
Towards an Analysis of Layering  Violations in  
Aspect-Oriented Software Architectures 

Mário Monteiro1, Marcelo Moura2, Sérgio Soares3, Fernando Castor Filho4 
Department of Computing and Systems, University of Pernambuco  

Rua Benfica, 455, Madalena, 50.750-410, Recife, Pernambuco, Brazil 
{mqm, mlmm, sergio, fernando.castor}@dsc.upe.br 

Abstract. Empirical experiments with quantitative results are of great 
importance to analyze the benefits and drawbacks of aspect-oriented 
programming (AOP) in different contexts. Although many assessments of this 
new paradigm have been conducted in the last few years, only a small number 
of studies address specifically the impact of AOP on the architecture of a 
software system. This seriously hinders the adoption of AOP, as AOP 
techniques challenge the traditional notion of modularity on which most of the 
research on software architecture is based. More specifically, it is not clear what 
the effect of AOP on layered software architectures is. In this work, we present 
a study with the goal of analyzing the influence of AOP on violations of the 
layered structure of software architectures.  We argue that the existing metrics 
for layering violations do not appropriately accommodate the notion of aspects. 
We explain the problems with these metrics and motivate the need to extend 
them to allow more precise quantitative evaluations of layering violations when 
aspects are involved. The target application of the study is a real-life web-based 
system that has been used in many other scientific studies.  

Keywords: aspects, software architecture, layered software architectures,  
software evolution. 

1   Introduction 

Aspect-Oriented Programming (AOP) [9] is a software development approach that 
supports the modularization of crosscutting concerns in complex software systems. 
Although many assessments of AOP have been conducted in the last few years [15] 
[6] [12] only a small number of studies addresses specifically its impact on the 
architecture of a software system. This seriously hinders the adoption of AOP, as 
AOP techniques challenge the traditional notion of modularity on which most of the 
research on software architecture is based [1]. More specifically, it is not clear what 
the effect of AOP on layered software architectures is.  

Layered software architectures were introduced by Djikstra [5] in the context of 
operating systems research. A layered system is structured as hierarchy of modules 
where each module (or layer) only can use services that the module located 
immediately below it offers. Layered architectures promote benefits such as 
maintainability and the ability to separately understand the parts of the system. Since 

                                                           
1 Supported by FACEPE. 
2 Supported by CAPES. 
3 Partially supported by CNPq, grant #480489/2007-6. 
4 Partially supported by CNPq, grants #481147/2007-1 and #550895/2007-8. 



their inception, layered software architectures have been widely adopted and there are 
many existing systems that are structured as sets of layers. Notable examples include 
most of the existing web-based information systems and network protocol stacks such 
as the Internet's [13]. 

In this work, we study the impact of AOP techniques on layered software 
architectures. We have conducted an empirical study targeting five evolution 
scenarios of a real-life web-based information system to better understand this impact. 
More specifically, we focus our analysis on layering violations, that is, situations 
where a layer is a client to another layer that is not below it or not adjacent to it. 
Although there are already studies on layering violations in the literature [17], to the 
best of our knowledge, none of them gives specific attention to aspects. Actually the 
study [17] is an important related work, since it provides a metric suit to 
quantitatively measure layering violations in source code. The contributions of this 
work are the following: 

• A motivation for the need to adapt existing  layering violation metrics to 
take aspects into account. 

• Development of a framework, using the AspectJ language, to 
automatically measure layering violations  in Java programs. 

• Quantitative and qualitative evaluation of a software system in terms of 
layering violations. In this study, we consider five different evolution 
scenarios of the same system and employ two implementation 
approaches: Object-Oriented Programming (OOP) and AOP. 

This paper is organized as follows. Section 2 introduces the setting of this study, 
whereas Section 3 presents its target application, Health Watcher [18]. Section 4 
describes the notion of layer that we adopt in this work. This is necessary because 
architectural modules are often not explicitly materialized at the implementation 
level. Section 5 presents a framework that we have developed in order to collect 
information about dependencies between layers. Finally, Section 6 presents and 
analyzes the results of our study and Section 7 rounds the paper.  

2   Study Setting 

This study is divided into five major phases: (1) selection of a target application, 
including the selection of relevant evolution scenarios; (2) documentation and 
placement of each module in a specific layer; (3) analysis and motivation for the need 
to adapt existing layering violation metrics, so as to consider the effects of AOP; (4) 
development of a framework to automatically collect the metrics; (5) evaluation, both 
quantitative and qualitative, of layering violations in the target application, 
considering five evolution scenarios and two versions, one aspect-oriented and the 
other one object-oriented. Sections 3-7 describe each of these phases, respectively. 
In order to analyze architectural layering violations in the web information systems 
domain, this work considers two different implementations techniques: AOP and 
OOP. We chose AspectJ [10] as a representative of AOP approaches, since it is the 
most mature and widely adopted  amongst existing AOP languages. It is important to 
stress that our goal is not to compare different AOP mechanisms. Therefore, we 
attempt to be consistent in our use of AOP mechanisms and always opt for the 
simplest possible solution to solve design and implementation problems. Our main 
goal is to assess the impact that AOP technology has in a layered software 



architecture, in terms of creating, removing, and/or changing layering violations. As a 
representative of OOP, we employ Java because it is often used to implement web-
based information systems and it is the language from which AspectJ derives. 

The quantitative metrics to determine layering violations [17] are very important in 
our study. They are the main tool we employ to analyze the influence that AOP and 
OOP have in terms of layering violations. We consider three types of layering 
violation: Skip-Call, Back-Call and Cyclic Dependency. We explain each type of 
violation using an example. Let A and B be two components in a software 
architecture. Assume that A invokes services from B and that A and B belong to layers 
LA and LB, respectively. In this scenario, we define the types of layering violations as 
follows: 

• Skip-Call: Occurs if LB is located below LA, but they are not adjacent, 
i.e., there is some other layer, LC, between LA and LB. 

• Back-Call: Occurs if LB is located above LA. 
• Cyclic Dependency: Occurs if there is a cycle in the dependence graph 

formed by the dependencies amongst the layers of the system. 
More details about these types of layering violations can be found elsewhere [17]. 

3   Target Selection 

The first important decision in this study is the selection of the target application. We 
have chosen a typical web-based information system, called Health Watcher (HW) 
[18]. HW is a complaint registration system. Its major objective is to improve the 
quality of the services provided by the health care institutions, by allowing the public 
to register complaints  about the quality of the service provided to them. In this study, 
we did not consider another target application, but we believe that more studies 
should be taken into account in order to collect more evidences considering our 
approach (see Section 7). 

This system was selected due to the several reasons related to our study goals and 
constraints. First, it is a real and non-trivial application that has a pure Java version 
and an AspectJ version where some concerns, most notably distribution and 
persistence, are modularized through aspects. This factor can help us to better identify  
the effect that each implementation technology has on the study results. The HW 
design presents common  quality requirements, e.g.  web-based GUI, persistence, 
concurrency, distribution, and implementation technologies, e.g. Servlets, JDBC, and 
RMI. Besides, it has a good representativeness  in terms of crosscutting and non-
crosscutting concerns [8], i.e., there are a variety of real-life application concerns. 
This justifies the aspect-oriented implementation besides the object-oriented one. 

Second, HW was developed based on classical n-tier architecture, a very well-
known and widely used layered architecture. Therefore, we believe it is a good 
representative of real layered software systems.  

Finally, one of the previous empirical studies targeting HW [8] applied a number 
of maintenance and evolution change scenarios to a baseline version of the system. 
This effort aimed to simulate a software development environment with realistic 
change scenarios.  In this study, we selected the first five among these scenarios, as 
depicted in Table 1. Each scenario was applied to two different branches of HW: one 
purely object-oriented and the other one using AOP. Hence, each release of the 
system produces two different versions. 



Table 1. HW evolution scenarios employed in this study. 
Release Scenario description 

R1 Factor out multiple Servlets to improve extensibility. 

R2 Ensure the complaint state cannot be updated once closed to protect 
complaints from multiple updates. 

R3 Encapsulate update operations to improve maintainability using common 
software engineering practices. 

R4 Improve the encapsulation of the distribution concern for better reuse and 
customization. 

R5 Generalize the persistence mechanism to improve reuse and extensibility. 

4   Identifying and Documenting Architectural Layers 

Before we start measuring architecture layering violations, it is necessary to identify 
what are the layers in the system and to which layer each module belongs. First, we 
consider that each implementation unit in the source code is a module , i.e., a module 
can be a class, an aspect, or an interface. 

Every module should belong to a certain layer [17]. Besides, considering a Layer 
L, argument, return, and error types of operations provided by modules on the border 
of L (invoked by modules from other layers) must be defined either in L or, more 
commonly, in shared data definition modules [2]. However, in order to measure 
architectural layering violations, we need to place shared data definition modules into 
a certain layer. Sometimes it is difficult to determine when to assign a module to a 
certain System layer. It is clear that a module responsible for persisting objects should 
be in the data layer, a module that manages user interaction, appearance, button 
events and menus should be in the graphical user interface (GUI) layer. However, it is 
not clear in which layer reusable elements on which modules located in many 
different layers of the system should be placed.  Examples of such elements would be 
the Account class in a banking system or, in the case of HW, the Complaint 
class. We view these classes as offering services to modules located in many other 
layers of the system, even though they do not offer services in strict sense. Reusable 
classes usually do not require services from GUI nor business modules. Instead, basic 
classes are used by all of them. This line of reasoning led us to place these elements at 
the lowest layer of the hierarchy, which we shall call “Reusable Elements layer”.  

The design choice of placing reusable elements in the lowest architectural layer is 
based on the assumption that skip calls are a less severe layering violation than back 
calls. This is intuitive if we consider that one of the motivations for the use of layered 
architectures is to be able to replace a certain layer by another one without affecting 
any lower layers. When a module makes a back call, it breaks this principle and, as a 
consequence, partially defeats one of the main benefits of layered architectures. If, on 
the other hand, a module at a layer L makes a skip call, this means that it depends on 
layers that are not adjacent to L, but are still below it. Hence, L can still be replaced 
without affecting layers located at lower levels. By placing reusable elements at the 
lowest layer, we avoid making back calls to them by introducing some skip calls. The 
UML Components software development method [3] takes a similar approach to 
separate reusable from non-reusable software components. 



Another problem arises in the aspect-oriented systems domain. Aspects are 
modules and, therefore, should belong to a certain layer [17]. However, it is not clear 
to which layers the aspects belong. There are examples of crosscutting that fit 
appropriately within a layered structure, e.g. Distribution. Nevertheless, for 
simplicity, since this is still an ongoing work and most of the crosscutting concerns of 
Health Watcher cannot be matched to a specific layer, we argue that aspects do not 
belong to any of the layers. In fact, aspects that are intended to crosscut can easily 
cross layers, so arbitrarily assigning them to a layer obviously invites problems. 
Therefore, it is not straightforward to claim that aspects should be localized into 
layers. In this case, we have to treat the metrics defined in [17] differently when 
dealing with aspect-oriented systems. 

 

 
Figure 1. HW layer architecture. 

 
The existing metrics for architectural layering violation [17] do not consider 

aspects. However, even though we believe, in this study, that aspects should not 
belong to any layers, there can still exist many dependencies from aspects to modules 
within the layers. This raises the question of whether aspects should be considered, 
for the purpose of counting skip-call, back-calls, and cycles. Our opinion is that 
aspects should not be considered for this purpose. These types of violation are 
inherently dependent on the location of a layer in the architectural layers hierarchy 
and aspects, considering Health Watcher System, are not part of any specific layer. It 
is undeniable that AOP still affects the results of our study, since their introduction 
changes some dependencies in the system, as discussed in Section 6. Nevertheless, 
ideally, the influence of aspects in layering violations should also be measured 
directly, in terms of dependencies on/from aspects, and not only indirectly, in terms of 
the modules that aspectization affects. This kind of measurement is important for 



maintenance because changing a module on which an aspect depends might break the 
aspect. Currently, though, there is no metric suite that bridges the gap between a 
layered architecture and the crosscutting dependencies that AOP makes explicit and 
we consider this fertile ground for future research. The last section of this paper 
briefly elaborates on this topic.  

In order to ease the identification and documentation process, we have developed a 
simple tool to assist us in associating modules to layers. According to the HW System 
documentation [8], the modules can be placed in four layers: (1) GUI, (2) 
Communication, (3) Business, (4) Data Management. As previously mentioned, we 
have also defined a fifth layer: the Reusable Elements layer. Every aspect 
implementation unit is registered so that it does not belong to any layer. After the 
registration of all modules, a configuration file is created with all registered 
information and then it is used as input by the framework (explained in detail in 
Section 5), in order to  automatically collect the layering violation metrics. 

All module registration was carried out carefully, with professional supervision 
(HW developers) and researchers with long-term experience on the development of 
the HW. As much as possible, we have employed automated tools to reduce the 
impact of human errors in the registration process. The correctness of this task is 
primordial, since it will directly affect all metrics. 

Figure 1 depicts the HW architecture. Due to space constraints the figure shows 
only a few modules and examples of skip-calls violations. 

5   Architectural Layer Violation Measurement Framework 

After registering all implementation units mentioned in Section 4, we need to identify 
all the dependencies between modules. In this work, we adhere to the definition of 
dependency adopted by the UML [16]. The latter considers that a dependency 
between two elements implies that if one of them changes, the other one might have 
to change as well. For simplicity, we consider only the following five kinds of 
dependencies:  

1. Method calls: Module A depends on Module B if A calls a method 
from B, or if A instantiates B. 

2. Field Access. Module A depends on Module B if A reads some field 
from B. 

3. Field Assignment: Module A depends on Module B if A performs an 
assignment to a field from B. 

4. Exception Handling. Module A depends on Module B if A handles 
exception. 

All these dependencies should be considered in the entire system. The 
identification of such dependencies should not be done manually, since this is an error 
prone and time-consuming task. Therefore, we developed a simple framework using 
the features available in AspectJ to identify all the dependencies automatically. 

The framework provides two major functionalities: (1) identification of 
dependencies; and  (2) metrics collection. 

Identification of Dependencies. This functionality is responsible for determining 
all dependencies between modules and for creating a text file with this information. 
First of all, it is necessary to create a pointcut selecting all joint points that represent a 



dependency on a given module (in this example, module Address), along with a 
declare error statement as shown in the code snippet below.  
 
pointcut methCallAddress():call(* Address.*(..)) && !within(Address); 
pointcut constructorAddress():call(Address.new(..))&& !within(Address); 
pointcut getValueAddress():get( * Address.*) && !within(Address); 
pointcut setValueAddress():set( * Address.*) && !within(Address); 
pointcut handlerAddress():handler(Address) && !within(Address); 
pointcut dependencies():methodCallAddress() || constructorCallAddress() || 
                       readFieldValueAddress() || assignFieldAddress()  || 
                       handleAddress(); 
declare error : dependencies() : "#Address#"; 
 

The declare error statement will cause a compilation error whenever a module (that 
is not Address itself) depends on it. Therefore, the compilation error log contains all 
dependencies from all modules to the module Address. If similar code is produced 
for every module of the system, the error log will contain all the dependencies for a 
specific project. The construction of the code snippet above can be automated for all 
modules from a project, since the only difference is the name of the module in each 
pointcut and declare error statement. In our study, we developed a small 
program which accesses each module from a given project in the source code folder 
and then generates dependency-tracking aspects for all implementation units. The 
result is set of aspects including a declare error statement for each module of 
the project. We treat the error log as the dependency graph and use it as input to 
metrics collection. In this study, the AspectJ error log is generated in the Problem 
View (using Eclipse/AJDT) and the contents (which is very simple to read and 
understand) is saved as a simple text file, where each line represents a dependency. In 
this case, a simple text parser is sufficient to obtain the graph dependency 
automatically. 

Metrics Collection. This phases takes as input the list of layers in the system, 
including their order, set of modules associated to each layer (Section 4), and the 
dependency graph, and uses them to detect layering violations. The framework works 
by first picking a dependency of an arbitrary module A on a module B and then 
determining to which layer each of these modules depend. It then checks, for each 
dependency from a module A on a module B, whether: (i) A’s layer is higher than 
B’s; and (ii)  A and B are adjacent. The first condition detects back calls, whereas the 
second one detects skip calls. The framework detects Cycles in the same way that 
cycles are usually detected in graphs [4]. This procedure is repeated for every 
dependency in the dependency graph and the result is a text file comprising layering 
violation metrics for the architecture of a software system. 

6   Results Analyzes 

This section reports and discusses the measurement results for the architecture layer 
violation principles. Table 2 shows, for each layer in both OO and AO version along 
the selected releases, the number of skip-call violations (SC), back-call violations 
(BC), number of modules with skip-call violations (NMSC), number of modules with 
back-call violations (NMBC), total number of modules. Table 3 also contains the 
back-call violation index (BCVI) for the entire system: BCVI(S), as well as the skip-
call violation index (SCVI) for the entire system: SCVI(S). It is desirable that these 



two indexes have the value 1 (maximum value), meaning that there are neither back-
calls nor skip-calls in the entire system. A value near to 0 indicates violation to large 
extent. More information about these metrics can be found elsewhere [17]. In this 
study, we did not measure cyclical dependence violations, because the cycles 
identified in the selected releases we analyzed were between modules of the same 
layer, which is not a violation. 
 
Table 2. Evaluation of architectural violations present in HW scenarios. 
 SC BC NMSC NMBC TNM 

OO AO OO AO OO AO OO AO OO AO 

R
el

ea
se

 1
 GUI 227 171 0 0 18 19 0 0 25 25 

Communication 10 10 0 0 2 2 0 0 5 7 
Business 26 15 12 0 5 3 1 0 9 8 
Data 0 0 0 0 0 0 0 0 28 28 
Reusable Elem. 0 0 0 0 0 0 0 0 21 21  

R
el

ea
se

 2
 GUI 227 171 0 0 20 21 0 0 29 29 

Communication 10 10 0 0 2 2 0 0 5 7 
Business 26 15 12 0 5 3 1 0 9 8 
Data 0 0 0 0 0 0 0 0 28 28 
Reusable Elem. 0 0 0 0 0 0 0 0 21 25  

R
el

ea
se

 3
 GUI 227 171 0 0 20 21 0 0 29 29 

Communication 10 10 0 0 2 2 0 0 5 7 
Business 26 15 12 0 5 3 1 0 9 8 
Data 0 0 0 0 0 0 0 0 28 28 
Reusable Elem. 0 0 0 0 0 0 0 0 33 38  

R
el

ea
se

 4
 GUI 233 171 0 0 20 21 0 0 29 29 

Communication 10 10 0 0 2 2 0 0 5 7 
Business 26 15 15 0 5 3 1 0 9 8 
Data 0 0 0 0 0 0 0 0 28 28 
Reusable Elem. 0 0 24 0 0 0 3 0 35 37  

R
el

ea
se

 5
 GUI 233 171 0 0 20 21 0 0 29 29 

Communication 10 10 0 0 2 2 0 0 8 7 
Business 26 15 0 0 4 3 0 0 8 8 
Data 0 0 0 0 0 0 0 0 28 28 
Reusable Elem. 0 0 24 0 0 0 3 0 35 37 

* SC: Skip-Call violation; BC: Back-Call violation; NMSC: Number of Modules with Skip-Call violation; 
NMBC: Number of Modules with Back-Call violation; TNM: Total Number of Modules. 
 

An interesting point to notice is that, in all releases, the number of skip-call in AO 
version is smaller. In fact, many skip-calls in the GUI layer are due to the handling of 
exceptions signaled by data layer, such as ObjectAlreadyInsertedException. 
Besides, there are also some skip-calls to the reusable elements layer, such as basic 
classes. In fact, the GUI layer provides text field components so that the user can 
register a complaint. The Servlets obtain the values from the text fields and 
instantiates a Complain object, resulting in a skip-call from GUI to reusable elements 
layer. In AO version, some exceptions thrown in data layer are treated with aspects, 
which uses AspectJ declare soft construct so that is not necessary to treat some 
exceptions in GUI layer. However, the exception is treated within the appropriate 
aspects, which does not result in skip-call violation because aspects do not belong to 



any layer (as explained in Section 4). This contributes to the smaller occurrence of 
skip-calls in AO than in OO version. 
 
Table 3. Skip-Call and Back-Call Violation Indexes in HW releases.  

 
Release 1 Release 2 Release 3 Release 4 Release 5 

OO AO OO AO OO AO OO AO OO AO 
BCVI(S) 0.972 1 0.972 1 0.972 1 0.950 1 0.978 1 
SCVI(S) 0.575 0.528 0.626 0.581 0.626 0.581 0.624 0.580 0.766 0.58 

* BCVI(S): Back-Call Violation Index; SCVI(S): Skip-Call Violation Index. 
 

The analysis made by this work found an interesting skip-call, that revealed to be 
business code mixed with GUI code. This is a very trivial issue, which occurred in a 
single location, and could be easily fixed by any developer. In this case, a business 
validation is done in a Servlet (GUI layer), whereas it should be done in a business 
layer module. This example shows that using the framework also helps to identify 
possible mistakes that can violate layer principles and might be passed unnoticed 
otherwise. 

In business layer, there are skip-calls to reusable elements layer, because some 
record classes, such as ComplaintRecord, need to call methods from basic classes 
to verify if the object is already inserted in the ComplaintRepository class (data 
layer). In AO version, the number of skip-calls in business layer is smaller. In this 
case, there are some skip-calls to ConcurrencyManager module from business layer 
in OO, but in AO an aspect responsible for synchronization (HWManaged-
Synchronization) takes care of such calls. 

Even though the number of skip-calls in AO is smaller than in OO version, the 
SCVI(S) metric indicates the skip-call violations in AO version is more problematic 
than in OO. The reason is because SCVI(S) is based on the proportion of the number 
of skip-call compared to the total number of calls for each layer. 

Some interesting back-calls are presented in OO version 4. In this case, the 
observer pattern [17] requires that basic classes (reusable elements layer) add a notify 
method, which treats repository exceptions (data layer). In AO version, on the other 
hand, this pattern is implemented with aspects, and therefore there are no back-calls. 
Many of these violations could be solved by a simple refactoring. For instance, the 
skip-calls from GUI modules that treat repository exceptions could be avoided by 
creating business exceptions that can be thrown whenever a repository exception 
appears. This new exception can contain business information and the repository 
exception can be passed as its cause. In fact, all violations can be easily checked by 
using our framework. This is a useful tool during software development for quickly 
identifying layer violations principles that could be passed unnoticed by the developer 
otherwise. 

7   Conclusions and Future Works 

In this work, we analyzed the differences between AOP and OOP in the Health 
Watcher System. In both versions, we could find some architecture layer violations 
that could suggest refactoring in order to conform to the layer architecture. We 
analyzed how AOP mechanisms influence the metrics and we motivate suggestions to 



extend these metrics to analyze the dependency of aspects in layer architecture, 
quantitatively. 

We discussed the problems involving the documentation related to the placement 
of certain modules into layers. In fact, this task is very important, since it directly 
influences the metrics on violation principles. Sometimes this task is not so simple, 
especially when dealing with reusable elements and aspects. 

This study has some important limitations. However, this is an ongoing work and 
we expect to use the feedback from the workshop to improve the following 
restrictions. First, we are not taking into account the aspects dependency, since 
aspects do not belong to any layer. Second, besides the five selected evolution 
scenarios analyzed in this study, we can also evaluate  the others evolution scenarios 
provided in [8], in order to perform conclusions more consistent and representative. 
Finally, we also pretend to apply these metrics in different systems in order to assess 
with more evidences on the impacts of AOP in layer architecture violation principles. 

References 

1. Bass, L., P. et al. Software Architecture in Practice, 2nd edition, Addison-Wesley, 2003. 
2. Buschmann, F., et al. Pattern-Oriented Software Architecture: A System of Patterns. Wiley, 

1996 
3. Cheesman, J., et al: A Simple Process for Specifying Component-Based Software. 

Addison-Wesley, October 2000.  
4. Cormen, T. H. et al. Introduction to Algorithms.  2nd  Edition, MIT Press, 2001.  
5. Dijkstra, E. W. The structure of THE-multiprogramming system. Communications of 

ACM, 11(5):341-346, 1968. 
6. Figueiredo, E. et al. Evolving Software Product Lines with Aspects: An Empirical Study on 

Design Stability. Proceedings of ICSE'08, Leipzig, Germany, 2008. 
7. Gamma, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software. 

Addison-Wesley, Reading, 1995.  
8.  Greenwood, P. et al. On the Impact of Aspectual Decompositions on Design Stability: An 

Empirical Study. Proc. of Ecoop.07, Berlin, Germany, 2007. 
9.  Kiczales, G. et al. Aspect-Oriented Programming. Proceedings of ECOOP’07, LNCS 1241, 

Springer, pp. 220-242, 1997. 
10. Kiczales, G., et al. Getting Started with AspectJ. Communications of the ACM, 44(10):59–

65, October 2001. 
11. Kulesza, U. et al, Quantifying the Effects of AOP: a Maintenance Study. Proceedings of 

ICSM’06, Philadelphia, Sep 2006. 
12. Lobato, C., et al. Evolving and Composing Frameworks with Aspects: The MobiGrid Case. 

In Proceedings of ICCBSS 2008 - Volume 00 IEEE Computer Society, 53-62, 2008. 
13. McClain, G. R., ed., Open Systems Interconnection Handbook. New York, NY: Intertext 

Publications McGraw-Hill Book Company, 1991. 
14. Mezini, M. and Ostermann, K. Conquering Aspects with Caesar. Proc. of AOSD, pp. 90-99, 

Boston, USA, 2003. 
15. Molesini, A., et al. On the Quantitative Analysis of Architecture Stability in Aspectual 

Decompositions. In Proceedings of WICSA 2008 - IEEE Computer Society, 29-38. 
16. Rumbaugh, J., Jacobson, I., and Booch, G. 2004 Unified Modeling Language Reference 

Manual, the (2nd Edition). Pearson Higher Education. 
17. Sarkar, S., et al. A Method for Detecting and Measuring Architectural Layering Violations 

in Source Code. In Proceedings of APSEC. IEEE Computer Society, DC, 165-172.  
18. Soares, S., et al: Implementing distribution and persistence aspects with AspectJ. In 

Proceedings of. OOPSLA '02. ACM, New York, NY, 174-190. 
 


