 i f (f i r s t . s i z e () == lazyConf ig . s i z e ()) {
33 k i l l (sourceFlowSet , assignment , destFlowSet) ;

34 gen (assignment , destFlowSet) ;

35 } else {
36 ILazyConfigRep second = s p l i t . getSecond () ;

37 FlowSet destToBeAppl iedLatt ice = new ArraySparseSet () ;

38

39 // apply point−wise t r a n s f e r func t i on

40 k i l l (sourceFlowSet , assignment , destToBeAppl iedLatt ice) ;

41 gen (assignment , destToBeAppl iedLatt ice) ;

42 i f (second . s i z e () != 0) {
43 destMapping . put (second , destFlowSet) ;

44 }
45

46 // add the new l a t t i c e

47 destMapping . put (f i r s t , destToBeAppl iedLatt ice) ;

48

49 // remove c o n f i g rep that has been s p l i t

50 destMapping . remove (lazyConf ig) ;

51 }
52 }
53 }
54 }
55 }
56 // . . .

57 }

Listing 3.11: The implementation of the shared version of the reaching definitions analysis.

3.5 REVERSED SHARED SIMULTANEOUS 35

3.5 REVERSED SHARED SIMULTANEOUS

A different approach to sharing is to map base lattices to configurations, effectively doing

the representational opposite of the previously described shared simultaneous approach.

That means that the base lattice can be seen as a map from base lattices, l, to a set of

configurations, φ. The effect of a transfer function f of a statement S and its associated

configuration set [[φ]], over a reversed shared lattice can be seen as follows:

{l→ [[ψ]]}
↓

[[φ]]: S

↓
{f(l)→ [[ψ ∧ φ]], l→ [[ψ ∧ ¬φ]]}

Unlike the “split” from the shared simultaneous approach, this one is not guaranteed to

keep the left-hand side of the mapping, the base lattices, disjoint. If f(l) = l, for instance,

then there will be two lattice values mapping to different configuration sets. To address

this matter, we adopt the convention that only a minimal and unique representation of a

lifted lattice is used.

Figure 3.6 shows the result of using the reversed shared simultaneous to execute

a reaching definitions analysis. The first lifted lattice, {{} → {¬F ∨ F}} represents

the fact that the base empty lattice, {}, is shared by the configuration set {¬F ∨ F}}.
The lifted lattice after the statement Object obj = new Object(); is composed of two parts:

{} → {¬F} and {Object obj = new Object()} → {F}, which is the result of splitting the

resulting lattice.

3.5.1 Implementation

The lifted lattice of the reversed shared approach, shown in Listing 3.12, has a single

attribute, BiMap<FlowSet, IConfigRep> map, which is a bidirectional mapping between base

lattices and sets of configurations. We use this specific Map interface because we frequently

use the inverse of this Map to get a reference to a FlowSet from a given IConfigSet. The

implementation of the union operation is shown from line 4 through 15. The merge

operation we discussed in Section 3.5 is used by the union method and is implemented

by the method putAndMerge in lines 18–41. The putAndMerge function has to handle three

cases that arise when inserting something in BiMap map which are described as follows.

36 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

{{} → {¬F ∨ F}}
↓

[[F]] Object obj = new Object();

↓
{{} → {¬F}, {Object obj = new Object()} → {F}}

↓
...

↓
{{...} → {¬F}, {Object obj = new Object(), ...} → {F}}

↓
delete obj;

Figure 3.6: Result of the reaching definitions analysis using the reversed shared approach.

Keep in mind that we wish to add the association l↔ c, where l is a base lattice and c is

a configuration set, to the map.

� There is no FlowSet in map that is equal to the one being added and there is no

IConfigRep equal to the one being added (cf. line 21). In this case, just add the

association l↔ c to the map;

� There is a FlowSet in map (cf. line 25). In this case we try to replace the preexisting

association l↔ c′ with l↔ c ∪ c′;

� There is an IConfigRep already in the map that is equal to the one being added (cf.

line 32). In this case, we try to replace the preexisting association l′ ↔ c with

l t l′ ↔ c.

In all the cases outlined above, recursion is necessary. For example, when trying to

replace l ↔ c′ with l ↔ c ∪ c′, as stated by the second case, there might already be an

entry such as l′ ↔ c ∪ c′. These situations are solved by recurring into the function once

again.

1 public class ReversedMapLiftedFlowSet extends AbstractFlowSet {
2 protected BiMap<FlowSet , IConfigRep> map ;

3 // . . .

4 public void union (FlowSet aOther , FlowSet aDest) {

3.5 REVERSED SHARED SIMULTANEOUS 37

5 ReversedMapLiftedFlowSet other = (ReversedMapLiftedFlowSet) aOther ;

6 ReversedMapLiftedFlowSet des t = (ReversedMapLiftedFlowSet) aDest ;

7

8 Set<Entry<FlowSet , IConfigRep>> otherEntrySet = other .map . entrySet () ;

9 // r e p l a c e s de s t s inne r map with a new BiMap

10 dest . map = HashBiMap . c r e a t e (this . map) ;

11 for (Entry<FlowSet , IConfigRep> otherEntry : otherEntrySet) {
12 FlowSet key = otherEntry . getKey () ;

13 dest . putAndMerge (key , otherEntry . getValue ()) ;

14 }
15 }
16

17 /* Add an Entry in the map a t t r i b u t e from f lowSet to c o n f i g . A merge

might be nece s sa ry i f map a l ready has a key equal to f l owSet or a

c o n f i g u r a t i o n s e t equal to c o n f i g */

18 public void putAndMerge (FlowSet f lowSet , IConfigRep c o n f i g) {
19 boolean containsKey = map . containsKey (f l owSet) ;

20 boolean conta insVal = map . conta insValue (c o n f i g) ;

21 i f (! containsKey && ! conta insVal) {
22 map . put (f lowSet , c o n f i g) ;

23 return ;

24 }
25 i f (containsKey) {
26 IConfigRep inConf ig = map . get (f l owSet) ;

27 IConfigRep union = inConf ig . union (c o n f i g) ;

28 map . remove (f l owSet) ;

29 putAndMerge (f lowSet , union) ;

30 return ;

31 }
32 i f (conta insVal) {
33 BiMap<IConfigRep , FlowSet> i n v e r s e = map . i n v e r s e () ;

34 FlowSet inFlowSet = i n v e r s e . get (c o n f i g) ;

35 ArraySparseSet unionFlowSet = new ArraySparseSet () ;

36 inFlowSet . union (f lowSet , unionFlowSet) ;

37 i n v e r s e . remove (c o n f i g) ;

38 putAndMerge (unionFlowSet , c o n f i g) ;

39 return ;

40 }
41 }

38 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

42 }

Listing 3.12: The implementation for the reversed shared lifted lattice.

Listing 3.13 shows the implementation for the reversed shared reaching definitions

analysis. It extends the usual ForwardFlowAnalysis and uses the reversed version of the

mapped lattice (cf. line 1). The main work of the transfer function, implemented in

method flowThrough, is done in lines 23 through 57. It is very similar to the shared

transfer function described in Listing 3.11, with the main difference being the use of the

putAndMerge(FlowSet, IConfigRep) to put associations in the lattice.

1 public class ReversedSharedReach ingDef in i t ions extends ForwardFlowAnalysis<

Unit , ReversedMapLiftedFlowSet> {
2 private ILazyConfigRep c o n f i g u r a t i o n s ;

3

4 public LazyL i f t edReach ingDe f in i t i on s (DirectedGraph<Unit> graph ,

ILazyConfigRep c o n f i g s) {
5 super (graph) ;

6 this . c o n f i g u r a t i o n s = c o n f i g s ;

7 super . doAnalys i s () ;

8 }
9

10 protected void flowThrough (ReversedMapLiftedFlowSet source , Unit unit ,

ReversedMapLiftedFlowSet des t) {
11 i f (un i t instanceof AssignStmt) {
12 AssignStmt ass ignment = (AssignStmt) un i t ;

13

14 // c l e a r the d e s t i n a t i o n l a t t i c e to i n s e r t new ones

15 dest . c l e a r () ;

16

17 FeatureTag tag = (FeatureTag) ass ignment . getTag (FeatureTag .

FEAT TAG NAME) ;

18 IFeatureRep featureRep = tag . getFeatureRep () ;

19

20 // i t e r a t e over a l l e n t r i e s o f the source l a t t i c e

21 BiMap<FlowSet , IConfigRep> sourceMapping = source . getMapping () ;

22 I t e r a t o r<Entry<FlowSet , IConfigRep>> i t e r a t o r = sourceMapping .

entrySet () . i t e r a t o r () ;

23 while (i t e r a t o r . hasNext ()) {

3.5 REVERSED SHARED SIMULTANEOUS 39

24 Entry<FlowSet , IConfigRep> entry = i t e r a t o r . next () ;

25 ILazyConfigRep lazyConf ig = (ILazyConfigRep) entry . getValue () ;

26

27 FlowSet sourceFlowSet = entry . getKey () ;

28

29 Pair<ILazyConfigRep , ILazyConfigRep> s p l i t = lazyConf ig . s p l i t (

featureRep) ;

30 ILazyConfigRep f i r s t = s p l i t . g e t F i r s t () ;

31 // in case the f i r s t c o n f i g u r a t i o n s e t i s not empty

32 i f (f i r s t . s i z e () != 0) {
33 /* i f the f i r s t c o n f i g u r a t i o n s e t i s ” everyth ing ” , apply the

t r a n s f e r func t i on */

34 i f (f i r s t . s i z e () == lazyConf ig . s i z e ()) {
35 FlowSet destFlowSet = new ArraySparseSet () ;

36 k i l l (sourceFlowSet , assignment , destFlowSet) ;

37 gen (assignment , destFlowSet) ;

38 des t . putAndMerge (destFlowSet , f i r s t) ;

39 } else {
40 FlowSet destFlowSet = sourceFlowSet . c l one () ;

41

42 ILazyConfigRep second = s p l i t . getSecond () ;

43 i f (second . s i z e () != 0) {
44 dest . putAndMerge (destFlowSet , second) ;

45 }
46

47 // apply base t r a n s f e r func t i on

48 FlowSet destToBeAppl iedLatt ice = new ArraySparseSet () ;

49 k i l l (sourceFlowSet , assignment , destToBeAppl iedLatt ice) ;

50 gen (assignment , destToBeAppl iedLatt ice) ;

51

52 dest . putAndMerge (destToBeAppl iedLatt ice , f i r s t) ;

53 }
54 } else {
55 dest . putAndMerge (sourceFlowSet , l azyConf ig) ;

56 }
57 }
58 }
59 }
60 // . . .

40 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

61 }

Listing 3.13: The reversed shared implementation of the reaching definitions analysis.

3.6 EVALUATION

In this section we describe the design and execution of our evaluatory experiments. We

reexecuted the experiments performed by Brabrand et al. in [18] in a effort to gain a

deeper understanding of the performance of each approach. In doing so, we discovered that

the data contains variations that affect both our statistical analysis and our reasoning over

the results. Later, we discovered that disabling the JIT compiler in the JVM diminished

the amount of variability in the data we gathered. Thus we reexecuted the experiments

again with no JIT compiler in search of more stable data. In the following sections we

report our findings as we trailed that path.

Henceforth, when we talk about any of the approaches presented in the previous

sections, we are actually referring to our specific the implementation of said approaches.

3.6.1 Study settings

All the experiments we executed ourselves and the one in [18] by Brabrand et al. were

done so in the same computer with the following hardware platform: an Intel® Core� i7-

3820 processor at 3.6GHz with 32GB of RAM running a Linux distribution with the

3.2.0-23-generic kernel. The JVM is an OpenJDK, version 1.6.0 24, configured with a

maximum heap of 20GB.

Brabrand et al. evaluates the feature-sensitive approaches by applying the consecutive,

simultaneous, shared and reversed shared reaching definitions analysis on four different

SPLs. Table 3.1, adapted from [18, Figure 10] shows some size metrics that characterize

each SPL. The metrics shown are: #units, which represents the number of statements in

the Jimple intermediate representation of the methods in the SPL; |2F | is the method

with the largest number of configurations in the benchmark; #methods is the number

of methods in the benchmark; and #configurations as the total number of method

configurations in the benchmark. The last column points to respective figure with the

histogram of the number of configurations of the methods. We leave out of this histogram

the methods with no features, i.e., methods with only 1 configurations.

3.6 EVALUATION 41

Each benchmark has different feature usage profiles. GPL, for example, is the bench-

mark with the least number of Jimple statements but also has the method with the most

number of configurations. MM08 has more methods and units than GPL, but has a more

modest feature usage. Lampiro has almost no feature usage. BerkeleyDB is the largest of

the benchmarks in terms of units and number of methods.

Benchmark name #units |2F | #methods #configurations Config. histogram

GPL 2107 106 156 536 Figure 3.7

MM08 6393 24 286 523 Figure 3.8

Lampiro 81064 4 2003 2029 Figure 3.9

BerkeleyDB 79040 40 3609 5909 Figure 3.10

Table 3.1: A summary of key characteristics in the benchmarks used in the experiments.

2 3 4 8 12 32 72 106

#configurations

#m
et

ho
ds

0
20

40
60

80 71

2

20

4 1 1 1 1

Figure 3.7: Histogram of the number of configurations of methods in the GPL benchmark.

3.6.2 Previous experiments

In their experiments, Brabrand et al. measures the time to analyze all methods of all

the benchmark using all of the proposed feature-sensitive approaches with the exception

of the reversed shared, which, as they report, at the time of the writing, did not have a

reasonable implementation. They repeat this procedure 10 times and then report the sum

of the medians (over the 10 runs) of the analysis time of all methods.

42 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

2 3 4 6 8 12 14 20 24

#configurations

#m
et

ho
ds

0
20

40
60

80 75

10 12
4 3 1 1 1 1

Figure 3.8: Histogram of the number of configurations of methods in the MobileMedia08

benchmark.

2 4

#configurations

#m
et

ho
ds

0
5

10
15

20
25

24

1

Figure 3.9: Histogram of the number of configurations of methods in the Lampiro

benchmark.

3.6 EVALUATION 43

2 3 4 5 6 8 12 14 16 18 20 24 32 34 40

#configurations

#m
et

ho
ds

0
20

0
60

0
10

00 984

44

180

4 15 20 14 1 5 1 1 2 2 1 1

Figure 3.10: Histogram of the number of configurations of methods in the BerkeleyDB

benchmark.

The experiments of Brabrand et al. show evidence that all proposed feature-sensitive

approaches can outperform the brute-force one. This is mainly due to the fact that the

source code has to be recompiled for each configuration and then analyzed, as opposed

to the one-off compilation of the feature-sensitive analysis. They also compare the

performance of the feature-sensitive implementation between themselves and show that

they behave differently, depending on several characteristics of the method being analyzed.

In this work, our main focus is on the difference between the features-sensitive approaches.

We reexecuted the experiments of Brabrand et al. on the same benchmarks but

under different environments and provide, in the following sections, a more fine-grained

explanation for the data obtained in the experiments.

3.6.3 Revisiting the experiments

Brabrand et al. discuss the results of their experiment by looking at the median between

ten runs. Although the results are convincing that the approaches do in fact behave

differently, there is not much statistical rigor in their analysis of the data. Additionally,

we show that environmental aspects in the computer that executed the experiments have

major influence in the obtained results.

Instead of focusing only on the median of the analysis time, we study each execution

of the experiment individually and report our findings about consistency. Specifically,

we are interested in checking under which circumstances there is (or not) a statistically

significant difference between the approaches. To do so, we grouped the methods of each

44 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

Method Consecutive (ns) Simultaneous (ns) Shared (ns) Rev. shared (ns)

m1 200 170 180 250

m2 420 300 200 400
...

...
...

...
...

Table 3.2: A demonstration of the measurements taken by the experiments.

benchmark into three groups:

1. with exactly two configurations;

2. with exactly four configurations; and

3. with more than four configurations.

We grouped the methods in this manner because it would yield reasonable samples

sizes for the majority of the benchmarks. Also, since we are interested in comparing only

the feature-sensitive approaches, we do not consider methods with no features. We use

the R project [7] for statistical computing to execute the Wilcoxon signed-rank test [57]

on the grouped methods to check if there is statistically significant difference between a

pair of approaches. We chose to use this test because we cannot assume that the data is

normally distributed.

To better illustrate, suppose we took the measurements shown in Table 3.2 from a

hypothetical benchmark with methods that belong to a same group. We test the difference

between the approaches in a pair-wise manner. For example, to compare the Consecutive

and the Simultaneous approach, we execute the Wilcoxon test on the ratio of their

measurements, {200/170, 420/300, . . .}. The test yields a p-value, which is used to reject

or not the null hypothesis, H0, that states that both approaches are indistinguishable

from each other.

3.6.4 Results discussion

We present the results of our experiment, but this time including the measurements

from the implementation of the reversed shared approach, which is not covered in their

publication. Like the one performed by Brabrand et al., our experiment is comprised of

10 runs.

3.6 EVALUATION 45

1st execution

Simultaneous Shared Rev. shared

Consecutive 5.72×10−6 2.61×10−4 1.65×10−1

Simultaneous 5.22×10−1 3.81×10−6

Shared 2.61×10−4

2nd execution

Simultaneous Shared Rev. shared

Consecutive 3.81×10−6 4.41×10−2 5.96×10−1

Simultaneous 1.91×10−6 1.91×10−6

Shared 1.43×10−1

3rd execution

Simultaneous Shared Rev. shared

Consecutive 3.81×10−6 6.29×10−5 1.02×10−3

Simultaneous 1.99×10−3 7.08×10−4

Shared 2.02×10−1

Table 3.3: For methods with 4 configurations, p-values output by the Wilcoxon test for

the GPL benchmark on 3 of the 10 executions.

Figure 3.11 shows the median of the sum of the analysis time of each benchmark, for

all methods that have more than one configuration. We can visualize a trend in these

graphs. The consecutive performs slower than all the others in 3 of the 4 benchmarks;

the exception happens on Lampiro, the benchmarks with the least feature usage. We can

also see that in 2 of the 4 benchmarks the simultaneous and the reversed shared approach

are close to each other. We can also see that the shared approach performs the best on

all benchmarks, except on Lampiro, where there it seems to tie with the simultaneous

approach.

We found that the p-values output by the Wilcoxon tests vary from each execution

of the experiment, regardless of the benchmark. To illustrate this, Table 3.3 shows the

p-values obtained for the first 3 executions (out of the total of 10) of the experiment

on the group of methods with exactly four configurations from the GPL benchmark.

The highlighted values are p-values that are > 0.05 and thus we cannot reject the null

hypothesis for the two approaches.

A closer look at the data for the methods individually shows a great deal of variation

in the measurements. Figure 3.12 shows the ten measurements of the time taken to

analyze the method with the largest number of features in the GPL benchmark using the

46 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

Cons. Simul. Shared Rev. shared

tim
e

(n
s)

0e
+

00
2e

+
07

4e
+

07
6e

+
07

(a) GPL

Cons. Simul. Shared Rev. shared

0e
+

00
2e

+
07

4e
+

07
6e

+
07

(b) MM08

Cons. Simul. Shared Rev. shared

tim
e

(n
s)

0.
0e

+
00

1.
0e

+
07

2.
0e

+
07

(c) Lampiro

Cons. Simul. Shared Rev. shared

tim
e

(n
s)

0e
+

00
2e

+
08

4e
+

08
6e

+
08

(d) BerkeleyDB

Figure 3.11: Median (over the 10 runs) of the sums of the analysis time of methods in

each benchmark

3.6 EVALUATION 47

consecutive approach. In almost every method of every benchmark, the measurements in

the first iteration is usually much slower. In the specific case of this GPL method, the

standard deviation is approximately 2× 107, quite high for the numbers provided. There

are several elements that can help explain the variation between each execution.

1 2 3 4 5 6 7 8 9 10

tim
e

(n
s)

0e
+

00
4e

+
07

8e
+

07

Figure 3.12: Time measurements of the consecutive analysis on one method in the GPL

benchmark. This is the method with the largest number of configurations in GPL: 106.

The experiment works by starting a JVM, analyzing all methods of one benchmark ten

times and then shutting down the JVM. Thus a new JVM is started for each benchmark.

Between the start and shut down of the JVM, a lot more is going on behind the scenes

where the code for the experiment is running and at least three of them can cause the

variation seen in the measurements: the garbage collector, the thread scheduler and the

Java compiler.

The garbage collector used by the JVM is the parallel compacting collector [54] which

is a multi threaded garbage collector that from time to time needs to stop the world,

that is, to completely stop the execution of the program to run the collector. Should this

stop-the-world-event happen while we are measuring the time performance, then the time

measurement will be higher than the actual spent doing the analysis.

Because our implementation relies on CIDE, which is built as an Eclipse plug-in, there

are several other threads spawned while the experiment is taking place.

Last but certainly not least, the JVM uses Just-In-Time (JIT) compilation techniques

48 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

that try to compile the source code at runtime instead of just interpreting. To do so

it relies on data collected at runtime and heuristics to identify portions of source code

that are worth the effort to compile. This makes time measurements more difficult

because, for example, in our case, the JIT might decide that only code for the consecutive

analysis should be compiled. While this is fine for real world applications, we are trying to

understand and interpret the results, and to do so, we need a more controlled environment.

Fortunately, the JIT compiler in the JVM can be easily disabled. We exploited this

and reexecuted the experiment with the same parameters, but with JIT disabled and

discuss the results in the next section.

3.6.5 No JIT results discussion

The performance hit taken by disabling the JIT compiler might make it unrealistic, but

disabling it allow us to more comfortably reason about our implementation of the analysis

and approaches.

We found that disabling the JIT compiler improves the consistency of the measurements,

but with an added cost to runtime performance. Figure 3.13 displays the ten measurements

of the time taken to analyze the same method for which we show the measurements in

Figure 3.12. This time it only has slight variations across the executions; the standard

deviation is approximately 3×106, much lower compared to the one from Figure 3.12, but

is about one order of magnitude slower overall. We noticed that our measurements are

still tainted by variations, but on a smaller scale, in all methods of our benchmarks. Less

variations on our measurements means that our observations are more consistent.

That is not the case, however, with methods that take a smaller amount of time

to analyze. Figure 3.14 shows the measurements on a method in GPL that has only 2

configurations and only 5 statements, where the variations are visually perceivable. The

measurements in Figure 3.14 are up to 3 orders of magnitude lower than those in Figure

3.13.

In our evaluation that follows, we consider how many times a given approach was the

fastest of the four when the methods of a benchmark. Although we did not investigate this

in depth, it seems plausible that this variation, specially in methods where the absolute

time measured is low, can be the cause of the noise we perceived in this specific topic of

our investigation.

Before we proceed with the statistical significance tests, we lay out some of the most

3.6 EVALUATION 49

1 2 3 4 5 6 7 8 9 10

tim
e

(n
s)

0e
+

00
2e

+
08

4e
+

08
6e

+
08

Figure 3.13: Time measurements of the consecutive analysis on one method in the GPL

benchmark with the JIT compiler disabled. This is the method with the largest number

of configurations in GPL: 106.

1 2 3 4 5 6 7 8 9 10

iterations

tim
e

(n
s)

0e
+

00
4e

+
05

8e
+

05

Consecutive
Simultaneous
Shared
Rev. shared

Figure 3.14: Time measurements of all approaches on a method with 2 configurations and

5 statements. Variations are easily spotted in the measurements of all approaches.

50 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

Cons. Simul. Shared Rev. shared

tim
e

(n
s)

0e
+

00
2e

+
08

4e
+

08
6e

+
08

8e
+

08

(a) GPL

Cons. Simul. Shared Rev. shared

tim
e

(n
s)

0e
+

00
2e

+
08

4e
+

08
6e

+
08

8e
+

08

(b) MM08

Cons. Simul. Shared Rev. shared

tim
e

(n
s)

0e
+

00
2e

+
08

4e
+

08
6e

+
08

(c) Lampiro

Cons. Simul. Shared Rev. shared

tim
e

(n
s)

0e
+

00
2e

+
09

4e
+

09
6e

+
09

8e
+

09

(d) BerkeleyDB

Figure 3.15: Sum of medians of analysis time in the benchmarks, with the JIT compiler

disabled.

3.6 EVALUATION 51

important characteristics of each approach implementation. We use this information to

guide our reasoning about the statistical tests and overall performance outcome.

� Consecutive: This approach requires one analysis computation for each configura-

tion of the method. This means that many lattice operations and transfer functions

will be executed redundantly proportional to the overlap existing between the results

of the analysis for the configurations. On the other hand, the lattice used is the

normal one so there is no representational overhead involved compared to the lifted

lattices.

� Simultaneous: this approach requires a single analysis computation to analyze

all configurations. Compared to the consecutive, it displaces the burden of the

iterations over the configurations into the lifted lattice. A symptom of this is that

there might redundancies inside the lifted lattice, as opposed to the transfer function

applications. If, for instance, there are more than several configurations mapping

to the same lattice value, other operations such as union or creating a copy of the

lattice will pay the price for the redundancy.

� Shared: this approach also requires a singled analysis computation to analyze

all configurations but tries to reduce the lifted lattice sizes by merging together

configurations that point to the same lattice. This, in turn, reduces the cost of

operations like copy, union and so on when compared to the other approaches. The

performance efficiency of this approach depends on the sharing potential of the

method being analyzed. That means that methods with large lattices that are

shared frequently so as to avoid redundant operations will be the main beneficiaries.

This approach also heavily depends on having an efficient representation for sets of

configurations.

� Reversed shared: much like the shared approach, this one only requires a sin-

gle analysis computation to analyze all configurations and tries to avoid storing

redundant information by sharing equal lattices that map the different sets of con-

figurations by merging them. Thus, the efficiency of this approach is also connected

to the sharing potential of the methods. Unlike the shared approach, however, it

carries the additional cost of the merge operation (cf. Section 3.5).

In the following Sections we discuss the statistical significance for each benchmark

52 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

individually. In addition to that, we also discuss the average number of methods each

approach performed the best in the 10 runs of the experiment.

3.6.5.1 Benchmark 1: GPL

� Group: methods with exactly 2 configurations.

� Size: 71 methods

Figure 3.16 shows the number of times each approach was the fastest on the methods

of this group. The shared approach was by far the fastest on most methods, 56, with the

consecutive and simultaneous close to each other with 9 and 7, respectively. The reversed

shared did not make it any faster than the others.

Cons. Simul. Shared Rev. shared

#m
et

ho
ds

0
10

20
30

40
50

Figure 3.16: Number of times each approach performed the fastest on methods with 2

configurations in the GPL benchmark, averaged over the 10 runs.

The p-values for the Wilcoxon tests report that, on all ten executions, there is no

statistically significant difference for the consecutive-simultaneous pair only. We take this

as an indication that computing the analysis two times and computing it only once using

the simultaneous approach is indistinguishable, time-wise.

Even for methods with only 2 configurations, the shared approach outperforms all

other approaches both in occurrences, i.e, the number of times it performs better and

3.6 EVALUATION 53

significantly so, i.e., there is a statistically significant difference between it and the others.

We also take this as an indication that in fact, the overhead of our representation of set of

configurations is low enough.

Lastly, the reversed shared approach was outperformed by all others. We take this as

evidence that the reversed sharing is not beneficial enough for it to balance its shortcomings,

like the necessary merge operation.

� Group: methods with exactly 4 configurations.

� Size: 20 methods

Figure 3.17 shows the average number of times each approach was the fastest. The

shared approach maintains the lead as it still performs better on an average of 18 of the

methods in this group. The consecutive approach was the fastest in only method on

average, with the other two approaches not even making an appearance.

In this group, however, the p-values indicate that there is a statistically significant

difference between the consecutive and simultaneous, which did not happen in the previous

group. In fact, a closer look reveals that, the simultaneous outperforms the consecutive

approach, on average, in 19 out of the 20 methods in this group. We take this as an

indication that avoiding multiple computations of the analysis and using a simultaneous

lifted lattice might start to pay off at four configurations.

The p-values also indicate that there is no statistically significant difference between

the simultaneous and the reversed shared approach on all 10 executions. Previously out-

performed by the simultaneous approach, the reversed shared shows signs of improvements

as the number of configurations increases. We take this as an indication that the sharing

strategy for the reversed shared implementation starts to pay off later when compared to

the shared approach.

� Group: methods with > 4 configurations.

� Size: 8 methods

Figure 3.18 shows the average number of times each approach was the fastest. The

shared approach outperforms all other approaches in this group, and all the reported

p-values are > 0.05.

The number of methods that fit this group for this benchmark is very small. so we

must take the reported p-values with a grain salt. We refrain from building up evidence

about this specific group/benchmark here.

54 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

Cons. Simul. Shared Rev. shared

#m
et

ho
ds

0
5

10
15

Figure 3.17: Number of times each approach performed the fastest on methods with 4

configurations in the GPL benchmark, averaged over the 10 runs.

Cons. Simul. Shared Rev. shared

#m
et

ho
ds

0
2

4
6

8

Figure 3.18: Number of times each approach performed the fastest on methods with more

than 4 configurations in the GPL benchmark, averaged over the 10 runs.

3.6 EVALUATION 55

3.6.5.2 Benchmark 2: MobileMedia08

� Group: methods with exactly 2 configurations.

� Size: 75 methods

Figure 3.19 shows the number of times each approach was the fastest on the methods

of this group, on average. Similar to the GPL benchmark, the shared approach was

again the fastest on most methods, 64, followed by the simultaneous approach being the

fastest on only 6 methods and by the consecutive approach on 5. Also similar to the GPL

benchmark, the reversed shared did not make it any faster than the others.

Cons. Simul. Shared Rev. shared

#m
et

ho
ds

0
10

20
30

40
50

60

Figure 3.19: Number of times each approach performed the fastest on methods with 2

configurations in the MobileMedia08 benchmark, averaged over the 10 runs.

The p-values for the Wilcoxon tests are consistent with the GPL benchmark where

the test produced a p-value > 0.05 when comparing the consecutive and the simultaneous

approaches on all 10 executions of the experiment.

We take the fact that the shared approach significantly outperforms all other approaches

on this group in this benchmark as further evidence that the overhead of representing

sets of configurations is low and that the sharing does indeed pay off as soon as possible.

� Group: methods with exactly 4 configurations.

� Size: 12 methods

56 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

Figure 3.20 shows the average number of times each approach was the fastest. The

shared approach performs better, on average, on all 12 of the methods in this group.

Although a bit more drastic, this is consistent with what see in the GPL benchmark, with

the shared approach performs significantly better than the other approaches.

In this group, however, the p-values indicate that there is a statistically significant

difference between the consecutive and simultaneous, similar to what happened in the

GPL benchmark. Once again, a closer look reveals that, the simultaneous outperforms

the consecutive approach, on average, in all 12 methods in this group. This adds up to

the evidence that avoiding multiple analysis computations and using a simultaneous lifted

lattice starts to pay off at four configurations.

Something similar to what happened in the GPL benchmark also happens in this one.

The test indicates that there is no statistically significant difference between the simul-

taneous and the reversed shared approach. Again, on methods with four configurations,

the reversed shared approach evens up with the simultaneous one. We also take this as

further evidence that the reversed sharing technique in our implementation starts to pay

off at methods with four or more configurations.

Cons. Simul. Shared Rev. shared

#m
et

ho
ds

0
2

4
6

8
10

12

Figure 3.20: Number of times each approach performed the fastest on methods with 4

configurations in the MobileMedia08 benchmark, averaged over the 10 runs.

� Group: methods with > 4 configurations.

3.6 EVALUATION 57

� Size: 11 methods

Figure 3.21 shows the average number of times each approach was the fastest. The shared

approach continues to dominate, being the fastest, on average, on 10 methods, followed

by the simultaneous as the fastest on one method.

The p-values indicate that there is statistically significant difference between the shared

approach and all the other ones. This group has some unexpected p-values that are >

0.05: in the simultaneous vs. the reversed shared on all ten executions and the shared vs

the reversed shared on three executions.

While it is reasonable that the simultaneous and reversed shared approaches continue

to be even in this group, like they were in the group with only 2 configurations, the

analysis pinpoints three executions in which the shared approach evens with reversed

shared seems a bit odd to say the least. A closer inspection reveals that, in all these three

executions that the p-values were > 0.05 when comparing the shared and the reversed

shared, the shared approach was the fastest on between 9 and 11 of the methods in this

group. This is consistent with the results from the other seven executions. We find it

reasonable to consider that the shared approach is superior to the reversed shared in this

group because there are other seven p-values that state otherwise, and the number of

occurrences in which the shared approach supersedes is consistent with these other seven

executions.

When comparing only the simultaneous with the reversed shared, we found that the

reversed shared approach was the fastest, on average, on 6 methods while the simultaneous

was the fastest on 5.

3.6.5.3 Benchmark 3: Lampiro Lampiro only has one method with more than two

configurations, so we only look at the group of methods with 2 configurations to compare

the approaches. Figure 3.22 shows the average number of times each approach was the

fastest on the 24 methods of this group. The shared approach is, on average, the fastest

on 20 methods, followed by the simultaneous and consecutive with 2 and 1 respectively.

The reversed shared approach, once again, did not make it as the fastest in any of the

methods.

The only p-value reported as > 0.05 is the consecutive-simultaneous case. We take this

as further evidence that, on methods characterized by this group, these two approaches

are indistinguishable in terms of performance. With respect to the shared approach, the

58 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

Cons. Simul. Shared Rev. shared

#m
et

ho
ds

0
2

4
6

8
10

Figure 3.21: Number of times each approach performed the fastest on methods with more

than 4 configurations in the MobileMedia08 benchmark, averaged over the 10 runs.

statistical tests for this benchmark add up to the evidence that the shared approach is,

overall, the superior implementation, as all the other approaches performed marginally in

this group of methods.

3.6.5.4 Benchmark 4: BerkeleyDB

� Group: methods with exactly 2 configurations.

� Size: 984 methods

Figure 3.23 shows the average number of methods each approach is the fastest on. The

shared approach once again is by far the approach with the highest average here, being

the fastest on average on 835 methods. The simultaneous, along with the consecutive are

far behind, being the fastest on average on 86 and 61 methods, respectively. The reversed

shared approach is on average the fastest on only 1 method.

In this group, all the p-values were > 0.05, including the consecutive vs. simultaneous

case, which had not happened in any of the other benchmarks. This provides evidence

against our hypothesis that there the consecutive and the simultaneous approach are

indistinguishable from each other in this group of methods, so we take a closer look at

the data.

3.6 EVALUATION 59

Cons. Simul. Shared Rev. shared

#m
et

ho
ds

0
5

10
15

20

Figure 3.22: Number of times each approach performed the fastest on methods with 2

configurations in the Lampiro benchmark, averaged over the 10 runs.

Cons. Simul. Shared Rev. shared

#m
et

ho
ds

0
20

0
40

0
60

0
80

0

Figure 3.23: Number of times each approach performed the fastest on methods with 2

configurations in the BerkeleyDB benchmark, averaged over the 10 runs.

60 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

When comparing only the consecutive and simultaneous approach, we see that the

simultaneous is the fastest, on average, on 613 methods, compared to the 371 of the

consecutive approach. This fact drew our attention to the other benchmarks. Still

comparing the two approaches with the methods of the same group, we found that for

the GPL benchmark, the simultaneous approach is the fastest on 41 of the methods and

the consecutive on 30 methods, on average. These same numbers for the MobileMedia08

benchmark are 40 and 35. Lastly, in the Lampiro benchmark the figures are 15 and 9.

Thus we see that the simultaneous approach only appear to be slightly better in terms

of occurrences than the consecutive approach, but not enough for the Wilcoxon test to

output a p-value > 0.05 for the other benchmarks. We believe the difference between the

approaches becomes significant because the BerkeleyDB benchmark has the largest pool

of methods in this group, 984.

� Group: methods with exactly 4 configurations.

� Size: 180 methods

Figure 3.24 the average number of times each approach performs best on the methods

of this group. The shared approach consistently outperforms all the others by a large

margin, being the fastest on average on 169 methods, against 10 of the simultaneous, 1

for the reversed shared and 0 for the consecutive approaches.

In this group, all p-values are > 0.05, including the simultaneous-reversed shared case,

which also had not happened in the other benchmarks so far. When comparing only these

2 approaches for the methods in this group, we found that, on average, the simultaneous

approach is the fastest on 112 methods, compared with the 68 methods for the reversed

shared. This too drew our attention to the other benchmarks, and we present the numbers

for them as well. They are 11 and 9 for the GPL benchmark, 8 and for the MobileMedia08

benchmark. The Lampiro benchmark only has one method in this same group. Thus we

see that the simultaneous is consistently superior, although sometimes by a small margin,

to the reversed shared approach. The BerkeleyDB benchmark has the largest pool of

methods in this group compared to the other benchmarks. We believe that, by looking

at the samples for the GPL and MobileMedia08 benchmarks, the simultaneous approach

is from nothing to slightly better than the reversed shared approach for methods in this

group.

� Group: methods with > 4 configurations.

3.6 EVALUATION 61

Cons. Simul. Shared Rev. shared

#m
et

ho
ds

0
50

10
0

15
0

Figure 3.24: Number of times each approach performed the fastest on methods with 4

configurations in the BerkeleyDB benchmark, averaged over the 10 runs.

� Size: 180 methods

Figure 3.25 shows the average numbers of methods each approach performs best. The

figures are 64 for the shared, 2 for the reversed shared, 1 for the simultaneous and 0 for

the consecutive approach.

All the reported p-values are < 0.05, in accordance to what we have seen so far in the

other benchmarks, with the exception of the simultaneous-reversed shared case in the

MobileMedia08 benchmark where the p-values were > 0.05 for the methods in this same

group. A close look at this case reveals that the reversed shared is, on average, faster on

43 methods, compared with the 24 of the simultaneous approach.

3.6.6 Synthetic benchmarks

To further investigate the performance difference between the implementation of the

approaches, we created a small benchmark that contains one class with five methods. Each

of these five methods have the exact same statements that are increasingly associated

with up to five distinct features. Figure 3.26 shows these methods. A method mi has each

of the i-th first statements of its body associated with i distinct features. All the features

in this benchmark are optional.

62 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

Cons. Simul. Shared Rev. shared

#m
et

ho
ds

0
10

20
30

40
50

60

Figure 3.25: Number of times each approach performed the fastest on methods with more

than 4 configurations in the BerkeleyDB benchmark, averaged over the 10 runs.

Figure 3.26: Methods in the synthetic benchmark.

3.6 EVALUATION 63

We created this small benchmark so that we could focus on the number of configurations

as the main factor in our performance study and because it would be hard to find a set

of methods with precisely these characteristics. Because this benchmark is so small, we

configured the experiment to execute 50 iterations instead of 10, like we did for the other

benchmarks.

The beanplots [29] in Figure 3.27 shows what the number for the measurements of

a single method, m, look like. In all cases, the highest density of values is within the

smaller range of values, indicated by the bottom part of the plot. We know that there is

a chance that the garbage collector, for example, might interrupt the execution of the

program to perform a sweep over the objects allocated in memory. Thus, although we do

not know for sure, we assume that the values indicated in the top of each plot is the result

of measurements that were “tainted” by something alien to the code executing. With that

in mind, we consider the medians, displayed as the thick lines in each bean, therefore, to

be a reasonable choice of a summary metric for the data we see in Figure 3.27 because

despite the presence of such tainted measurements, it still points to a value that is within

the lower values region.

By looking at this beanplot, we can see one of the reasons the Wilcoxon test outputs

different p-values for the same group of methods in the benchmarks we studied. Suppose,

for example, that a measurements of the consecutive approach that are tainted never

coincide with a tainted measurement of the simultaneous approach. If the sample size is

small enough, this variation can build up so that the reported p-values also vary, causing

it to jitter around our convention of 0.05.

Figure 3.28 shows the median of the 50 executions of each approach on the 5 methods

of the synthetic benchmark. The median values for the method m show that all approaches

have similar performance, with the reversed shared falling slightly behind. The median

values for the m2 method, on the other hand, show that the reversed shared approach

performed better than the consecutive one, but is still behind the shared and the simulta-

neous. On the method with 8 configurations, m3, and the method with 16 configurations,

m4, we see that the consecutive approach does not scale nearly as good as the other ones

as the number of configurations increases exponentially. Lastly, in the method m5, with

its 32 configurations, we see that the reversed shared finally surpasses the simultaneous

approach.

By fixating other variables in a method profile, such as number of statements or

assignments, cyclomatic complexity etc., in this benchmark and varying only the number

64 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

1e
+

06
3e

+
06

5e
+

06
7e

+
06

Consecutive Simultaneous Shared Rev. shared

tim
e

(n
s)

Figure 3.27: A beanplot with time measurements on method m.

of configurations, we were able to identify a strong relationship between the number of

configurations and the performance of our implementations. Specifically, we found that,

as the number of configurations increases, the shared approaches tend to perform even

better, as is the case of the shared approach, or display significant improvements, in the

case of the reversed shared approach. The non-shared approaches, in contrast, do not

scale so well, specially the consecutive one.

Not all observations of this synthetic benchmark coincide with the benchmarks from

Sections 3.6.5.1 – 3.6.5.4, however. We saw that the p-values for the consecutive vs.

reversed shared case, both in GPL and MobileMedia08 benchmarks, did not allow us to

reject the null hypothesis for method with 4 configurations. The same happened for the

group of methods with > 4 configurations on MobileMedia08. This is not unexpected to

happen as we have only been analyzing data with respect to one factor, the number of

configurations. There are other characteristics that can impact the performance of the

analysis, such as the number of assignments (statements for which transfer functions are

defined in the reaching definitions analysis) and the number of confluence points (relates

to the application of the union operation for the case of the reaching definitions analysis).

3.6 EVALUATION 65

2
m()

4
m2()

8
m3()

16
m4()

32
m5()

configurations
method

tim
e

(n
s)

0e
+

00
4e

+
06

8e
+

06

Consecutive
Simultaneous
Shared
Rev. shared

Figure 3.28: Medians over the 50 runs of each method in the synthetic benchmark.

We executed the experiment with the synthetic benchmark once again, but equally

increasing the number of assignments on all methods. Figure 3.29 shows the methods

of the modified synthetic benchmark. We replicated the same statements (altering local

variable names) 5 times in each method, along with their respective feature association.

In the Jimple representation of these methods they have 68 assignments, up from 10 in

the original synthetic benchmark. For comparison, the methods in the MobileMedia08

benchmark have methods ranging from 0 to 244 assignments and the GPL benchmark

from 0 to 111.

Figure 3.30 shows the medians of the 50 executions in the modified synthetic benchmark.

In the m method, the figures are similar to that of Figure 3.28’s, but the absolute values are

higher across all of the approaches. We also see the difference between the simultaneous

and the reversed shared approach in the m2, m3 and m4 methods increasing as the number

of configuration increases. Perhaps most importantly, we see the simultaneous approach

outperform the reversed shared by a large margin in the method with 32 configurations,

m5. Additionally, the difference between the shared approach and the simultaneous is not

as great compared to what we see in Figure 3.28.

66 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

Figure 3.29: Methods in the modified synthetic benchmark with a higher number of

assignments.

2
m()

4
m2()

8
m3()

16
m4()

32
m5()

configurations
method

tim
e

(n
s)

0e
+

00
3e

+
07

6e
+

07 Consecutive
Simultaneous
Shared
Rev. shared

Figure 3.30: Medians of each method in the modified synthetic benchmark.

3.7 THREATS TO VALIDITY 67

3.6.7 Evaluation summary

In this chapter we discussed the experiments performed by Brabrand et al. and report

our findings as we dove deeper into the data generated by the experiments. We disabled

the JIT compiler in the JVM where we executed the experiments to try and have a more

controlled environment for our experiments. We found that disabling the JIT was crucial

to our statistical analysis of the data, and made our exploration more consistent.

We found that the shared approach performed excellently on all scenarios we investi-

gated, namely methods with varying number of configurations and sizes. We also found

evidence that the number of configurations, although an important characteristic, is not

the single definitive characteristic that one should consider when choosing which approach

to use when analyzing a given method. The number of assignments in a method, as

shown by the experiments with the synthetic benchmark, can have profound effects on

the performance of the approaches for this specific analysis.

Of all the approaches presented, the shared one performed the best across all methods

we examined in the experiments. If one must choose a single approach to implement

with performance in mind, then the shared one is his choice. The consecutive analysis

only managed to compete with the other approaches on methods with a small number of

configurations, but has the most straightforward implementation, as it only requires the

instrumented CFG and a simple form of lifted transfer functions.

3.7 THREATS TO VALIDITY

In our experiments with the four benchmarks, we separated the methods into 3 groups:

methods with 2, 4 and more than 4 configurations. This allowed us to control the number-

of-configurations variable in these methods. We decided to begin our exploration with this

particular variable because of its exponential nature. However, in our experimental set

up, there are many other variables that were not controlled, simply because the methods

in the benchmarks are different. Two methods that belong to the same group can be very

different methods in terms of number of statements, control flow statements, assignments

and so on. In fact, we have reasons to believe that even if we take two methods that

have exactly the content, that is, the same body, but change only the places where the

#ifdefs are, the performance of the shared approach will differ on them because one of

the methods might have a higher sharing degree, that is, the lattices might end up sharing

more (or less) elements per configuration than the other. These are threats to the internal

68 FEATURE-SENSITIVE INTRAPROCEDURAL DATAFLOW ANALYSIS

validity of our experiments, and, because of that, we cannot assert with 100% confidence

the cause-and-effect relationship between the number of configurations and the observed

performance. Nevertheless, we argue that the total amount of data analysis points to the

number of configurations as being one of the most influencing variable.

In addition to that, we observed that the data from experiments with JIT compiler

enabled possessed variations that caused our statistical tests to produce varying results,

even for the data collected from the same group of methods from the same benchmark.

We tried to mitigate this problem by disabling the JIT compiler. In doing so, we achieved

a lower degree of variation. Still, we can observe some variations on our data and on

the reported p-values, and that is a threat to the statistical validity of our experiments.

Despite of that, we argue we ameliorated this threat by running the experiment 10 times,

and exploring every execution individually.

Our implementations for the feature-sensitive approaches are directly linked to our

design choices. Many of these were made based on personal choices of style, others with

certain goals in mind like raw performance or extensibility. On several instances we saw

two approaches perform very similar to each other. It might be that a different group

of engineers that makes a different set of design decisions end up with implementations

that perform very different from our own. Therefore, The experiments discussed here are

limited to, and only to, our own specific implementations and design choices.

Finally, we limit our hypotheses and evidence on the experiments to the single dataflow

analysis which we experimented upon: the reaching definitions. We cannot generalize our

observations to other analysis at this point.

CHAPTER 4

FEATURE-SENSITIVE INTERPROCEDURAL

DATAFLOW ANALYSIS FOR SPL

We discussed in Section 2.4 how an important class of interprocedural dataflow problems

can be define in the IFDS or the more general IDE framework. Performing a interprocedural

dataflow analysis involves analyzing (possibly) the entire program. In this chapter we

discuss how the same class of dataflow problems can be lifted to perform feature-sensitive

interprocedural dataflow analysis on an entire SPL.

4.1 MOTIVATION

Consider the problem of identifying an insecure flow of information, in which we want to

find whether some value in a program has “leaked”. Listing 4.1, adapted from [17, Figure

1(a)], shows our target program. The standard naive approach requires that the whole

SPL be preprocessed for all valid configurations. By repetitively applying the IFDS based

analysis to each product we would eventually find out that for product ¬F ∧G ∧ ¬H the

secret x would leak.

In the spirit of mitigating the problem of exponential blow up by features, Bodden et al.

[17] proposes SPLLIFT, an approach for transparently and automatically lifting IFDS-based

dataflow analysis by transforming it to a more general framework. We contributed to the

implementation of SPLLIFT by providing our instrumentation infrastructure, discussed

in Section 3.2, and assisting in the implementation of two of the three analyses used in

their evaluation. In this work, however, we focus on our contribution to the evaluation

of SPLLIFT by reexecuting and analyzing their evaluatory experiment [5] in a different

hardware configuration.

In the intraprocedural feature-sensitive dataflow analysis we discuss in Chapter 3,

we exploited the fact that we only need to analyze the configurations yielded by taking

the power set of the feature that are inside a method because we need not care about

features that are outside the method. In interprocedural analysis, however, we cannot

69

70 FEATURE-SENSITIVE INTERPROCEDURAL DATAFLOW ANALYSIS FOR SPL

void main () {
int x = s e c r e t () ;

int y = 0 ;

#i fde f F

x = 0 ;

#e n d i f

#i fde f G

y = foo (x) ;

#e n d i f

p r i n t (y) ;

}

int f oo (int p) {
#i fde f H

p = 0 ;

#e n d i f

return p ;

}

Listing 4.1: The target program for the insecure flow problem.

make that assumption since the analysis spans over (possibly) all methods in the SPL.

This makes the interprocedural case even more interesting for feature-sensitive analysis,

as performance becomes a central point.

4.2 LIFTING IFDS-BASED ANALYSES

A problem formulated within the IFDS framework can be formulated as special case of an

IDE problem. The IDE framework also models flow of data through an exploded super

graph. However, the IDE framework requires that a dataflow fact d map to a value v

from a domain different than that of d. This domain is called the value domain. Thus,

the transfer functions are actually transformers of environments such as {d→ v}.

A straightforward value domain is a binary one, comprised of {>,⊥}. Each dataflow

fact thus associates with one of the two values from the domain, for example {d→ >} or

{d′ → ⊥}, where the first one represents the fact that d holds at a given statement and

the other represents the fact that d′ does not hold.

4.2 LIFTING IFDS-BASED ANALYSES 71

The main goal of SPLLIFT is to harness this expressiveness power of the IDE framework

to associate the computation of a dataflow fact d to a feature constraint, effectively turning

the value domain of an analysis into a domain which is comprised of feature constraints.

In its essence, this idea is very similar to the one used of to build the lifted lattices of

the shared approach to intraprocedural feature-sensitive dataflow analysis that is based

on Kildall’s framework (cf. Section 3.4). The representational aspect in the case of the

IFDS-based analysis, however, is different.

As Bodden et al write [17, page 3]:

Assume a statement s that is annotated with a feature constraint F (i.e.,

#ifdef (F) s #endif). Then s should have its usual data-flow effect if F holds,

and should have no effect if F does not hold.

Bodden et al. describe a lifted transfer function as a combination of two functions, one

that represents the usual dataflow effect when the feature F is enabled and the other that

represents the no effect when the feature F is disabled. Unlike the transfer functions in

the standard Kildall’s framework, there are different classes of dataflow functions used to

represent intra- and interprocedural dataflow edges. The effective meaning of what usual

and no effect depends on the class of the transfer function. The combination of these

two functions gives rise to a lifted transfer function that is denoted as fLIFT := fF ∨ f¬F ,

where fF is the transfer function applied when F is enabled and f¬F when F is disabled.

Figure 4.1, taken from [17, Figure 4, page 4] summarizes the representations for all

classes of flow functions. For normal flow functions, the case where F is enabled is shown

in the leftmost column of Figure 4.1(a). It has the same effect as the original transfer

function, but its edge is annotated with the feature F . This represents the action of

generating the dataflow fact b conditionalized by the feature F . That is, the dataflow fact

b will only hold when F is true. The case where F is disabled, shown in the middle column

of Figure 4.1(a), represents the fact that no value is generated or killed by a non-branching

statement conditionalized by a feature F if F is not enabled. This is equivalent to the

identity transfer function. The resulting lifted flow function is shown in the rightmost

column of the same sub-figure. Edges from the zero value, 0, to the other zero value are

conditionalized by F and ¬F . The disjunction of both flow functions causes this edge to

be conditionalized by true. This is represented by the solid arrow connecting the zero

values. The same lifted flow function is for call-to-return types of flow edges.

72 FEATURE-SENSITIVE INTERPROCEDURAL DATAFLOW ANALYSIS FOR SPL

Figure 4.1: All cases of transfer function lifting by SPLLIFT, from [17, Figure 4, page 4].

The flow functions for branching statements such as goto or throw is shown in Figure

4.1(b). The transfer function when F is enabled in shown once again in the leftmost

column. Branching statements such as goto or throw are unconditional statements (not

to be confused with the feature conditional statements like #ifdef) have no alternate flow

like the usual if construction, where the flow of control can happen through the then-body

or the else-body. Because of that, a goto or a throw statement that is conditionalized by

a feature F have its only target flow conditionalized by F . The flow function when F

is disabled ignores the branching to the target, and the facts flow along the fall-through

branch, because the branching statements will not be executed. Thus, the resulting flow

function only allows data to flow through the branching statements if when F is enabled,

or the data falls through otherwise.

The case for the flow function of a conditionally branching statement, such as if , is

shown in Figure 4.1(c). When F is enabled, the respective flow function, shown in the

leftmost column, must allow for data to flow into the branched statement and into the

fall-through statement. When F is disabled, however, the data must only flow into the

fall-through. The resulting lifted flow function can be seen is a combination of the flow

4.2 LIFTING IFDS-BASED ANALYSES 73

functions for the non-branching statements and unconditionally branching statements,

from Figures 4.1(a) and 4.1(b), respectively.

Last but certainly not least, the interprocedural call and return flow functions are

shown in 4.1(d). These flow functions model interprocedural flow of data through the call

and return of functions. The enabled case is modeled as the flow of facts from the call

site to the statements inside the called function. However, in the disabled case, no data

fact must flow into the called function because the call to that function will not execute

when F is disabled.

This formulation allows for perhaps the most impressive feature of SPLLIFT: the

transparent reuse of the implementations of analysis. The programmer only have to

implement a simple IFDS-based analysis and the SPLLIFT implementation takes care of

lifting it to feature-sensitivity. The only restriction for a feature-sensitive analysis is that

the statements in the Jimple intermediate representation must be tagged with feature

constraints.

We reproduce here, in Figure 4.2, the same Figure from [17, Figure 5], which shows

the solution of the lifted taint analysis for the program shown in Listing 4.1. The topmost

dataflow facts, 0, x and y, are labeled with true, false and false, respectively. These

labels are boolean constraints that represent the environment value to which that dataflow

fact is associated. The starting point of the analysis is initially associated the true

constraint. As the analysis progresses, these starting constraints are conjoined with

the feature constraints of the lifted flow functions. This ultimately means that a path

between in the exploded super graph has a boolean constraint associated in which that

path is feasible. This is exemplified by the possible flow of information in which the

secret x would leak. By conjoining the features constraints along the path in red, we get

(true ∧ ¬F ∧ G ∧ ¬H ∧ G) = ¬F ∧ G ∧ ¬H. There also a different path that reaches

the dataflow fact y, which is (false ∧ ¬G) = false. Combining these two paths we get

(¬F ∧G ∧ ¬H) ∨ false = ¬F ∧G ∧ ¬H. This ultimately means that under this specific

constraint, the secret of x might leak.

To take the feature model into consideration when lifting this type of analysis, an

elegant solution exists: translate the feature model into a boolean formula [15] m and use

it as the starting value domain in entry point of the analysis, replacing the true constraint

in the topmost dataflow fact 0 in Figure 4.2. This way, the constraints are propagated

along as the flow functions are applied by the solver. However the taking-feature-model-

into-consideration element it is not implemented like this in SPLLIFT, because, as the

74 FEATURE-SENSITIVE INTERPROCEDURAL DATAFLOW ANALYSIS FOR SPL

authors report, this wastes performance. Instead, they implemented this element by

implicitly assuming that the feature constraint labels f in the flow functions are instead

labeled as the conjunction of that feature constraint with the feature model constraint,

m ∧ f , which ultimately yields the same analysis results and performs faster.

int x = secret();

int y = 0;

[F] x = 0;

[G] y = foo(x);

print(y);

[H] p = 0;

return p;

•0 •x •y

•0 •x •y

•0 •x •y

•0 •x •y

•0 •x •y

•0 •p

•0 •p

•0 •p

¬F

¬G

¬H

G

G

G

G

control-flow edge

data-flow edge

conditional data-flow edge

violating information flow

true false false

false

¬F ∧G

¬F ∧G ∧ ¬H

Figure 4.2: Application of the lifted flow functions of the taint analysis to the example in

Listing 4.1. An insecure flow of information is highlighted in thick, red arrows. Figure

taken from [17, Figure 5].

4.3 EVALUATION

In this session we present our own execution and evaluation of the experiment designed in

Bodden et al. [17] to study the performance of the SPLLIFT implementation.

4.3.1 Study settings

The evaluation of SPLLIFT by Bodden et al. [17] focuses on three aspects: (i) correctness,

(ii) efficiency and the (iii) use of the feature model in the analysis. The first aspect is

4.3 EVALUATION 75

about whether the proposed approach computes a sound solution for the analyses. The

second one, efficiency, relates to performance improvements with respect to the naive,

feature-oblivious approach. Last but not least, the use of feature model, which concerns

the cost of using the feature model in the propagation of dataflow facts during the analysis.

The correctness evaluation is addressed by comparing the results of the three dataflow

problems against another IFDS-based feature-sensitive implementation. This implementa-

tion is, in essence, comparable to the consecutive approach for intraprocedural analysis

that we discussed in Section 3.2. The approach implementation is simplistic and consists

on iterating over all possible configurations in the SPL and applying the applicability test

for each encoded transfer function; if the test fails, then the identity transfer function is

used instead. Like the consecutive approach, this interprocedural version has a simple

implementation that the authors considered foolproof. Every dataflow fact, d, computed

by SPLLIFT to hold under a constraint, c, must also hold in the result of the consecutive

approach for that specific constraint c. The consecutive implementation is also used as

a baseline for the performance comparison because the true brute force approach would

require to generate and compile all possible configurations on all benchmarks. This quickly

becomes intractable, as the estimates show. Even for the consecutive implementation, a

cutoff-time for the experiment is required. Bodden et al. used a time limit of 10 hours

per benchmark whereas we used 5 hours as our limit. We chose this limit because when

we first executed the experiment as a pilot with the cutoff-time as 10 hours, all instances

of our measurements that finished before the cutoff-time of 10 hours also finished before 4

hours.

The experiment evaluates the performance of the implementations by applying the

interprocedural version of the uninitialized variables, possible types analyses and reaching

definitions to the already known four product lines: GPL, MobileMedia08, BerkeleyDB

and Lampiro. The versions of the benchmarks used in this experiment are not necessarily

the same used in the evaluation of the intraprocedural implementations. For example,

MobileMedia08 and Lampiro are J2ME applications and so they do not necessarily

have main method. In these cases, a custom synthetic main method was used. Table

4.1 show some key interprocedural characteristics of the benchmarks. The data we

obtained by reexecuting the experiment states that the number of reached features in the

MobileMedia08 benchmark is different then the one reported by Bodden et al. In our

execution, MobileMedia08 reaches a total of 14 different features, whereas in Bodden and

colleagues’ the number of reached features is 9. Consequently, this impacts the number of

76 FEATURE-SENSITIVE INTERPROCEDURAL DATAFLOW ANALYSIS FOR SPL

Features Configurations

Benchmark total reachable reachable valid

BerkeleyDB 56 39 55 · 1010 unknown

GPL 29 19 524,288 1,872

Lampiro 20 2 4 4

MobileMedia08 34 14 16,384 52

Table 4.1: Number of features, total number of configurations and valid configurations

reached by the solver on each benchmark. The highlighted cells indicate discrepancies

from the original experiment performed by Bodden et al.

configurations, valid or not, reached by the solver. We speculate that this might be due

to how Soot unsoundly models native calls in different JRE versions, but at the time of

the writing of this work, this issue has not yet been addressed.

Conceptually, in order to take the feature model into consideration, one would simply

have to

The computer used to execute the experiment is the same that was used in the

intraprocedural experiments (cf. Section 3.6.1): a Intel® Core� i7-3820 processor at

3.6GHz with 32GB of RAM running a Linux distribution with the 3.2.0-23-generic kernel.

The JVM, however, is different: it is a Hotspot server 1.7.0 05 with 24GB maximum heap

space. We use this specific JVM in this case, and not the one used in the intraprocedural

experiments, because Bodden et al. packages, along with the code for executing the

experiment, this specific JVM.

The hardware used by Bodden at al. is different from our own. Thus we cannot directly

compare the our data with theirs. We expect, however, to see a similar trend.

4.3.2 Results discussion

In Table 4.2 we report the data we collected by reexecuting the experiment. The

highlighted values are estimates. Due to the cutoff-time, when only a fraction of the

possible configurations are iterated, the experiment instead takes average between the

time taken to compute a solution for a configuration with all features enabled and the time

taken to compute a solution for a configuration with all features disabled and multiply that

average by the number of configurations. For BerkeleyDB, for which the number of valid

4.3 EVALUATION 77

configurations is unknown, they extrapolate the results obtained within the cutoff-time.

This happened on all three consecutive versions of the analysis used in BerkeleyDB and on

two in GPL. Both SPLLIFT and the consecutive use the same technique for constructing

the call graph. In all cases, SPLLIFT is faster than the consecutive implementation. The

relative gain vary from benchmark to benchmark and from analysis to analysis. For exam-

ple, SPLLIFT is approximately 48 times faster than the consecutive in the MobileMedia08

benchmark, and approximately 1368 times faster in GPL. This is expected because both

benchmarks have different characteristics, some of which directly affect the performance of

the implementation we are measuring, like number of configurations. GPL has around 36

times more valid configurations than MobileMedia08. Even if we consider the unrealistic

scenario where the consecutive time is equal to the cutoff-time we adopted, 5 hours, in the

cases the execution was interrupted, SPLLIFT still has the advantage. Most importantly,

we have evidence that this trend that SPLLIFT is faster than its consecutive counterpart

is consistent with Bodden et al. findings.

Possible types Reaching definitions Uninitialized variables

Benchmark Soot/CG SPLLIFT Consecutive SPLLIFT Consecutive SPLLIFT Consecutive

BerkeleyDB 0:01:47.1 0:00:08.8 months 0:03:59.8 years 0:03:19.5 years

GPL 0:01:07.2 0:00:09.2 3:25:15.9 0:03:19.3 days 0:02:23.4 days

Lampiro 0:00:34.9 0:00:01.1 0:00:04.9 0:00:15.2 0:01:04.0 0:00:17.5 0:01:09.4

MobileMedia08 0:00:23.0 0:00:01.6 0:00:48.2 0:00:13.7 0:09:32.9 0:00:14.6 0:10:40.6

Table 4.2: Performance of the SPLLIFT approach vs. the naive, brute-force approach.

Highlighted values are estimates based on partial progress.

Disregarding the feature model when executing a feature-sensitive analysis means that

work must be done on configurations that are not valid in the first place. Thus, using

the feature model is essential for precision in feature-sensitive analyses, but this is not

without overhead, as the feature model must be modeled and embedded in the analysis so

that analyses can keep track of which configurations are valid or invalid. The experiment

is programmed to report data that shows the effect of using (or not) the feature model in

the analyses of the benchmarks. This is done by effectively executing the experiment with

a synthetic configuration that allows for all possible configurations. Table 4.3 shows the

data about this specific issue we obtained in our execution of the experiment in question.

Only in Lampiro, it is possible to see the a speed up by using the feature model. In all

78 FEATURE-SENSITIVE INTERPROCEDURAL DATAFLOW ANALYSIS FOR SPL

other benchmarks, using the feature incurs a certain overhead. In at least 3 cases, the

time is virtually the same.

Benchmark Feature model Possible types Reaching definitions Uninitialized variables

BerkeleyDB
regarded 0:00:08.8 0:03:59.8 0:03:19.5

ignored 0:00:08.8 0:03:34.3 0:03:22.5

GPL
regarded 0:00:09.2 0:03:19.3 0:02:23.4

ignored 0:00:09.0 0:03:01.6 0:02:18.6

Lampiro
regarded 0:00:01.1 0:00:15.2 0:00:17.5

ignored 0:00:01.7 0:00:15.1 0:00:18.5

MobileMedia08
regarded 0:00:01.6 0:00:13.7 0:00:14.6

ignored 0:00:01.3 0:00:13.7 0:00:14.6

Table 4.3: The effects in time performance of regarding/ignoring the feature model in

each benchmark.

We don’t know the variance of the data presented here because we only executed the

experiment only once due to time constraints. Thus we cannot make use of statistical

tools and make a more profound exploration of the data, like we do in Section 3.6. Doing

multiple executions of this experiment with a corrected version of the reaching definitions

analysis is scheduled for future work.

Unfortunately, at the time of the writing of this work, we discovered an error in

the implementation of the reaching definitions analysis. The bug we found is a flaw in

the design of its lattice. Consequently, the analysis does not compute what a reaching

definitions analysis is supposed to. We still report the data we acquired from this analysis

in the experiment because we believe that, for performance comparison purposes only, the

performance measurements for this analysis is still useful.

4.4 THREATS TO VALIDITY

The experiments we present in this chapter are limited to a single execution, as already

stated. This precludes us from applying any statistical test and strengthen the statistical

threats in them. In this dissertation, we provide further data for the empirical evaluation

of SPLLIFT, but our data comes from the execution of the experiment on a different

hardware platform and thus cannot be directly compared [44] to the data in the original

4.4 THREATS TO VALIDITY 79

paper by Bodden et al. In this case, we argue that the difference in performance we

observed with SPLLIFT is enormous and therefore very convincing, in both our execution

of the experiment and the one by Bodden et al.

The experiments with SPLLIFT share some threats with the ones from the intraproce-

dural feature-sensitive dataflow analysis discussed in Chapter 3. In special, the threat to

generalization over the implementation holds: the experiments presented in this chapter

pertain only to this specific implementation and cannot be generalized to other IFDS-based

feature-sensitive implementations that share a different set of design decisions.

The experiments with SPLLIFT uses the same set of benchmarks from the experiments

with the intraprocedural dataflow analyses in Chapter 3. Thus they share the same

limitation as far as real-world projects go. On the bright side, the experiments on SPLLIFT

uses three different dataflow analyses, compared to only one in the experiments with the

intraprocedural dataflow analysis in Chapter 3, a substantial increase.

CHAPTER 5

RELATED WORK

The original motivation for the concept of feature-sensitive dataflow analysis was proposed

by Ribeiro et al. [48]. In this work, they highlight the need for dataflow analysis to identify

dependencies between code elements, like definitions and uses of variables, that belong to

different features [49]. The main goal is to help developers achieve parallel, independent

and modular development of features by means of Emergent Interfaces (EI). EI are the

results of the calculation of dependencies between code elements that emergent on-demand

for the developers, to help them understand and maintain variability in the source code.

Later, our collaboration with Ribeiro et al. [50, 51] resulted in the implementation of

Emergo, a tool that implements the concept of EI as an Eclipse IDE [1] plug-in.

Predicated dataflow analysis [43] is a technique where propositional logic predicates

are associated with dataflow values to generate what the authors call optimistic dataflow

values. These predicates are used to keep several versions of analysis distinct from

each other during analysis. This is, in essence, similar to the intraprocedural shared

simultaneous we discuss in Chapter 3. The predicates, however, are over dynamic state,

whereas the feature-sensitive approach uses feature constraints, which are all known at

analysis time.

The concept of tagging statements that may or may not execute in a static analysis

is related to path-sensitive dataflow analysis. The tagged information is then used to

compute possibly diverging information along different paths of the statically simulated

execution. This allows the analysis to ignore unrelated or irrelevant information from

infeasible paths [14]. The same idea of tagging statements was explored by [56] in an

attempt to improve precision in constant propagation optimizations. The main idea in

this work is to identify and exclude dead statements that would otherwise hinder the

performance of such analysis.

The work on SPLLIFT, which we discuss in Chapter 4, is an extension to the exploratory

ideas by Bodden [16]. SPLLIFT improves on this earlier work by providing full support

for IFDS analysis, instead of only taint analysis. Additionally, the work on SPLLIFT

81

82 RELATED WORK

introduced the lifting on all classes of flow functions, which also had not be done, along

with a more efficient BDD-based implementation for feature constraints. Last but no least,

the work that proposed SPLLIFT provides an experimental evaluation on four benchmarks,

which we also used to evaluate our intraprocedural feature-sensitive analyses proposal.

TypeChef [36, 37] is a tool that can parse C source-code with variability encoded in

#ifdef without actually preprocessing the source-code. Notably, it can parse the entire

Linux kernel, without requiring a restricted form of #ifdefs, which we used throughout

this work. Based on our work on feature-sensitive dataflow analysis, a subproject of

TypeChef has recently implemented intraprocedural dataflow analysis for SPLs written

in C. They experimented with their implementation on two real-world case studies: the

Busybox tool suite and the Linux kernel. In their experimentation, however, they found

mixed results, some feature-sensitive analysis were faster on one case study and slower on

the other.

Thüm et al. performed a survey on analysis strategies for SPLs [55], that encompassed

type checking [12, 31], parsing [36], model checking [20, 19], and verification [46, 39, 13].

Although the surveyed work does not include feature-sensitive dataflow analysis for SPL,

it shares with the works discussed in Chapters 3 and 4 the general goal of efficiently

computing properties about a SPL and mitigating the exponential blow-up problem

commonly found in SPLs.

Kim et al. explores the idea of using dataflow analysis to identify features that are

(not) reachable from a given test case [27]. This allows for developers to only execute the

test cases for products that contain these features. The dataflow analysis used in this

work, however are not feature-sensitive. Instead they use a custom analysis that relies on

having part of the variability represented using conditional statements, not conditional

compilation.

Safe composition is a body of work that focuses on the safe generation of products

and verification of properties of SPLs. Its purpose is to provide some guarantees about

generated products. Kästner et el. [32] proposed the Color Featherweight Calculus, later

improved by Delaware et al. [23], which aims at guaranteeing that no products can be

generated with typing errors. Dataflow analysis can also be used to infer properties

about the type of variables. In this sense, the feature-sensitive approaches to dataflow

analysis discussed in this work relates to that of type checking in the essence of computing

properties about all products in a SPL without the need to explicitly generating all of

them.

CHAPTER 6

CONCLUDING REMARKS

In this work we described how two frameworks for performing dataflow analysis can be

lifted to perform what we call feature-sensitive dataflow analysis. Feature-sensitivity is a

characteristic of a dataflow analysis that is able to take variability encoding statements,

such as #ifdefs, into consideration when performing the analysis. This allows for the

computation of dataflow facts that are associated with feature constraints. The major

benefit of doing feature-sensitive analysis is that we can avoid the explicit generation of

the variability. In the case of #ifdefs, we can avoid having to use brute-force to preprocess

the source-code for each possible configuration of preprocessor variables.

In Chapter 3 we discuss how the Kildall-based [38] standard intraprocedural dataflow

analysis can be lifted in four different ways to perform our feature-sensitive dataflow

analysis [18]. In our work, presented the implementations and reevaluated the performance

of these approaches by lifting the ubiquitous reaching definitions analysis and applying

it to four qualitatively different benchmarks. We provide evidence that the number of

possible configurations and the size of the body of the method being analyzed can have a

profound impact on the performance of our approaches. We also provide evidence that

one of the implementations performs generally better than the others in the situations

we investigated. We learned that some implementations are more complex than others.

Specifically, the implementation that we found to perform the worst on method with high

number of configurations also has the most straightforward implementation. We used

statistical analysis to back up our claims and evidences, although not all scenarios were

fully explored.

In Chapter 4, we discuss SPLLIFT [17], an implementation of an IFDS/IDE [52] that

can transparently lift any IFDS-based dataflow analysis to feature-sensitivity. The IDE

framework, which is generalization of the IFDS framework, allows for precise interpro-

cedural dataflow analysis. In our work, we reexecuted the evaluatory work in [17] in a

different hardware platform and present our observations. We provide further evidence

that SPLLIFT indeed outperforms the traditional brute-force approach by several orders of

83

84 CONCLUDING REMARKS

magnitude.

6.1 SUMMARY OF CONTRIBUTIONS

In this work, we presented the following main contributions that are based on the work of

Brabrand et. al (cf. Chapter 3):

� Implementation of the feature instrumentation process; and Soot/CIDE integration;

� Implementation of all four feature-sensitive approaches to intraprocedural dataflow

analysis;

� Idealization of the consecutive feature-sensitive intraprocedural dataflow analysis;

� Implementation and (re)execution of the performance experiments;

� Statistical testing and in-depth exploratory study in the performance data; and

� Experimentation on the synthetic benchmarks.

In Chapter 4 we present our contributions to the work of SPLLIFT, namely:

� Support and implementation for the Soot/CIDE integration;

� Implementation of two out of the three interprocedural dataflow analysis: reaching

definitions and uninitialized variables;

� Reexecution and analysis of the evaluatory experiments;

6.2 LIMITATIONS

The proposals by Brabrand et al. [18] and Bodden et al. [17] in which we build upon in

this work are not without limitations. In both cases the tool chain is limited to using

CIDE as the preprocessor technology. CIDE is not a currently active project. At the

time of the writing of this work, the last commit is almost one year old [4]. Also in both

cases, the implementations are limited to the implementations within Soot and bound to

the Jimple intermediate representation. The authors of SPLLIFT, however, have made an

effort to turn the IFDS/IDE solver into generic, Jimple-free implementation [6]. Soot, on

the other hand, is has a very active community. In fact, during the development of this

6.3 FUTURE WORK 85

Set<T> s ;

#i fde f F

s = new HashSet<T>() ;

#e n d i f

#i fde f F′

s = new TreeSet<T>() ;

#e n d i f

Listing 6.1: The code in listings results in an imprecise call graph in SPLLIFT.

work, we found and reported a bug in the implementation of the equals/hashCode contract

in the lattice implementation of Soot. The bug fix was discussed in the mailing list and

applied within a matter of days [3].

Our evaluation of the intraprocedural feature-sensitive dataflow analysis is based on a

single dataflow analysis: reaching definitions. Because different analysis have different

lattices domains and methods have different number of elements of these domains, we

cannot generalize our findings to other kinds of analysis. Specifically, we see in Section

3.6.6 that the increase the number of assignments in a method can cause variations in the

performance of the analysis.

Another limitation of SPLLIFT is that the call graph is not constructed in a feature-

sensitive manner. This yields sounds results, but not necessarily precise solutions to

dataflow facts. For example, consider the code snippet in Listing 6.1. The variable s is

initialized to the HashSet iff F is enabled and to TreeSet iff F ′ is enabled. Because the call

graph construction itself is not feature-sensitive, this case would be modeled as having

exactly two unconditionionalized calls to the each of the constructors.

6.3 FUTURE WORK

We evaluated our implementations of intraprocedural feature-sensitive dataflow analysis

using only the reaching definitions analysis. We intend to reexecute the experiments

on different analysis, such as uninitialized variables, busy expressions and so on. In the

experimental evaluation, we focused on the number of configurations as our main variable.

We briefly explored the number of statements in a method and immediately saw that this

variable can also affect the performance of our implementations in a significant manner.

86 CONCLUDING REMARKS

The empirical evaluation of the interprocedural feature-sensitive dataflow analyses

consists of a single execution of the experiment. Because of this, we do not know what

is, for example, the variance between several runs. So far, we have two executions of the

experiment, but on different computers with different hardware platforms. We intent

reexecute the same experiment many times in the future in order to be able to apply

meaningful statistical analysis on the data.

We learned during the writing of this work that the implementation of the interpro-

cedural feature-sensitive reaching definitions analysis is flawed. We will investigate this

matter in the near future and reexecute the experiment with a correct implementation of

the reaching definitions analysis.

Last but not least, we performed the interprocedural analysis on a synthetic main

method on two of the four benchmarks. In the future, we intend to explore different main

methods in an attempt to increase the coverage of methods analyzed.

BIBLIOGRAPHY

[1] Eclipse.org Home, January 2008. http://www.eclipse.org/.

[2] Soot: a Java Optimization Framework, April 2010. http://www.sable.mcgill.ca/soot/.

[3] AbstractFlowSet equals/hashCode contract issues, 2012. https://github.com/

Sable/soot/issues/11.

[4] CIDE GitHub page, 2013. https://github.com/ckaestne/CIDE.

[5] Download materials related to SPLlift, February 2013. http://www.bodden.de/

research/current/spl/spllift/.

[6] Heros: Multi-threaded, language-independent IFDS/IDE solver, 2013. http://sable.

github.com/heros/.

[7] The R Project for Statistical Computing, February 2013. http://www.r-project.

org/.

[8] Alfred Aho, Monica Lam, Ravi Sethi, and Jeffrey Ullman. Compilers: Principles,

Techniques, and Tools. Addison–Wesley, 2nd edition, 2006.

[9] Vander Alves. Implementing Software Product Line Adoption Strategies. PhD thesis,

Federal University of Pernambuco, Recife, Brazil, March 2007.

[10] Vander Alves, Pedro Matos Jr., Leonardo Cole, Paulo Borba, and Geber Ramalho.

Extracting and Evolving Mobile Games Product Lines. In Proceedings of the 9th

International Software Product Line Conference (SPLC’05), volume 3714 of LNCS,

pages 70–81. Springer-Verlag, September 2005.

[11] Michalis Anastasopoulos and Cristina Gacek. Implementing Product Line Variabilities.

In Proceedings of the 2001 Symposium on Software Reusability (SSR’01), pages 109–

117, New York, NY, USA, 2001. ACM Press.

87

https://github.com/Sable/soot/issues/11
https://github.com/Sable/soot/issues/11
https://github.com/ckaestne/CIDE
http://www.bodden.de/research/current/spl/spllift/
http://www.bodden.de/research/current/spl/spllift/
http://sable.github.com/heros/
http://sable.github.com/heros/
http://www.r-project.org/
http://www.r-project.org/

88 BIBLIOGRAPHY

[12] Sven Apel, Christian Kästner, Armin Grösslinger, and Christian Lengauer. Type

safety for feature-oriented product lines. Automated Software Eng., 17(3):251–300,

September 2010.

[13] Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein, and Dirk Beyer.

Detection of feature interactions using feature-aware verification. In Proc. 2011 26th

IEEE/ACM int. conf. on Automated Software Engineering, ASE ’11, pages 372–375,

2011.

[14] Thomas Ball and Sriram K. Rajamani. Bebop: a path-sensitive interprocedural

dataflow engine. In Proc. 2001 ACM SIGPLAN-SIGSOFT workshop on Program

analysis for software tools and engineering, PASTE ’01, pages 97–103, 2001.

[15] Don Batory. Feature models, grammars, and propositional formulas. In Proceedings

of the 9th international conference on Software Product Lines (SPLC’05), pages 7–20,

Berlin, Heidelberg, 2005. Springer-Verlag.

[16] Eric Bodden. Position Paper: Static flow-sensitive & context-sensitive information-

flow analysis for software product lines. In Proc. ACM SIGPLAN 7th Workshop

on Programming Languages and Analysis for Security (PLAS 2012), June 2012. To

appear.

[17] Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and Mira

Mezini. Spllift - transparent and efficient reuse of ifds-based static program analyses

for software product lines. In Proc. of the 34th annual ACM SIGPLAN conference

on Programming Language Design and Implementation (PLDI), Seattle, USA, 2013.

To appear.

[18] Claus Brabrand, Márcio Ribeiro, Társis Tolêdo, Johnni Winther, and Paulo Borba.

Intraprocedural dataflow analysis for software product lines. Transactions on Aspect-

Oriented Software Development X, 2013. To appear, awaiting publication.

[19] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay. Symbolic

model checking of software product lines. In Proc. 33rd int. conf. on Software

Engineering, ICSE ’11, pages 321–330, 2011.

[20] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and Jean-

François Raskin. Model checking lots of systems: efficient verification of temporal

BIBLIOGRAPHY 89

properties in software product lines. In Proceedings of the 32nd ACM/IEEE Interna-

tional Conference on Software Engineering (ICSE’10) - Volume 1, pages 335–344,

New York, NY, USA, 2010. ACM.

[21] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.

Addison-Wesley, 2002.

[22] Marcus Vinicius Couto, Marco Tulio Valente, and Eduardo Figueiredo. Extracting

software product lines: A case study using conditional compilation. In Proceed-

ings of the 15th European Conference on Software Maintenance and Reengineering

(CSMR’11), pages 191–200, Washington, DC, USA, 2011. IEEE Computer Society.

[23] Benjamin Delaware, William R. Cook, and Don S. Batory. Fitting the pieces

together: a machine-checked model of safe composition. In Proceedings of the

7th joint meeting of the European Software Engineering Conference and the ACM

SIGSOFT International Symposium on Foundations of Software Engineering, 2009,

Amsterdam, The Netherlands, August 24-28, 2009, pages 243–252. ACM, 2009.

[24] R. Drechsler and B. Becker. Binary decision diagrams: theory and implementation.

Springer, 1998.

[25] Michael D. Ernst, Greg J. Badros, and David Notkin. An empirical analysis of

c preprocessor use. IEEE Transactions on Software Engineering, 28:1146–1170,

December 2002.

[26] Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet, and

Ryan Berg. Saving the world wide web from vulnerable JavaScript. In Proc. 2011

int. symp. on Software Testing and Analysis, ISSTA ’11, pages 177–187, 2011.

[27] Chang Hwan, Peter Kim, Don Batory, and Sarfraz Khurshid. Reducing combina-

torics in testing product lines. In Proc. 10th int. conf. on Aspect-oriented Software

Development (AOSD’11), pages 57–68, 2011.

[28] Pedro Matos Jr. Analyzing techniques for implementing product line variabilities.

Master’s thesis, Federal University of Pernambuco, Recife, Brazil, 2008. To be

finished.

[29] Peter Kampstra. Beanplot: A Boxplot Alternative for Visual Comparison of Distri-

butions. Journal of Statistical Software, Code Snippets, 28(1):1–9, October 2008.

90 BIBLIOGRAPHY

[30] Kyo-Chul Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer

Peterson. Feature-Oriented Domain Analysis (FODA). Feasibility Study. Technical

Report CMU/SEI-90-TR-21, Software Engineering Institute, November 1990.

[31] C. Kästner and S. Apel. Type-checking software product lines - a formal approach.

In Proc. 2008 23rd IEEE/ACM int. conf. on Automated Software Engineering, ASE

’08, pages 258–267, 2008.

[32] Christian Kästner and Sven Apel. Type-checking software product lines - a formal

approach. In Proceedings of the 23rd International Conference on Automated Software

Engineering (ASE’08), pages 258–267. IEEE Computer Society, September 2008.

[33] Christian Kästner and Sven Apel. Virtual separation of concerns - a second chance

for preprocessors. Journal of Object Technology, 8(6):59–78, 2009.

[34] Christian Kästner, Sven Apel, and Don Batory. A case study implementing features

using aspectj. In Proceedings of the 11th International Software Product Line Con-

ference (SPLC’07), pages 223–232, Washington, DC, USA, 2007. IEEE Computer

Society.

[35] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in Software

Product Lines. In Proceedings of the 30th International Conference on Software

Engineering (ICSE’08), pages 311–320, New York, NY, USA, 2008. ACM.

[36] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus

Ostermann, and Thorsten Berger. Variability-aware parsing in the presence of lexical

macros and conditional compilation. In Proc. 2011 ACM int. conf. on Object oriented

programming systems languages and applications, OOPSLA ’11, pages 805–824, 2011.

[37] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus

Ostermann, and Thorsten Berger. Variability-aware parsing in the presence of lexical

macros and conditional compilation. In Proc. 2011 ACM int. conf. on Object oriented

programming systems languages and applications, OOPSLA ’11, pages 805–824, 2011.

[38] Gary A. Kildall. A unified approach to global program optimization. In Proceedings

of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming

languages, POPL ’73, pages 194–206, New York, NY, USA, 1973. ACM.

BIBLIOGRAPHY 91

[39] Chang Hwan Peter Kim, Eric Bodden, Don Batory, and Sarfraz Khurshid. Reducing

configurations to monitor in a software product line. In 1st International Conference

on Runtime Verification (RV), volume 6418 of LNCS. Springer, November 2010.

[40] Duc Le, Eric Walkingshaw, and Martin Erwig. #ifdef confirmed harmful: Promoting

understandable software variation. In IEEE International Symposium on Visual

Languages and Human-Centric Computing (VL/HCC’11), pages 143–150, 2011.

[41] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael Schulze.

An analysis of the variability in forty preprocessor-based software product lines. In

Proceedings of the 32nd ACM/IEEE International Conference on Software Engineer-

ing (ICSE’10), pages 105–114, New York, NY, USA, 2010. ACM.

[42] Jörg Liebig, Christian Kästner, and Sven Apel. Analyzing the discipline of preproces-

sor annotations in 30 million lines of c code. In Proceeding of the 10th International

Conference on Aspect Oriented Software Development (AOSD’11), pages 191–202,

New York, NY, USA, 2011. ACM.

[43] Sungdo Moon, Mary W. Hall, and Brian R. Murphy. Predicated array data-flow

analysis for run-time parallelization. In Proc. 12th int. conf. on Supercomputing, ICS

’98, pages 204–211, 1998.

[44] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Producing

wrong data without doing anything obviously wrong! SIGPLAN Not., 44(3):265–276,

March 2009.

[45] Thomas Patzke and Dirk Muthig. Product Line Implementation Technologies.

Technical Report 057.02/E, Fraunhofer Institut Experimentelles Software Engineering,

October 2002.

[46] H. Post and C. Sinz. Configuration lifting: Verification meets software configuration.

In Proc. 2008 23rd IEEE/ACM int. conf. on Automated Software Engineering, ASE

’08, pages 347–350, 2008.

[47] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow

analysis via graph reachability. In Proc. 22nd ACM SIGPLAN-SIGACT symp. on

Principles of programming languages, POPL ’95, pages 49–61, 1995.

92 BIBLIOGRAPHY

[48] Márcio Ribeiro, Humberto Pacheco, Leopoldo Teixeira, and Paulo Borba. Emergent

Feature Modularization. In Onward!, affiliated with ACM SIGPLAN International

Conference on Systems, Programming, Languages and Applications: Software for

Humanity (SPLASH’10), pages 11–18, New York, NY, USA, 2010. ACM.

[49] Márcio Ribeiro, Felipe Queiroz, Paulo Borba, Társis Tolêdo, Claus Brabrand, and

Sérgio Soares. On the impact of feature dependencies when maintaining preprocessor-

based software product lines. In Proceedings of the 10th ACM International Conference

on Generative Programming and Component Engineering (GPCE’11), pages 23–32,

Portland, Oregon, USA, 2011. ACM.

[50] Márcio Ribeiro, Társis Toledo, Paulo Borba, and Claus Brabrand. A tool for

improving maintainabiliy of preprocessor-based product lines. In Tools Session of the

2nd Brazilian Congress on Software (CBSoft’11), 2011.

[51] Márcio Ribeiro, Társis Toledo, Johnni Winther, Claus Brabrand, and Paulo Borba.

Emergo: A tool for improving maintainabiliy of preprocessor-based product lines. In

Proceedings of the 11th International ACM Conference on Aspect-Oriented Software

Development (AOSD’12), Companion, Demo Track, pages 23–26. ACM, 2012.

[52] Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural dataflow

analysis with applications to constant propagation. In TAPSOFT ’95, pages 131–170,

1996.

[53] Henry Spencer and Geoff Collyer. #ifdef considered harmful, or portability experience

with C news. In Proceedings of the Usenix Summer 1992 Technical Conference, pages

185–198, Berkeley, CA, USA, June 1992. Usenix Association.

[54] Sun Microsystems. Memory Management in the Java HotSpot Virtual

Machine, April 2006. http://www.oracle.com/technetwork/java/javase/

memorymanagement-whitepaper-150215.pdf.

[55] Thomas Thüm, Sven Apel, Christian Kästner, Martin Kuhlemann, Ina Schaefer,

and Gunter Saake. Analysis strategies for software product lines. Technical Report

FIN-004-2012, School of Computer Science, University of Magdeburg, April 2012.

[56] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional

branches. ACM Trans. Program. Lang. Syst., 13(2):181–210, April 1991.

http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf

BIBLIOGRAPHY 93

[57] Frank Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics Bulletin,

1(6):80–83, 1945.

	Chapter 1—Introduction
	Outline

	Chapter 2—Background
	Software Product Lines
	Preprocessors
	Intraprocedural Dataflow Analysis
	Control flow graph
	Lattice
	Transfer functions
	Reaching definitions
	Intraprocedural dataflow analysis with Soot

	Interprocedural dataflow analysis with IFDS

	Chapter 3—Feature-sensitive intraprocedural dataflow analysis
	Motivation
	Consecutive
	Implementation

	Simultaneous
	Implementation

	Shared simultaneous
	Implementation

	Reversed shared simultaneous
	Implementation

	Evaluation
	Study settings
	Previous experiments
	Revisiting the experiments
	Results discussion
	No JIT results discussion
	Benchmark 1: GPL
	Benchmark 2: MobileMedia08
	Benchmark 3: Lampiro
	Benchmark 4: BerkeleyDB

	Synthetic benchmarks
	Evaluation summary

	Threats to validity

	Chapter 4—Feature-sensitive interprocedural dataflow analysis for SPL
	Motivation
	Lifting IFDS-based analyses
	Evaluation
	Study settings
	Results discussion

	Threats to validity

	Chapter 5—Related Work
	Chapter 6—Concluding Remarks
	Summary of contributions
	Limitations
	Future work

