
 i

TaRGeT Software Requirements
Specification

Version: 01.10.01

Date: 21-Jul-2009

ABSTRACT: TaRGeT is a tool designed to automatically generate test
from suitable input use case documents. This document describes the

requirements of this tool.

KEYWORDS: Use Cases, Requirements, Automatic Test Generation

Copyright  2006-2010 CIn-UFPE.

 ii

Contents

1.	
 Introduction... 3	

1.1	
 Purpose ... 3	

1.2	
 Scope ... 3	

1.3	
 Target Audience ... 3	

1.4	
 Abbreviations, Acronyms and Definitions 3	

1.5	
 References .. 3	

1.6	
 Overview .. 3	

1.7	
 Problem Reporting Instructions .. 4	

2.	
 Functional Requirements.. 5	

2.1	
 Handling Projects ... 5	

2.2	
 Handling Use Cases Documents .. 7	

2.3	
 Preferences ... 9	

2.4	
 On The Fly Generation .. 10	

2.5	
 Consistency Management ... 15	

2.6	
 Controlled Natural Language (CNL) .. 18	

2.7	
 Use Case Editor .. 19	

2.8	
 Others ... 21	

3.	
 Environment Requirements.. 22	

3.1	
 Compatibility .. 22	

3.2	
 Software Dependencies .. 22	

4.	
 Tool Workspace.. 23	

4.1	
 Project Window ... 23	

4.2	
 Menu Bar ... 23	

4.3	
 Left Panel ... 24	

4.4	
 Bottom Panel ... 24	

4.5	
 Main Panel ... 24	

5.	
 Appendix A – Use Case Document Format....................................... 25	

6.	
 Appendix B – Feature Model.. 29	

 3

1. Introduction

1.1 Purpose
The purpose of this document is to describe the requirements for TaRGeT
tool.

1.2 Scope

The scope of the document is to cover the functional, non functional and
interface requirements of TaRGeT.

1.3 Target Audience

The target audience is the stakeholders that are involved with TaRGeT
development and use.

1.4 Abbreviations, Acronyms and Definitions

TaRGeT Test and Requirements Generation Tool
OS Operational System
JRE Java Runtime Environment
JVM Java Virtual Machine
UI User Interface
RTM Requirements Traceability Matrix

1.5 References
[1] Java JRE 6.0, http://java.sun.com/javase/downloads/index.jsp

[2] .NET Framework 3.0 Runtime,
http://msdn.microsoft.com/windowsvista/downloads/products/getthebeta/defaul
t.aspx#runWinFXApps

[3] TaRGeT Use Case Document

1.6 Overview
TaRGeT is a working environment that is capable to visualize and navigate
through input use case documents in order to generate test suites. The
inputs and outputs of the tool are organized as a project.

The remainder of this document describes the functional (Section 2), non
functional requirements (Section 3) and the workspace of the tool
(Section 4). At last, the appendix sections are the future enhancements
and the format definition of the use cases used as input for the tool.

 4

The use cases for the requirements detailed in this document are
described in [3].

1.7 Problem Reporting Instructions
Problems and corrections to this document should be reported to Michelle
Silva (mcms@cin.ufpe.br) or Paulo Borba (phmb@cin.ufpe.br).

 5

2. Functional Requirements
The purpose of this section is to document all the functional
requirements of TaRGeT tool that can handle the follow artifacts:

• Use case documents – Word documents that describe the behavior of
mobile features. It is the main input of the tool;

• Test suites documents – Excel sheets produced as the outputs of

test generation.

2.1 Handling Projects
This subsection presents the requirements related to project handling.

2.1.1 Renaming Artifacts (FR_TARGET_0001)

The user shall be able to rename the artifact’s files from the tool’s
interface.

2.1.2 Deleting Artifacts (FR_TARGET_0003)

The user shall be able to delete the artifact’s files from the tool’s
interface. A confirmation dialog must be displayed before deleting the
artifacts in order to confirm if this is the really intention of the
user.

2.1.3 Opening and Editing Project Artifacts (FR_TARGET_0005)

 The tool shall allow the user to edit the project artifacts using the
default editors.

2.1.4 Project folders (FR_TARGET_0010)

Each project is placed in a folder (or directory) that contains:

• The project file – control information about the project;

• The use case’s folder – stores the input: use case documents;

• The test suite’s folder – stores the output: test suites.

The tool shall place the generated test suite file in the appropriate
folder of the project.

 6

2.1.5 Refreshing a Project (FR_TARGET_0015)

The tool shall allow the refresh of the project. The refresh option shall
restore the information displayed in the tool’s view. The user can choose
between options “Refresh Automatically” and “Refresh Project”.

• Refresh Automatically: by selecting this option, the refresh shall
be done automatically when a use case document is updated, imported
or deleted from the project. Also, the project shall be updated
when the test suite’s spreadsheets are removed/renamed from the
project’s test suite folder.

• Refresh Project: consider the Refresh Automatically option is
unselected, the refresh shall occur when, and only when, the user
clicks in this option. This command can be also executed using a
shortcut.

2.1.6 Creating a new project (FR_TARGET_0020)

The user shall be able to create a new test generation project. Every new
project is created empty (without use cases or test suites).

The default project’s folder is the folder where the tool is installed.
The screen of the creation project is displayed with name and location
folder default. The user shall be able to choose the name of the project
and where it will be placed.

If a project is created in a directory that already contains information
about a previous project, the tool shall ask the user if he/she wants to
delete all directory content, before creating a new project.

The user shall be able to create a new project when another project is
already open. In this case, the current project will must be closed
before creating a new project.

2.1.7 Project and Artifacts Names (FR_TARGET_0025)

The name of project and artifacts shall not be empty and shall not
contain any of the following characters: ‘/’, ‘\’, ‘:’, ‘*’, ‘?’, ‘“’,
‘<’, ‘>’ and ‘|’. All other characters are allowed.

2.1.8 Closing a project (FR_TARGET_0035)

The user shall be able to close a project that is opened. A confirmation
dialog must be displayed before closing the project in order to confirm
if this is really the intention of the user.

 7

2.1.9 Opening a project (FR_TARGET_0040)

The user shall be able to open an existing project. It shall be not
allowed to open two projects simultaneously. If the user wants to open an
existing project P when another one is already opened, the current
project must be closed before.

2.2 Handling Use Cases Documents
This subsection describes the requirements related to how the use case
documentation is handled by the TaRGeT. An use case document may contain
use cases, as specified in Appendix A – Use Case Document Format. When
mentioning a use case document, it refers to documents that contain use
cases.

2.2.1 Importing Documents (FR_TARGET_0100)

Use case documents shall be a Microsoft Word 2003 or XML document (INPUT
Feature – See Appendix B). The user shall be able to import one or more
validated use case documents to an open project. The imported documents
shall be stored in the appropriate folder of the project. Before
importing, the use case documents shall be validated according to the
rules described in the Appendix A – Use Case Document Format.

2.2.2 Progress Bar (FR_TARGET_0110)

The user shall be aware about the progress of the following operations:
import document, refresh project and create or open a new project.

2.2.3 Indicating Errors on Use Case Documentation (FR_TARGET_0120)

The inadequacies found after a validation in imported documents shall be
pointed by the tool according to the following classification:

• Empty mandatory fields (according to Appendix A – Use Case Document
Format);

• Duplicated step IDs in the same use case;

• References to step IDs that do not exist;

• Invalid documents (see requirement FR_TARGET_0125).

The warnings indicating errors in imported documents shall be displayed
in the specific error area in the tool where the user shall be able to
visualize the description, the resource and the location of the errors.

 8

2.2.4 Rejecting Invalid Use Case Documents (FR_TARGET_0125)

The tool shall reject a document if it is crashed. A document becomes
crashed if the user inserts one of the following errors:

• Missing mandatory field;

• Use case ID or feature ID have invalid value;

• Any field that is not according to the predefined order;

• Contains a field that is not specified;

• Whole structure of the document is empty;

• It does not contain any feature;

• It does not contain any use case in a feature;

• It contains duplicated use case IDs in a same feature;

• It contains duplicated feature IDs;

It means that the document shall be ignored and no information about the
document will be considered. If a valid document that is already imported
is updated and becomes crashed, it shall be rejected.

Features with the same ID but in different documents shall be allowed.
However, even in different documents, the use cases IDs shall be
different. For further information about document structure, see Appendix
A – Use Case Document Format.

2.2.5 Use Case Preview (FR_TARGET_0130)

The tool shall allow the user to preview a specific use case in HTML
format within the TaRGeT UI in the main panel or in the browser screen
without the TARGET UI.

If there are problems in the previewed use case, the errors shall be
highlighted in the HTML preview.

2.2.6 Search Mechanism (FR_TARGET_0135)

The tool shall allow the user to perform searches in use case documents.
The user shall be able to visualize the search results.

 9

2.3 Preferences
This subsection describes the requirements related to user preferences
configuration around test suite content.

2.3.1 Preferences Configuration (FR_TARGET_0231)

The tool shall allow the user to setup some preferences, as described
below:

• The user shall be able to setup the test case ID format that is
shown in the test case document.

• The user shall be able to setup the test case initial ID value. For
example, if there is already another test case suite referring to
the same feature and it has 10 test cases, the user can select the
new test suit to begin from 11 test case id.

• The user shall be able to setup a default value for all Use Case
fields that are empty. The default value shall appear in the
generated Test Cases.

• The user shall be able to setup which label shall appear before the
objective description.

2.3.2 Test cases descriptions configuration (FR_TARGET_0232)

The user shall be able to choose how the Use Case description and Flow
Description is composed in the test suite. This configuration can be
according one of the following options:

• The user shall be able to set to Case Description and Objective
fields in test suite to be empty. This choice can be done setting
use case description and flow description to None.

• The user shall be able to set to test case descriptions be composed
by all use case descriptions that belong to this test. The same
option can be done to the test case objective that can be composed
by all concatenated flow descriptions (related to flows that
compose this test). For example, a test case is composed by steps
from different use cases, then, the test case description shall be
all use cases descriptions concatenated.

• The user shall be able to set to test case descriptions be composed
by only last use case description that belong to this test. The
same option can be done to the test case objective that can be
composed by only last flow description (related to flows that
compose this test). For example, a test case is composed by steps

 10

from different use cases, then, the case description shall be just
the last use case description.

2.3.3 Requirements options (FR_TARGET_0233)

The tool shall provide an option to show or not the requirements in the
respective step of the test case in addition to showing it in the
requirements list of the test case.

2.4 On The Fly Generation
This subsection describes the requirements related to the generation of
test suites by the tool.

2.4.1 On The Fly Generation (FR_TARGET_0242)

The tool shall generate test cases, if and only if there is at least one
imported document, and all imported use case documents do not have
errors. The imported documents shall also contain at least one feature
specification.

The On The Fly Generation shall provide a pre-visualization of the test
cases that will be generated. It also shall allow the user to
include/exclude test cases that have been previously selected by the
filters and visualize this change before the generation.

2.4.2 Import template (FR_TARGET_0251)

It shall be possible to import a template before generate the test suite.
This template is a spreadsheet in which the system will base to generate
the new test suit and some information shall be preserved.

2.4.3 Test Selection (FR_TARGET_0234)

The On the Fly Generation shall provide some filters that allow the user
to select the test cases according to the requirements, use cases, test
purpose and coverage. The test suite shall be the result of filters
combination. If the user does not select any filter, the tool shall
generate all possible test cases from current use case documents.

2.4.3.1 Test Generation For Specific Requirements (FR_TARGET_0145)

Through the Requirements filter, the user shall be able to generate test
cases that cover specific requirements. In this case, the tool shall
allow the user to select a subset of requirements, all requirements, or
none requirements that are referenced in the imported use case documents.

 11

The generation for specific requirement shall be enabled, if and only if
there is at least one reference to a requirement in the imported use
cases according to use case document specifications.

2.4.3.2 Test Generation For All Scenarios (FR_TARGET_0150)

The user shall be able to generate test cases for all scenarios specified
in the imported use cases. In this case, the test generation algorithm
will consider all existent flows described by the use cases and no filter
is applied.

2.4.3.3 Test Selection With Test Purposes (FR_TARGET_0151)

The user shall be able to select test cases using test purposes. The
tool shall allow the user to define the test purposes.

A test purpose is an abstract description of a subset of the
specification, allowing choosing behaviors to test and, consequently,
allowing reducing the specification exploration. A test purpose is
composed of a sequence of steps. The operator “*” also can be used and
means any sequence of steps. For example, if the test purpose is defined
as “*;4M”, it means that the tool shall select all test cases that finish
on 4M step.

2.4.3.4 Test Selection Based on Similarity (FR_TARGET_0152)

In the Path Coverage filter, the user shall be able to select test cases
based on similarity. The tool shall discard the most similar test cases
based on the percentage informed by the user.

The similarity between two test cases is defined as:

N/(S1+S2)/2)

where N is the number of steps of test case TC1 that are contained in
test case TC2, S1 is the number of steps of TC1, and S2 is the number of
steps of TC2.

2.4.3.5 Test Selection Based on Use Cases (FR_TARGET_0153)

In the Use Case filter, the user shall be able to add and/or remove one
or more test cases based on the use cases. The tool shall select all test
cases that contain at least one step related to selected use cases.

 12

2.4.4 Test Cases Viewer

This subsection describes the requirements related to test cases
visualization, filters selection, inclusion and exclusion of the test
cases and test suite generation.

2.4.4.1 Test case visualization options (FR_TARGET_0235)

The user shall be able to visualize all selected (FR_TARGET_0234) test
cases according to the filters. It is possible to visualize these test
cases by group separately: Common Test Cases, New Test Cases and Removed
Test Cases.

The Common Test Cases shall represent all the test cases that are in
common between actual filter (FR_TARGET_0236) and the last filter
(FR_TARGET_0234) selected, and shall appear in black color.

The New Test Cases shall represent all the new test cases comparing the
actual filter (FR_TARGET_0236) and the last filter (FR_TARGET_0234)
selected, and it shall appear in green color.

The Removed Test Cases are the test cases that were removed comparing the
actual filter (FR_TARGET_0236) and the last filter (FR_TARGET_0234)
selected, and they shall appear in red color.

2.4.4.2 Filter selection (FR_TARGET_0236)

The user shall be able to save the current filter selection to use
afterwards. The saved filter shall appear in the list of filters. In
order to use it, the user must select it from the list and load it. This
list shall have the “All Test Cases” as default value and the other saved
filters shall have the “Selection X” name, where X represents the order
in which it was generated. After loading a saved filter, the respective
test cases shall appear (FR_TARGET_0235) to the user.

2.4.4.3 Test case visualization (FR_TARGET_0237)

The tool shall provide the visualization of all selected test cases. The
user shall be able to select one of them and it shall appear in a table
with all test case contents according to Test Suite Format
(FR_TARGET_0175)

2.4.4.4 Test case inclusion/exclusion (FR_TARGET_0238)

The user shall be able to include or exclude permanently a test case, by
clicking the right button of the mouse. This option means that a test

 13

case will be always included or excluded of test suite independently of
any filter selected.

2.4.4.5 Test suite generation (FR_TARGET_0239)

The user shall be able to choose a filter or none filter in the On The
Fly Generation editor. If no filters are selected, then all possible test
cases shall be generated. After select the wanted test cases, the user
shall be able to generate the Test Suite.

If there is at least one error in the imported use cases documents, the
tool shall not generate the test suit.

2.4.5 Traceability Matrix (FR_TARGET_0240)

The user shall be able to visualize all selected test cases, according to
the Requirements x Test Cases relation and the Use Case x Test Cases
relation.

The FR_TARGET_0235, FR_TARGET_0236, FR_TARGET_0237 and FR_TARGET_0238 are
also related to this requirement. When a test case is selected, it shall
be showed in the spreadsheet format according to Test Suite Format
(FR_TARGET_0175). The user shall be able to visualize only one test case
per time.

2.4.6 Included or Excluded Test Cases (FR_TARGET_0241)

The user shall be able to visualize all test cases included and/or
excluded permanently from the test suite. For example, besides the
filters mentioned in FR_TARGET_0234, the user should be able to include
or exclude some test cases permanently, independently from filters
selection.

2.4.7 Generation Summary (FR_TARGET_0160)

The tool shall display a summary of the generation right after it has
finished. This summary shall include the follow information:

• Total time required to complete the process;

• The total number of generated test cases.

2.4.8 Test Suite Name (FR_TARGET_0170)

The name of the test suite file shall be automatically generated by the
tool.

 14

If the IMPORT TEMPLATE TEST CENTRAL 4 Feature (See Appendix B) is present
in the TaRGeT product, the user shall be able to import a template
(FR_TARGET_0175) and the test suite file name shall have the same name
from template.

If the IMPORT TEMPLATE TEST CENTRAL 4 Feature (See Appendix B) is not
present in the TaRGeT product, the user shall not be able to import a
template and the test suite file name shall has the format
“NewTestSuite000X”, where X is the number of test suits already generated
in crescent order. This name shall be different of any test suite file
that is already stored on the current project.

2.4.9 Test Suite Format (FR_TARGET_0175)

The generated test suite can be formatted in xml, html or Excel formats
depending on the enabled feature on the TaRGeT product (OUTPUT Feature –
See Appendix B). Each generated test case shall have the following
information:

• Case – A label that uniquely identifies the test case inside the
test suite. The user shall be able to customize the test case
identification field in the Preferences window (FR_TARGET 0231);

• Execution type – The default content generated by TaRGeT;

• Case Description: The test case’s description originated from use
case description. The user shall be able to customize the use case
description in the Preferences window (FR_TARGET 0232);

• Use cases – The use case’s id related to the test case;

• Objective – The test case’s objective originated from flow
description of the use case. The user shall be able to customize
the flow description in the Preferences window (FR_TARGET 0232);

• Requirements – the ids of the requirements that the test case

covers;

• Setup - a draft of the test case’s setup;

• Initial conditions – a draft of test case’s initial conditions;

• Test Procedure (Step Number)- The test case steps number;

• Procedures – the actions of the test case;

• Expected Results: The responses of the test case;

• Notes - default content generated by TaRGeT.

The other fields of the test case, such as regression level, final
conditions and cleanup are left empty. The user shall be able to
customize the empty field in the Preferences window (FR_TARGET 0231);

 15

Moreover, the test suite shall contain information about the Traceability
Matrix (FR_TARGET_0180).

2.4.10 Requirements Traceability Matrix (RTM) Generation
(FR_TARGET_0180)

The tool shall automatically generate the RTM for each generated test
suite. The RTM shall contain the following relations: Requirements X Use
Cases, Requirements x Test Cases, and Use Cases x Test Cases.

2.4.11 Revision History Generation (FR_TARGET_243)

In spreadsheets formats, it shall be able to generate a table related to
revision history providing the user to control the test suits versions.
The fields available are:

• Date Last Updated

• Modified By

• Comments

These fields are empty and the user may add the information manually.

2.5 Consistency Management
This subsection describes the requirements related to the management of test
cases consistency (CONSISTENCY MANAGEMENT Feature – See Appendix B)

2.5.1 Consistency Management (FR_TARGET_244)

Consistency management is a feature to control the consistency of already
generated test cases if the user makes any modifications in the use case
document. The feature shall demonstrate the percentage of similarity between
a new test case and an old one and the fields that are different between
them.

The user shall be able to associate a new test case with and old one based
on the level of similarity between them. The tool shall perform a merge
keeping the following fields from the new test case:

• Steps

• Requirements

 16

• Initial Conditions

• Use Case References

• Setup

• Feature Id

and the following fields from the old test case:

• Id

• Status

• Description

• Objective

• Note

• Execution Type

• Regression Level

• Final Conditions

• Cleanup

The user shall be able to attribute a new id to one test case. In this case,
all fields of the new test case shall be kept and only the id shall be
modified.

Consistency manager will only work if there is at least one test suite
created.

2.5.2 Selecting Test Suite (FR_TARGET_245)

The user shall be able to select an already created test suit from the
project to compare it with the new test cases generated by the On The Fly
functionality.

 17

2.5.3 Associating Test Cases (FR_TARGET_246)

The user shall be able to associate new test cases generated by the On The
Fly functionality with old test cases from the selected test suite based on
the level of similarity between them.

The tool shall show the percentage of similarity of a new test case with the
old ones. Test cases that have a similarity level of 100% shall be automatic
associated.

The tool shall indicate when a new test case does not have a similarity
level of 100% with any one other (it may probably be a new test case created
by the user or a modified one).

The user shall be able to attribute a new id to a new test case or remove it
from the test suite that will be generated.

2.5.4 Visualizing Test Case differences (FR_TARGET_247)

The user shall be able to visualize the differences between a new test case
generated by the On The Fly functionality and an old test case from the
selected test suite.

The full description of the selected test case shall be displayed to the
user on a table format. The tool shall indicate which fields of the test
cases are different and if one test has extra steps compared to the other.

2.5.5 Setting up Next New ID (FR_TARGET_248)

The user shall be able to define the new id that will be attributed to test
cases marked as new ones. If there is more than one test case marked as new,
the tool will increment the id starting from the value passed by the user.

2.5.6 Setting Up Automatic Association (FR_TARGET_249)

The user shall be able to set up the values of test case similarity for the
tool to perform an automatic association of new and old test cases according
to these values. These values are in a range from 0 to 100%. The first value
is related to the level of similarity of the most similar old test case and
the second value is related to the level of similarity of the second most
similar old test case.

For example, the user shall be able to define levels of similarity according
to the behavior: “if the first most similar test case to the new one has a
similarity level greater than x% and the second most similar test case to
the new one has a similarity level less than y%, the tool will associate
automatically the new test case to the most similar old one.” the x and y
values shall be configured by the user.

 18

2.5.7 Changing test suite to compare (FR_TARGET_253)

The user shall be able to change the test suite file that is being compared
to test suite generated by On The Fly generator. In this case, another
Consistency Management window is opened with this new suite comparison
information.

2.5.8 Generating Test Suite (FR_TARGET_250)

After performing the Consistency Management, the user shall be able to
generate a new test suite. This test suite must contain all the
modifications that the user has made during the consistency management
activity.

This test suit will be the result of a merge between the old test suite
selected to be compared and the new test cases generated by the On The Fly
functionality. The new generated suite shall also consider the new ids that
the user has attributed to the test case

2.6 Controlled Natural Language (CNL)
This subsection describes the requirements related to the controlled natural
language feature.

2.6.1 Controlled Natural Language (FR_TARGET_255)

A Controlled Natural Language (CNL) is a subset of an existing natural
language, like English, French, or Portuguese. Basically, a CNL defines some
writing rules and a restricted vocabulary in order to avoid authors to
introduce ambiguities into their texts. It is designed to address the
communicative needs of a particular area, or a particular company.

A CNL may aim three major purposes (listed below). Actually, these purposes
complement each other, in a way that to achieve the purpose below, the above
one must be achieved.

• Text Standardization – the most basic purpose of a CNL is to define a
standard to be followed throughout an organization. For that, a set of
writing constructions (grammar) and a specific vocabulary is needed;

• Deterministic Mapping to an Intermediate Representation – since there
is a grammar and a vocabulary, it is possible to define rules that map
the CNL sentences into a structured representation, in order to
prepare it for further processing.

• Semantic Analysis – the goal of semantic analysis is understand the
relation between the user utterance and the concept he/she wants to
convey.

 19

Currently, the CNL only address the above item (1). However, it is intended
to continue the CNL development in order to achieve the purposes (2) and
(3).

2.6.2 Searching, adding, editing and removing terms in lexicon
vocabulary (FR_TARGET_256)

The user shall be able to add, edit or remove adjectives, adverbs,
conjunctions, determiners, nouns, prepositions and verbs in the lexicon
vocabulary. For each category, specific information should be filled in. The
CNL should not allow the insertion of pronouns and modal verbs.

2.6.3 Integration with a dictionary (FR_TARGET_257)

The CNL shall be integrated with an external dictionary that will validate
the term the user tries to add in the lexicon. The dictionary should analyze
if the term is correctly spelled and if the category selected by the user is
suitable. The dictionary will be also responsible to suggest synonyms for
unknown term.

2.6.4 Visualizing syntax errors details (FR_TARGET_258)

The user shall be able to visualize the syntax error details and to see the
possible corrections for the mistakes found in the sentences.

2.6.5 Sorting CNL errors (FR_TARGET_259)

The user shall be able to sort the CNL errors displayed in the user
interface by the error description, the sentence where the error was found,
the step id where the error was found or the use case document that contains
the error.

2.6.6 Filtering CNL errors (FR_TARGET_260)

The user shall be able to filter the CNL errors using as criteria the type
of the sentences where they were found (user action, system condition or
system response).

2.6.7 Reloading CNL (FR_TARGET_261)

The user shall be able to reload the CNL configuration files and reprocess
the imported use case documents. The CNL error table shall be updated on the
moment of the refresh.

2.7 Use Case Editor
This subsection describes the requirements related to the Use Case Editor
feature.

 20

2.7.1 Opening an empty use case editor (FR_TARGET_262)

The user shall be able to open an empty use case editor to create a new use
case document or adding an use case to an existent one.

2.7.2 Opening and editing an existing use case using editor
(FR_TARGET_263)

The user shall be able to select an existing use case, open and edit its
information about feature, use case, requirements, main flows and
alternative flows.

2.7.3 Saving an use case (FR_TARGET_270)

The user shall be able to create a new use case document or updating an old
one. Interface components that contain reference errors should be
highlighted after saving action. It is not allowed to create or update an
use case document with empty mandatory fields.

2.7.4 Adding alternative flows (FR_TARGET_264)

The user shall be able to add alternative flows into a new or existing use
case.

2.7.5 Removing alternative flows (FR_TARGET_265)

The user shall be able to remove alternative flows from a new or existing
use case. The associations of the removed flow should be checked before
removing it and the user should be asked for confirmation.

2.7.6 Adding new steps (FR_TARGET_266)

The user shall be able to add steps into an existing flow.

2.7.7 Removing steps (FR_TARGET_267)

The user shall be able to remove steps from an existing flow.

2.7.8 Searching terms (FR_TARGET_268)

The user shall be able to search terms in use case editor. The interface
components where the term (or another term that contain it)is found should
be highlighted.

 21

2.7.9 Exporting use cases (FR_TARGET_269)

The user shall be able to export use case document with no empty mandatory
fields in PDF format.

2.8 Others
This section includes the requirements related to other features.

2.8.1 Internationalization (FR_TARGET_252)

It can be available in two different languages: English or Portuguese
(IDIOM Feature – See Appendix B)

2.8.2 Help (FR_TARGET_0205)

It shall be possible to user to access the user manual from its UI.

The option “Automatically detect settings” in the Internet Options shall
be disabled (Browser menu -> Tools -> Internet Options -> Connections ->
Local Area Network (LAN) Settings) to access the user manual from TaRGeT
UI.

2.8.3 About (FR_TARGET_0210)

It shall be possible to user to view the details about the version and
the developer. It also displays the TaRGeT and CIn/BTC logos.

2.8.4 Splash Screen (FR_TARGET_0220)

While the tool is being launched, it shall display a splash screen,
showing the TaRGeT and CIn/BTC logos.

2.8.5 Background Image (FR_TARGET_0225)

The tool shall display a background image, showing the TaRGeT and CIn/BTC
logos, when there is no project opened.

2.8.6 Environment Error (FR_TARGET_0230)

When, the tool is being initialized, it shall check and notify the
existence of any problem regarding to the environment (see Section 3).
The tool shall only open if no problem is found.

 22

3. Environment Requirements

This section describes non functional requirements related to environment
compatibility and external software dependences.

3.1 Compatibility
This subsection describes the requirements regarding the tool’s
environment compatibility.

3.1.1 Desktop Platform (ER_TARGET_0010)

The “TaRGeT” application shall work on Windows 2000, Windows XP, Windows
Vista and MacOS, depending on the TaRGeT product version.

3.2 Software Dependencies
This subsection describes the requirements regarding the tool’s external
software dependencies.

3.2.1 For Microsoft Office Input (Just available for versions for
Windows)

3.2.1.1 .NET Runtime Environment (ER_TARGET_0025)

TaRGeT application only works properly in machines with .NET Framework
2.0 Runtime Components installed. If the machine does not have it
installed, a warning message is presented.

3.2.1.2 Microsoft Office (ER_TARGET_0015)

TaRGeT application works properly with Microsoft Office 2003/2007
Professional installed. Only documents created using Microsoft Office
2003 can be imported in the TaRGeT projects. However they can be edited
in both Office versions.

3.2.2 JVM (ER_TARGET_0020)

TaRGeT application only works properly in machines with JVM compatible
with JRE Version 6.0 installed [1]. If the machine does not have the JVM
installed, a warning message is presented.

 23

4. Tool Workspace
This section aims to describe the TaRGeT workspace. The workspace is a
standard visual structure of the tool composed by menus and panels.

4.1 Project Window
Figure 1 shows the TaRGeT work area when there is an opened project. It
is composed by a menu bar and three panels: Left Panel, Main Panel and
Bottom Panel.

Figure 1 – Structure of TaRGeT’s Interface.

4.2 Menu Bar
The tool GUI shall have the menu tree described below (consider the
order):

• File

Menu Bar

Main Panel

Bottom
Panel

Left
Panel

 24

o New Project
o Open Project
o Close Project
o Exit

• Artifacts

o Import Use Case Documents

• Project
o Refresh Automatically
o Refresh Project

• Tools
o Search
o Preferences
o On the Fly Generation

• Help
o Help Contents
o About TaRGeT

4.3 Left Panel
This panel contains the Use Cases view, in which the use cases are
outlined. It is shown as tree structure, grouping the use cases according
to its feature.

4.4 Bottom Panel
This panel allows three views:

• Artifacts View – it outlines the project artifacts. It groups, in
two different folders, the use case documents and the test suite
documents.

• Error View – it lists all current errors that appear in the use
case documents.

• Search Results View – contains the results of any search on use
cases

4.5 Main Panel
This panel is used to display the use case document’s content and On the
Fly Generation editor. It shall allow the use case preview and test cases
preview that should be generated according to the user choose.

 25

5. Appendix A – Use Case Document Format

Use case documents shall be Word or XML documents according to the
structure and rules described below.

Each use case document shall have some fields associated with a XML
structure that stores the relevant information to be processed by the
tool. Only the relevant fields (associated with XML) are used by the
tool, any other information inside the document is ignored. The relevant
fields are:

• Feature

o Use Case

 Flow

• Step

Each document shall have at least one feature. Each feature shall have at
least one use case. Each use case shall have at least one flow. Each flow
shall have at least one step.

The upper structure of the document is made of features. A feature has an
id, a name and a set of use cases; and, a use case has an id, name,
description, setup information and flows. The details about the upper
structure can be seen as follows.

The tool allows the user to import more than one document related to the
same feature. In this case, the features shall have the same feature id.
So, the tool merges the information and shows in the “Use Cases” view.

• Feature

o Feature id – a free textual value and non empty text. It shall
be unique inside a document.

The tool should show an error message and reject the Use case
document in the following cases:

o Feature Id is empty;

o The Feature Id is not unique in the same Use Case

document;

o Feature name – empty field or any other value;

• Use Case

o Use Case Id – a free textual value and non empty text. It shall
be unique inside a specific feature, i.e., it is possible to
exist two use cases with same id in different features. The tool

 26

should show an error message and reject the Use case document in
the following cases:

 The Use Case Id is empty;

 The Use Case Id is not unique in the same feature

In the other cases, the tool shall accept the Use case
document and does not show the error message.

o Use Case Name – empty field or any other value;

o Use Case Description – empty field or any other value;

o Use Case Setup – empty field or any other value.

The Use Case Descriptions, and use case setup are optional. All
other fields are mandatory;

• Flows

The lower structure of the document is composed by flows. A flow
has a description, a list of source flows (FROM Steps), a list of
destination flows (TO Steps) and a sequence of steps. Each step has
an id, an action, a condition, setup information (optional) and a
response. The details about the lower structure can be seen as
follow.

o Flow Description – empty field or any other value;

o FROM Steps – Non empty textual value.

In the following situations the tool shows a warning before load
the document, accept the Use Case document and show an error in
a specific area into of the tool:

 FROM Steps with repeated step ids the same field;

 FROM Steps with step ids which are not separated by

commas;

 FROM Steps with step ids which contains symbols, numbers

or letters;

 FROM Steps with step ids which do not exist.

In the case where the FROM Steps is empty, the tool rejects the
use case document.

o TO Steps – same rule of FROM Steps;

• Steps

A sequence of steps. Each step is composed by:

o Step Id – a free textual value and non empty text. The tool shall
show a warning before loading the document, accept the Use Case
document and show an error in the following cases:

 27

 The textual value is empty

 Duplicated Step Id in the same use case or same flow.

In the cases that the rule above is not applicable, i.e., letter
followed by number or number followed by minuscule letters or
only numbers or only letters or symbols, the tool will show an
error message and reject the Use Case document.

o Step Action – The tool will accept any value that does not empty.
If field value is empty the tool will show a warning before load
the document, accept the Use Case document and indicate an error
in the error tab;

o Step Condition - The tool accept an empty field or any other
value;

o Step Response - The tool will accept any value that does not

empty. If field value is empty the tool will show a warning
before load the document, accept the Use Case document and
indicate an error in the error tab.

All the Step Ids shall be unique in the use case. The above fields, except
the Step Condition and Setup are mandatory.

The FROM Steps and TO Steps is a list of references to steps from other
flows. The former indicates that the flow behavior is a possible
continuation of the referenced Steps Ids. The last indicates that the flow
continues to the steps which ids are referenced. If the FROM and TO fields
has more than one listed Step Id, they shall be separated by ‘,’ (comma)
character.

To indicate that the scenario may start at the flow, the user shall insert
the ‘START’ id in the FROM Steps field. On the other hand, to indicate that
the scenario may end at the flow, the user shall insert the ‘END’ id in the
TO Steps field.

When it is desired to refer to a step whose flow is in the same use case,
the user shall only provide the id of the referenced step.

When it is desired to refer to a step whose flow is in the same feature but
in a different use case, the user shall provide ‘UC_ID#STEP_ID’ reference.
Where UC_ID is the Use Case Id of the referenced step and STEP_ID is the
Step Id.

When it is desired to refer to a step whose flow is in a different feature,
the user shall provide ‘FEATURE_ID#UC_ID#STEP_ID’ reference. It means that
FEATURE_ID is the Feature Id of the referenced step, UC_ID is the Use Case
Id and STEP_ID is the Step Id.

The Requirement Id is an optional field that is written at the end of step
action, condition and/or response fields. The id shall appear between ‘[‘
(open brace) and ‘]’ (close brace) characters. If there is more than one

 28

requirement in the same step field, they shall be separated by ‘,’ (comma)
character (e.g., [REQID1, REQID2]).

 29

6. Appendix B – Feature Model

