
Towards Feature Modularization

Márcio Ribeiro Paulo Borba

Informatics Center, Federal University of Pernambuco, 50740-540, Recife – PE – Brazil

{mmr3, phmb}@cin.ufpe.br

Abstract
Virtual Separation of Concerns was introduced as a way to
reduce drawbacks of implementing product line variability
with preprocessors. Developers can focus on certain features
and hide others of no interest. However, features eventually
share elements, which might break feature modularity, since
modifications in a feature result in problems for another.
In this thesis we propose the concept of emergent feature
modularization. The idea consists of establishing contracts
among features to prevent the developer from breaking other
features when performing a maintenance task.

Categories and Subject Descriptors D.2.3 [Software En-
gineering]: Coding Tools and Techniques

General Terms Design

Keywords Product Lines, Modularity, Preprocessors

1. Introduction
In a Software Product Line (SPL), features are often imple-
mented using mechanisms like preprocessors [2], so that di-
rectives such as#ifdef and #endif encompass code as-
sociated with features. Despite their widespread use, several
drawbacks are known, including no support for separation of
concerns. Virtual Separation of Concerns (VSoC) [2] allows
developers to hide feature code not relevant to the current
task, being important to reduce some of the preprocessors
drawbacks. The idea is to provide developers a way to focus
on a feature without being distracted by other ones.

Although VSoC is helpful to visualize a feature individu-
ally, it does not modularize features to the extent of support-
ing independent feature maintenance and development [3],
since developers know nothing about what is hidden. In fact,
when maintaining a feature, a developer might introduce er-
rors into the hidden features, since these features eventually

Copyright is held by the author/owner(s).

SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
ACM 978-1-4503-0240-1/10/10.

share elements (variables and methods) with the feature be-
ing maintained. For instance, the new value of a variable
might be correct to the maintained feature, but incorrect to
another that uses this variable. Thus, we have a problem
due to the lack of feature modularization: the modification
of a feature leads to errors in another. And this problem is
worse since this error would only be noticed when running
the product built with the problematic feature.

This thesis proposes the concept ofEmergent Feature
Modularization[4], which consists of establishing contracts
among feature implementations. We call our approach emer-
gent because the components and interfaces here are neither
predefined nor have a rigid structure. Instead, they emerge
on demand to give support for specific feature development
or maintenance tasks. Notice that we also achieve the hiding
benefits towards feature comprehensibility. However, while
still hiding completely the feature code, our emergent inter-
faces abstract its details. At the same time, they provide valu-
able information to maintain a feature and keep other fea-
tures and their possible combinations safe. Our intent is to
provide enough information to prevent developers of break-
ing other features, even when they are working on parallel.

Our hypothesis is that, by using the emergent interfaces,
developers achieve modularity and, consequently, make
fewer mistakes during SPL maintenance, improving their
productivity. In particular, our research questions are the fol-
lowing. Q1: Do emergent interfaces provide better support
during feature maintenance?;Q2: Do emergent interfaces
allow developers to analyze less code?

2. Emergent Feature Modularization
The top of Figure 1 shows two features of Mobile Media1:
Music and theCopy optional feature (implemented with pre-
processors). We do not provide theCopy feature code on
purpose to simulate VSoC, so that the developer is not con-
cerned about other features like, for this example,Copy. To
some extent, hiding features is worthwhile to the feature
comprehensibility benefit, since it may help developers to
comprehend a feature individually. Despite this advantage,
VSoC does not provide enough support for feature modular-
ization, which also means modifying features separately [3].

1http://mobilemedia.cvs.sourceforge.net/



Because there is no information about the hidden code,
when maintaining theMusic feature, problems may oc-
cur in Copy. So, the independentchangeability benefit
is not achieved. For example, since thescreen variable
is used only at theMMController constructor, a devel-
oper may decide to changeMMController(screen) to
MMController(new MMScreen(..)) and delete thescreen
declaration. Since theCopy feature usesscreen, an error
will occur when a developer eventually compiles the prod-
uct with the problematic feature combination (withCopy).

(1)
Provides

MMScreen screen 

to Copy

Interface

(2)
Selection

MMScreen screen = new ...
MMController controller = new ...

Copy
...screen...

d1 d2

MMScreen screen = new MMScreen(..);
MMController controller = new MMController(screen);
//#ifdef copy
...
//#endif

Figure 1. Copy feature hidden / Emergent Interface.

In this context, sharing information about two or more
features may be a confusing point for two developers, so
that achieving theparallel developmentis difficult. This
happens because there is no “mutual agreement between the
creator and accessor” [5]. Since this contract does not exist,
developers of a feature might actually break another one.

To solve these problems, we propose the concept of emer-
gent feature modularization, which consists of establishing,
according to a given development task, interfaces among
features. This is based on an uncommon way to think about
components and interfaces: they are not predefined, nor have
a rigid structure, but are computed on demand, to give sup-
port for feature development. For example, in a maintenance,
the feature code to be changed is a component, namedSe-
lection. The backward/forward paths of the code surround-
ing it are components too. Paths consider the different fea-
ture combinations by the feature model. They are named
dataflows, since data is exchanged among features. Inter-
faces capture data dependencies between these components,
and give support to maintainingSelectionwithout having to
understand the details of code associated to thedataflows.

Thus, before changing theMusic feature, developers se-
lect the code to be maintained. In this case, sinceCopy is op-
tional, twodataflowsare considered according to the feature
model:d1: Music ∧ Copy andd2: Music ∧ (¬ Copy). They
are illustrated through arrows on the bottom of Figure 1. Af-
ter the selection, interfaces emerge to basically show datade-
pendencies between components. Thedataflowsare used to
catch dependencies between the selection and code of other
features. Figure 1 shows an emergent interface, stating that
theSelectioncomponent providesscreen to theCopy fea-

ture. This interface allows us to changeSelectionabstracting
details of surrounding features (which are still hidden). At
the same time, they provide information to theSelectionde-
veloper, so that he might avoid implementations that cause
problems to other features. Now, when looking at the inter-
face, he would think twice before continuing the refactoring.
Now we present the ongoing work and some results.

More evidences to our problem. We are trying to collect
semantic errors caused by the lack of feature modularization.
Also, the problem addressed here gets worse depending on
the number of features within methods. For this reason, we
are computing for some C and Java product lines metrics
like the number of#ifdefs per method; and the number of
variables declared in a feature and used in another one.

Tool. We are building a tool (which is based onColored
IDE [2]) to compute emergent interfaces.

Evaluation. ForQ1, we should collect real scenarios of SPL
maintenance, like adding, removing, and changing features.
By using these scenarios, we intend to conduct an exper-
iment with students to evaluate if our proposal allows de-
velopers to commit fewer mistakes. ForQ2, since our ap-
proach provides information about what is hidden, we count
the lines of code of the hidden feature and of our interfaces.
Our interfaces should be smaller. Otherwise, it seems to be
easier for the developer to analyze the hidden code directly.

How do we go beyond? We still have the VSoC benefits
since hidden feature details are abstracted. At the same time
we provide summarized information to maintain a feature
and keep the hidden ones safe. Therefore, emergent inter-
faces help developers to change a feature without breaking
others. Thus, we may achieve not only the comprehensibility
benefit, but also the independent changeability. Some works
check for type errors of all SPL variants [1]. Our intent is to
make developers aware about other features before initiating
the maintenance, avoiding errors that would be only caught
afterwards by these checking-based works. Finally, we are
also concerned with system behavior, rather than only with
static type information. For example, interfaces may state
that a feature needs a particular value for a variable.

References
[1] C. Kästner and S. Apel. Type-checking software product lines

- a formal approach. InProceedings of the 23rd ASE’08, pages
258–267. IEEE Computer Society, September 2008.

[2] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Soft-
ware Product Lines. InProceedings of the 30th ICSE’08, pages
311–320, New York, NY, USA, 2008. ACM.

[3] D. L. Parnas. On the criteria to be used in decomposing systems
into modules.CACM, 15(12):1053–1058, 1972.

[4] M. Ribeiro, H. Pacheco, L. Teixeira, and P. Borba. Emergent
Feature Modularization. InProceedings of the Onward! 2010,
New York, NY, USA, 2010. ACM. To appear.

[5] W. Wulf and M. Shaw. Global variable considered harmful.
SIGPLAN Notices, 8(2):28–34, 1973. ISSN 0362-1340.


