
AJaTS: AspectJ Transformation System
Roberta Arcoverde

Informatics Center - UFPE
rla4@cin.ufpe.br

Sérgio Soares
Computing Systems Department - UPE

sergio@dsc.upe.br

Patrícia Lustosa
Informatics Center - UFPE

plvr@cin.ufpe.br

Paulo Borba
Informatics Center - UFPE

phmb@cin.ufpe.br

Abstract
The interest in aspect-oriented software development naturally
demands tool support for both implementation and evolution of
aspect-oriented software, as well as refactoring current object-
oriented software to aspect-oriented. In this paper, we present
AJaTS – a general purpose AspectJ Transformation System, that
supports AspectJ code generation and transformation. AJaTS
allows the definition of specific transformations, providing a
simple template-based language, as well as pre-defined aspect-
oriented refactorings.

Keywords Refactoring, Aspect-Oriented Programming, Code
Generation

1. Introduction
Aspect-Oriented programming intends to increase software
modularity, by separating the implementation of concerns which
generally crosscut the system. Therefore, AOP addresses some
object-oriented programming issues, like tangled and spread code,
usually related to the implementation of transversal requirements.
AspectJ [3], an aspect-oriented extension to Java [2], allows the
definition of separated entities called aspects, which implement
crosscutting concerns. This separation improves software quality,
since it increases its modularity and reuse.

Due to its power and simplicity, the implementation of aspect-
oriented systems with AspectJ is becoming each day more
common. Tool support for AspectJ transformations has therefore
become very important. However, there are still few tools that
provide AspectJ programs generation and transformation, as well
as refactoring’s definition support.

 In this paper, we present AJaTS – a general purpose AspectJ
Transformation System, that supports AspectJ code generation
and transformation. The main contribution of this paper is to
present AJaTS’s application value, describing its functionalities,
use scenarios and examples of aspect-oriented refactorings
supported.

Section 2 presents an introduction to the AJaTS engine,
including its functionalities, template’s language and application
examples. Next, we discuss the AJaTS’s architecture and
technical points and Section 5 offers our concluding remarks.

2. AJaTS
AJaTS – AspectJ Transformation System – was conceived as a
general purpose AspectJ Transformation System that supports
AspectJ code generation and transformation. The main concept in
AJaTS transformations is the capability of enable the user to
specify templates for matching and code generation. Such
templates are defined in a simple transformation language, similar
to the target language. Such similarity makes AJaTS
transformations easier to define and to understand. This feature
allows the implementation of refactorings in a declarative way

using a language, rather than hard coding refactorings in
programs that manipulate AST or source code. This makes easier
to write, to understand, and to evolve refactorings with AJaTS.

We show examples of both matching and generation templates
below:

//matching template
public aspect #ASPECT_NAME { }
//generation template
public aspect #ASPECT_NAME {
 private String newField;
}

The matching template will match the source code, defining

which classes/aspects will be transformed, as well as which
structures will be saved in AJaTS variables. The generation
template defines the transformation itself.

The basic constructs of the template’s language are the AJaTS
variables (i.e.: #ASPECT_NAME), used as information placeholders
in a transformation. These variables have well defined types that
can vary since a simple identifier until a whole set of methods of
a class or aspect. The AJaTS variables are preceded by a ‘#’
character. AJaTS template’s language also offers more complex
constructs, like conditional control (#if, #else) and loops
(forall).

The AJaTS engine allows the user to define general
transformation templates and applying them to any aspect-
oriented project. Likewise, it also allows the generation of
specific aspects, refactoring object-oriented software to aspect-
oriented.

Besides allowing any developer to write their own
transformation templates, AJaTS also brings some pre-defined
useful transformations, which can be automatically applied to any
Java/AspectJ project. One of these transformations is the
Distribution Concern implementation [5]. It generates aspects that
provide distribution, by modifying the system’s façade, business
entity classes and adding some auxiliary classes to the specified
project. The details of this implementation are extensively
explained elsewhere [5]. An example of how this transformation
affects the system’s code is shown above.

public class Facade {
 fds
 cds
 mds
}
//generated aspect
public aspect FacadeServerSideAspect {
 declare parents: Facade implements IFacade;
 declare parents : entities implements
 java.io.Serializable;
 ...
}

In this example, entities represents a list of business
entity classes, automatically filled through user’s input. This
transformation example provide distribution through RMI, but it
would be possible to use another distribution technology.

To make the facade instance remote, AJaTS generates an
aspect called Server-side Aspect. It modifies the facade class
(Facade) to implement the following remote interface
(IFacade), also generated by AJaTS, which is demanded by the
RMI API [7].

//generated interface
public interface IFacade implements
 java.rmi.Remote { mds' }

AJaTS also applies some pre-defined recommended

refactorings to AspectJ code. The Extract Pointcut refactoring [4],
for example, is demonstrated below.

//source code
aspect A {
 before() : exp { ... }
 after() : exp { ... }
}
//transformed code
aspect A {
 pointcut pc() : exp;
 before() : pc() { ... }
 after() : pc() { ... }
}

In this example, the pointcut pc is derived from the replicated
expressions exp. All these transformations are implemented
through templates, using the AJaTS template’s language. The
templates that perform these transformations are available at the
project homepage (http://www.cin.ufpe.br/~jats/ajats).

Next section describes the architecture and implementation
issues of AJaTS engine. It also presents the AJaTS plug-in,
designed as an Eclipse IDE extension.

3. Architecture
The AJaTS Transformation Engine was conceived as an extension
to a previously developed Java Transformation System, i.e., JaTS
[1]. Whereas it reuses JaTS mechanisms to perform code
generation and transformation, we still had to extend JaTS
language and engine in order to support the manipulation of
AspectJ code.

In this way, the JaTS parser had to be extended, including
AspectJ syntax support. There were also included nodes to
represent AspectJ constructs, and their respective meta-variables.
These modifications allowed JaTS to create, identify and modify
AspectJ syntax trees, performing transformations also in AspectJ
programs.

In order to increase modularity and abstract JaTS’s code
modifications, AJaTS was designed as an aspect-oriented system
itself. The visitors responsible for manipulating the AST,
performing the engine operations, for example, were extended
with methods inter-type declarations (an aspect-oriented
construct), defined in separated aspects. Thus, we use AspectJ
aspects to integrate AJaTS’s code to the JaTS engine – making it
easier to maintain. Figure 1 summarizes the AJaTS’s extensions
over JaTS’s architecture: the addition of AspectJ nodes, and
extension of the visitors and the parser.

Figure 1 – JaTS x AJaTS architecture

We are currently improving an AJaTS Eclipse IDE plug-in. It

integrates AJaTS main functionalities, such as refactorings
definitions support, to Eclipse editor. This AJaTS implementation
allows the application of its refactorings by code selection
directly, using the Eclipse project explorer and the AspectJ editor
provided by AJDT plug-in [6].

4. Conclusions
The elaboration of this work has shown some of AJaTS’s
limitations. Whereas it is clearly possible to define complex
refactorings, they might require some extra processing, still not
supported by the transformation engine itself. The Extract Method
Calls [3], for example, is a well-known refactoring that involves
Java code removal after its application. In order to realize it,
several code comparisons are needed, which cannot be achieved
with current’s AJaTS version.

As a future work possibility, we propose an AJaTS
improvement, which allows code analysis in a lower granularity
level, to support the definition of such comparisons within the
transformation templates. Another valuable contribution to this
work is the implementation of a context-sensitive approach that
allows the definition of much richer refactorings. Such approach
is currently being developed.

Acknowledgments
We would like to thank the members of Software Productivity
Group (www.cin.ufpe.br/spg) for all their technical contributions
and support, in particular to Adeline Sousa. This research was
partially sponsored by CNPq.

References
[1] F. Castor and P. Borba. A language for specifying Java

transformations. In V SBLP , Brazil. May, 2001.
[2] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language

Specification. Java Series. Addison-Wesley, 2th Edition, 1996.
[3] G. Kiczales et al. Getting started with AspectJ. Communications of

the ACM, 44(10):59-65, October 2001.
[4] R. Laddad. Aspect-Oriented Refactoring Series. TheServerSide.com,

December 2003.
[5] S. Soares, E. Laureano, and P. Borba. Implementing distribution

and persistence aspects with AspectJ. In Proceedings of OOPSLA
2002. ACM Press, 2002.

[6] AspectJ Development Tools. http://www.eclipse.org/ajdt/, 2007.
[7] Sun Microsystems. Java Remote Method Invocation (RMI).

