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Abstract

Equivalence notions for object models are usually too concrete in the sense that
they assume that the compared models are formed by elements with the same
names. This is not adequate in several situations: during model refactoring, when
using auxiliary model elements, or when the compared models comprise distinct
but corresponding elements. So, in this paper, we propose a more abstract and
language-independent equivalence notion for object models. It supports, as desired,
abstraction from names and elements when comparing models. We use the PVS
system to specify and prove properties of our notion. It is illustrated here by
comparing simple models in Alloy, a formal object-oriented modeling language, but
has also been applied for deriving a comprehensive set of algebraic laws for Alloy.
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1 Introduction

Comparing deliverables during the software development process is quite im-
portant. In fact, there are several approaches for comparing the behavior
of programs. For instance, these are useful during maintenance, when we
may wish to replace a given component by a behaviorally equivalent, better
structured one. It is similarly useful to compare design models, which can be
expressed by object modeling languages such as Alloy [Jackson, 2004] or UML
class diagrams [Booch et al., 1999].
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However, current equivalence notions for object models are usually too
concrete. They assume that the compared models are formed by elements
with the same names. This is not adequate in several situations. For exam-
ple, model refactoring changes the structure of models, yet maintaining the
previous semantics. Nevertheless, it is difficult to verify whether the resulting
model preserves the semantics, especially when model elements are replaced by
alternative structures. Furthermore, auxiliary model elements may be used,
which should be ignored when calculating equivalences. Also, when the com-
pared models comprise distinct but corresponding elements, we can easily find
models that are intuitively equivalent but cannot be proved so based on most
equivalence notions.

In this paper, we propose a more abstract equivalence notion for object
models. It supports, as desired, abstraction from names and elements when
comparing models. It is flexible enough for comparing only parts of object
models, by relying on a chosen set of relevant elements— the alphabet—
and a mapping from relevant elements to their equivalent counterparts in
the corresponding model— the view. Furthermore, this equivalence notion
is applicable to any object modeling language, as we regard an object model
as an abstract description of object structure and inter-relationships. We
encoded it in the Prototype Verification System (PVS) [Owre et al., 2001a]
specification language and formally derived several properties by using the
PVS prover [Owre et al., 2001b]. These proofs show the independence of the
notion with respect to the underlying semantics of the object modeling lan-
guage.

Here we illustrate our equivalence notion by comparing simple mod-
els, but it has also been applied for deriving a comprehensive set of al-
gebraic laws for Alloy [Gheyi et al., 2004]. It is also useful for other ap-
plications of semantics-preserving model transformations. For instance, we
used it in an atomization process [Edwards et al., 2004], which transforms
an Alloy model to improve the analysis performance of the Alloy Analyzer
tool [Jackson et al., 2000]. We show that an atomization transformation pre-
serves the semantics of the model, by applying algebraic laws and the equiva-
lence notion proposed here [Gheyi et al., 2004]. Moreover, this notion can be
used to formally derive model refactorings that can be useful for introducing
design patterns [Gamma et al., 1994] into a model. Additionally, a flexible
equivalence notion can be useful, for instance, when we are interested in veri-
fying whether partial models are equivalent. This notion can also be valuable
for comparing components’ specifications. In case they are equivalent, one
component can be replaced by another following approaches described else-
where [Zaremski and Wing, 1997].

The remainder of this paper is organized as follows. Section 2 illustrates,
through an example, the main concepts and intuition behind our equivalence
notion. Section 3 overviews the PVS system, used here to formalize and prove
properties regarding our equivalence notion. Section 4 then formalizes the
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equivalence notion, followed by Section 5, which shows some of its properties.
The following section discusses related work. Finally, Section 7 concludes the
paper.

2 Motivating Example

In this section, we use an example in order to introduce the main concepts and
intuition behind our equivalence notion, which is formally defined in Section 4.
Figure 1 describes two object models [Liskov and Guttag, 2001] of a banking
system. Each box in an object model represents a set of objects. The arrows
are relations and indicate how objects of a set are related to objects in other
sets. For instance, the arrow labeled accounts specifies that each object from
Bank is related to a set of Account objects. The multiplicity symbols are
defined as follows: ! (exactly one), ? (zero or one), * (zero or more) and +

(one or more). Multiplicity symbols can appear on both ends of the arrow. If
a multiplicity symbol is omitted, * is assumed.

Fig. 1. Two Models for a Simplified Banking System

Figure 1(a) shows a model stating that each bank is related directly to a set
of accounts, whereas the model in Figure 1(b) establishes that each bank is re-
lated to a collection, which is directly related to a set of accounts. Here we are
interested in verifying whether they have the same semantics and are, there-
fore, equivalent alternative designs. Considering, as usual, that the semantics
of an object model is the set of valid— that meet all modeled constraints—
assignments (interpretations) for its sets and relations, it is enough to verify
whether any valid interpretation for one model is also valid for the other, and
vice-versa.

For instance, Figure 2(a) shows a valid interpretation for Figure 1(a)
model. This interpretation denotes a banking system containing two banks
(b1,b2) and two accounts (c1,c2). The bank b1 is related to accounts c1 and
c2. Figure 2(b) shows a valid interpretation for Figure 1(b) model. It has the
same banks and accounts of Figure 2(a) interpretation, however the bank b1

is related to the vector v1, which is related to accounts c1 and c2.

This common equivalence notion, which compares whether two models
have the same semantics, is useful, but not flexible enough to compare equiva-
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Fig. 2. Interpretations

lent models with auxiliary elements such as Vector, or with different forms of
representing the same concept, such as accounts in Figure 1(a). The models
in Figure 1 are intuitively equivalent, taking into consideration the relationship
between banks and accounts, which is maintained whether there is an interme-
diate collection or not. However, these models are not equivalent under this
equivalence notion; the interpretations, such as in Figure 2(a), for the model
in Figure 1(a), have, for example, values assigned to accounts, contrasting
with the interpretations, as in Figure 2(b), for the model in Figure 1(b), where
accounts does not appear.

In order to compare models in such scenario, we propose a flexible equiv-
alence notion. Our approach compares the semantics of two object models
only for a number of relevant model elements (sets and relations), abstracting
the values assigned to the others. The set of relevant elements is called alpha-
bet (Σ). The names that are not in the alphabet are considered auxiliary, or
not relevant for the comparison. For instance, suppose that Σ contains only
the Bank and Account names. If both models have the same interpretations
for those names, they are considered to be equivalent under this equivalence
notion. The other names, such as col, Vector and elems, are regarded as
auxiliary, thus not considered when searching for an equivalent interpretation
in the corresponding model. Accordingly, we may now compare the models
depicted in Figure 1, since both models have all elements in the alphabet.

However, sometimes we might have model elements that, although rel-
evant, cannot be compared, since they are not part of both models. For
instance, suppose that we include accounts to Σ. In this case, we cannot
compare the models in Figure 1, since accounts is not part of the model in
Figure 1(b). Also, some structures may have been replaced by other elements
during refactoring activities, even though the resulting model maintains the
original semantics and expresses the same concepts. For instance, in Figure
1(b), accounts is not part of the model, but can actually be expressed as
the composition of col and elems. In those cases, our equivalence notion can
consider a mapping, called view (v), establishing how an element of one model
can be interpreted using elements of another model. Views consist of a set of
items such as n→exp, where n is an element’s name and exp is an expression,
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specifying how the concept n can be expressed in terms of other concepts.
Notice that although the values of auxiliary names are not compared, they
can be used to yield an alternative meaning to relevant names.

In the example, we may choose a view containing the following item:
accounts→col.elems, where the dot operator represents relational composi-
tion. Now we can infer that both models are equivalent. Notice that accounts
is defined in terms of two names that belong to the model in Figure 1(b). Using
this item, we can extend Figure 2(b) interpretation with accounts’ value, as
shown in Figure 3(b); hence we can verify whether all valid interpretations to
one model are also valid to the second model, considering all names in Σ. The
view allows a strategy for representing relevant elements using an equivalent
combination of other elements.

Fig. 3. Interpretation Extended

It is important to mention that two models can be equivalent with respect
to an alphabet and a view, and the choice of a different alphabet or view
yields a different notion. For example, if we take the same Σ (Bank, Account,
accounts) and v containing the following item: accounts→(Bank->Account),
where the ‘->’ operator denotes cartesian product. In this case, these models
are not equivalent, since they may have different values for accounts in some
interpretations. Now suppose that we take Σ to contain the Bank, Account,
accounts and col names. In this case, these models cannot be compared
since it is impossible to provide a view representation for col in the model
showed in Figure 1(a).

Our equivalence notion based on alphabets and views is more flexible since
it supports abstraction from names and elements when comparing models. By
choosing specific alphabets and views, as desired, the developer can choose the
appropriate abstraction level for a given situation. In fact, the usual (concrete)
equivalence notion is a particular instantiation of our notion when we simply
take an empty view and an alphabet containing all names in the model.
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3 PVS Overview

In order to specify our equivalence notion, described in Section 4, we need a
formal specification language offering, at least, first-order logic’s expressive-
ness, besides allowing recursive functions. Moreover, additional features, such
as a relative powerful theorem prover capability in order to avoid manual
proofs, which are error-prone, are of great benefit for achieving correctness.
We choose the Prototype Verification System (PVS), but we could specify our
notion in any other specification language with the features mentioned before.

PVS provides mechanized support for formal specification and verifica-
tion [Owre et al., 2001a]. The PVS system consists of a specification language,
a prover, specification libraries, and several browsing tools. The language is
based on simply typed higher-order logic. Each specification consists of a
collection of theories. Each theory may introduce types, variables, constants,
and may introduce axioms, definitions and theorems associated with the the-
ory. Specifications are strongly typed, meaning that every expression has an
associated type.

Suppose that we want to model part of a banking system in PVS, on which
each bank contains a set of accounts, and each account has an owner and a
balance. Next, we declare a theory named BankingSystem that declares two
uninterpreted types (Bank and Person), representing sets of banks and per-
sons, and a record type denoting an account. An uninterpreted type imposes
no assumptions on implementations of the specification, contrasting with in-
terpreted types such as int, which imposes all axioms of the integer numbers.
Record types, such as Account, impose an assumption that it is empty if any
of its components types is empty, since the resulting type is given by the
cartesian products of their constituents. The owner and balance are fields of
Account, denoting the account’s owner ant its balance, respectively.

BankingSystem: THEORY
BEGIN
Bank: TYPE
Person: TYPE
Account: TYPE = [# owner: Person, balance: int #]

Each theory may import other theories using the IMPORTING clause. By
default, all theories import the prelude library, which provides, among other
things, the boolean operators, sets, equality, and the real, rational, integer and
natural number types and their associated properties [Owre et al., 2001a].

In PVS, we can also declare function types. Next, we declare two functions
types (mathematical relation and function, respectively). There are various
forms to declare functions in PVS. One of them is to just declare its name and
parameters and result types, such as the first function establishing that each
bank relates to a set of accounts. Another way is to also define the associated
mapping, as in the second function, which denotes the withdraw operation.

accounts: [Bank -> set[Account]]

6



Gheyi, Massoni and Borba

withdraw(acc: Account, amount: int): Account =
acc WITH [balance := (balance(acc)-amount)]

The balance(acc) expression denotes the balance of the acc account. The
WITH keyword denotes the overriding operator. In the withdraw function, the
expression containing the WITH operator denotes an account with the same
owner of acc, but with a balance subtracted of amount. Similarly, we can
declare a function representing the credit operation.

Besides declaring types and functions, a PVS specification can also declare
axioms, lemmas and theorems. For instance, next we declare a theorem stating
that the balance of an account is not changed when performing the withdraw
operation after the credit operation with the same amount.

withdrawCreditTheorem: THEOREM
FORALL(acc: Account, amount: int) :

balance(withdraw(credit(acc,amount),amount)) = balance(acc)
END BankingSystem

The FORALL keyword denotes the universal quantifier. The previous quantifi-
cation is over an account and an amount to be deposited and then withdraw.

The PVS proof checker provides a collection of powerful proof commands
to carry out propositional, equality, and arithmetic reasoning with the use of
definitions and lemmas. For instance, the previous theorem can be proved by
applying the expand rule twice, which expands a definition at its occurrence, in
the withdraw and deposit functions. These proof commands can be combined
to form proof strategies [Owre et al., 2001b]. For instance, we can prove the
previous theorem by just applying the grind strategy, which installs rewritings
and successive simplifications.

4 Equivalence Notion

In this section, we formalize our abstract equivalence notion for object models.
As mentioned in Section 2, we consider that two models are equivalent with
respect to an alphabet and a view. An alphabet contains a set of element
names and a view contains a set of mappings, each one relating a name to an
expression, as described by the meta-model in Figure 4, which can be directly
transferred to a PVS specification. The Expression type denotes expressions
from the object modeling language.

After describing alphabets and views, the conditions for equivalence be-
tween models are established. We consider that two models are equivalent if
they have the same set of valid interpretations for all names in the alphabet.
If a model does not contain an relevant name, its interpretations is yielded by
a valid expression in the current model, as defined by a view entry. So, two
models are equivalent with respect to an alphabet and a view, given the view
is valid for both models. Equivalence is simply defined as mutual refinement,
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Fig. 4. Alphabet and View

modulo the view and alphabet, as stated as follows.

equivalent(m1,m2:Model, a:Alphabet,
v:{ vi:View | valid(vi,{ m1,m2 },a) }): boolean =

refines(m1,m2,a,v) ∧ refines(m2,m1,a,v)

Hereafter, we use some mathematical symbols rather than PVS keywords
and functions in order to improve readability. The Model type represents the
models of the object modeling language that is subject to the equivalence no-
tion. In our case, it defines an Alloy model. In PVS, we can declare dependent
types [Owre et al., 2001a], such as the type of the v parameter in the previ-
ous function. It establishes that the relation is only applicable to arguments
for v that are valid views for both models. Thus, models are not compared
when the considered view is invalid. In the following sections, we explain our
notions of valid views and refinement for models.

4.1 Valid View

As mentioned before, a view must satisfy some properties in order to be valid
for a given model and alphabet. A valid view must indicate, in a unambiguous
form, how elements in the alphabet that are not part of the considered model
can be expressed, in terms of alternative elements in that model. We explain
that by using the example in Figure 5, which illustrates the equivalence be-
tween extended versions of the two banking systems described in Figure 1.
Besides each bank being related to a set of accounts, each bank is related to
a set of customers. Moreover, each account is owned by a customer and there
are two kinds of accounts: checking and savings.

In this example, an arrow with a closed head form, such as the one from
ChAcc to Account, denotes a subset relationship. In this case, ChAcc is a
subset of Account. Since the two subsets share an arrow, they are disjoint.
If the arrowhead is filled, the subsets exhaust the superset, so there are no
members of the superset that are not members of one of the subsets. In both
object models representing a banking system, the subsets form a partition:
every member of the superset belongs to exactly one subset.

The first property of a valid view states that it cannot be recursive. As a
consequence, each item (source→target) of a view cannot refer to its source
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Fig. 5. Equivalence Notion of an Extended Banking System

name in the target expression. For instance, we do not allow an item in a
view such as ChAcc→Account & ChAcc, where the ‘&’ operator represents
set intersection. This restriction is due to the fact that a view item must
represent an unambiguous mapping for an element in the alphabet, which is
impossible for a recursive item, which tries to map an element to itself. It
is important to mention that we allow a view containing the following items:
ChAcc→Account and Account→ChAcc. Our notion ensures that the value
for each name must be yielded by a single mapping, avoiding mutual recursion.

Another property is that a valid view only contains items that map names
in the alphabet. Suppose that Σ in Figure 5 consists of the Bank, Account,
Customer, owner, custs and accounts names. We do not allow mappings for
ChAcc, which is not in the alphabet, since its values are not used to compare
the models. For example, a view containing the ChAcc→Account − SavAcc
mapping, where the ‘−’ operator represents set difference, would be invalid
taking into consideration the previous Σ. Notice that the first two properties
of a valid view previously described are model-independent.

hasOnlyItemsForAlphabet(a:Alphabet, v:View): boolean =
∀ it:items(v) | source(it) ∈ names(a)

Finally, the last property establishes, as described in the following PVS
function, that the alphabet’s names not in the model must be mapped by the
view. So, we will be able to yield their values in the model. However, the
view must have exactly one valid item for that name and the model under
consideration in order to avoid inconsistency problems. For instance, the
right-hand side model of the banking system in Figure 5 does not contain the
accounts relation, despite of its presence in the alphabet presented in the
previous example. Consider a view with two mappings: accounts→col.elems
and accounts→custs.˜owner, where the ‘˜’ operator yields the transpose of a
relation. Notice that both mappings can be used to express accounts’s value
since the expression of each item only contains names that belong to the right-
hand side model of Figure 5. Therefore, both expressions must be semantically
equivalent in the model, in order to maintain consistency of accounts’ value.
In order to avoid this additional complexity, we establish that for all names in
the alphabet that are not in the model, the view must have exactly one item
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that can express its value.

hasMappingsForAlphabet(m:Model, a:Alphabet, v:View): boolean =
∀ n:names(a) | n /∈ names(m) ⇒ oneValidItem(n,m,v)

We define an item being valid for a model if the item’s expression only
contains names in the model, and it must be well-typed in the model. Observe
these three properties of a valid view include only syntactic conditions; hence
it is straightforward to automatically check whether a view is valid for a model.

4.2 Refinement

As previously defined, two models are equivalent when they refine one another
with respect to a set of important names and mappings. We then formalize our
notion of refinement. Given two models m1 and m2, we say that m2 refines m1 if,
for each interpretation that satisfies m1’s semantics, there exists an equivalent
interpretation that satisfies m2’s semantics, for all names in the alphabet.
Consequently, we consider that the interpretations are equivalent with respect
to an alphabet and a view, possibly abstracting names and elements, as shown
next.

refines(m1,m2:Model, a:Alphabet,
v:{ vi:View | valid(vi,{ m1,m2 },a) }): boolean =

∀ i1:semantics(m1) | ∃ i2:semantics(m2) |
equivalentMappings(m1,m2,i1,i2,a,v)

Each Interpretation has a map relation, which maps names to values, as
shown in the following PVS fragment. A value is modeled by the Value type.

Interpretation: TYPE = [# map: [Name->set Value] #]

The semantics function yields all valid interpretations of a model, as
defined according to the object modeling notation in use. Hereafter, an inter-
pretation, which satisfies all model’s constraints, is considered valid for this
model. As mentioned before, in the refines function, the valid interpreta-
tions of both models are compared only with respect to the names in the
alphabet. That is, both interpretations should assign the same values to each
name in the alphabet, as stated by the following function.

equivalentMappings(m1,m2:Model, i1,i2:Interpretation, a:Alphabet,
v:{ vi:View | valid(vi,{ m1,m2 },a) }): boolean =

∀ n:names(a) | mappings(m1,a,n,i1,v) = mappings(m2,a,n,i2,v)

But when such a name is not in one of the models, it is certainly not mapped by
the corresponding interpretation; so we cannot directly compare the assigned
values. In those cases, we first apply to the interpretation the adequate view
item in order to get the indirectly assigned values for that name (extended
interpretation).

These values should then be the same assigned to that name by the other
interpretation, otherwise they are not considered equivalent. This is formal-
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ized by the mappings function, which is described next, and yields the values
for the n name within m, for the i interpretation. It computes the value of n in
i, whether it belongs to the considered model or not. In the latter situation,
the function applies a view before yielding the values for n.

mappings(m:Model, a:Alphabet, n:Name, i:Interpretation,
v:{ vi:View | valid(vi,{ m },a) }): P Value =

if(n ∈ names(m)) then map(i)(n)
else map(applyView(i,getViewItem(n,m,v)))(n)

The applyView function takes an interpretation and a view item and yields the
same interpretation received as argument, but with an additional mapping for
the name of the item received as a argument and its value. It actually extends
an interpretation in such a way that it can be directly compared with another
one.

applyView(i:Interpretation, v:ViewItem): Interpretation =
i WITH [map := map(i) WITH

[source(v) |-> evalExpression(target(v),i)]]

The application of the view always works because we assume it is valid for
each model. Therefore, there is exactly one valid item for each name that does
not belong to the model in consideration.

5 Properties of the Equivalence Notion

First of all, we use PVS to prove that our notion is an equivalence relation
for a fixed alphabet and view (it is reflexive, symmetric and transitive). It
important to stress that the following properties are independent of any ob-
ject modeling notation. In order to show an example of the theorems used to
prove this property, the following states that our equivalence relation is sym-
metric. In order to improve the readability of the theorems in this section,
all the universally quantified views must be valid for all models involved. For
instance, in the next theorem, v is a valid view for the m1 and m2 models.

equivalentSymmetry: THEOREM
∀ (m1,m2:Model, a:Alphabet, v:View) |

equivalent(m1,m2,a,v) ⇒ equivalent(m2,m1,a,v)

After proving these basic properties, we proved other general properties
using PVS. Those properties are specially useful when applying a sequence of
semantics-preserving model transformations [Gheyi et al., 2004], which lead
to a chain of equivalent models. This might be necessary, for instance, to
introduce a design pattern [Gamma et al., 1994] into a model. In these sit-
uations, sometimes we might refactor models and only after a while notice
that we have not chosen the appropriate alphabet and view. We might, for
example, need an extra item in the view. One solution to this problem may be
restarting the refactoring from scratch, considering the correct alphabet and
view. However, this is very time consuming, since it involves calculating the
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semantics for each model or reapplying several transformations. The proper-
ties introduced in this section constitute a more appropriate approach. These
properties are general laws about our equivalence notion, establishing how we
can manipulate views and alphabets while preserving the equivalence. In the
following sections, we show some laws about our notion.

5.1 Decreasing a View

Figure 6 shows the banking system models described in Section 2. Suppose
that both models on the top are equivalent considering a view v1 containing
only the mappings accounts→col.elems and Account→ChAcc + SavAcc (the
‘+’ operator denotes set union), and an alphabet Σ containing only the Bank,
Account and accounts names. Suppose that we have not chosen the appro-
priate view, since Account→ChAcc + SavAcc is not used in the equivalence
of these models; it would be desirable to remove this item from v1.

Fig. 6. Changing a View

In order to assure that both models are also equivalent with the reduced
view, we need to check that the new view v2 is still valid for both models
and that each model refines the other. In order to v2 be valid, it cannot be
recursive. Since M1 and M2 are equivalent in v1 and Σ, v1 must be a valid view
for both models; hence all mappings are not recursive. So, v2 is not recursive
because its mappings are all in v1. The second property of a valid view makes
sure that the view only maps elements in the alphabet. Since v1 is a valid
view, it only maps mappings in the alphabet. This property is preserved when
removing an item of the view.

The third property of a valid view ensures that there is exactly one valid
item for each name in the alphabet that does not belong to the models. Since
v1 is a valid view for M1 and M2, it already has mappings for all names of
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M1 and M2 in the alphabet. Therefore, we must guarantee that if the name
mapped by it, which is the item to be removed, is not included into one of
the models, for instance M1, then the expression mapped by this name cannot
be evaluated in M1, containing at least one name that does not belong to M1.
Accordingly, this item must not be valid for M1. This constraint ensures that
it is not used when comparing interpretations, hence preserving the property
that the view has only one valid item for each name in a model.

Now we must check that the refinement relations hold with respect to v2
too, so that we can prove that the models are still equivalent under Σ and v2.
Notice that the refinement relation just compares values of the names in the
alphabet. Since the previous constraints ensure that the removed item is not
used by the comparison, we guarantee that the refinement relations hold with
v2 as well. This is the corresponding theorem proved in PVS.

decreasingView: THEOREM
∀ (m1,m2:Model, a:Alphabet, v:View, it:ViewItem) |

equivalent(m1,m2,a,v) ∧
¬ validItem(it, { m1,m2 }) ⇒

equivalent(m1,m2,a,v WITH mappings := mappings(v)-{ it })

5.2 Increasing a View

Similarly, we proved a theorem for increasing a view. We just have to check
the same properties of decreasing a view, and two other constraints verifying
that the new item cannot be recursive and maps an element of the alphabet.
Observe that these constraints imply that we can only introduce an item that
is not used to compare the corresponding models, as stated by the following
theorem.

increasingView: THEOREM
∀ (m1,m2:Model, a:Alphabet, v:View, it:ViewItem) |

equivalent(m1,m2,a,v) ∧
source(it) /∈ names(target(it)) ∧
source(it) ∈ names(a) ∧
¬ validItem(it, { m1,m2 }) ⇒

equivalent(m1,m2,a,v WITH mappings := mappings(v)∪{ it })

Observe that they have syntactic conditions that can be easily automated by
a tool when decreasing or increasing a view. Moreover, these constraints just
involve the item to be removed or added.

5.3 Decreasing an Alphabet

Figure 7 shows the same banking system models described before with the
same view and alphabet. Now suppose that we do not want to consider Bank
in the alphabet (Σ = {Account, accounts}). When decreasing an alphabet,
v still must relate mappings in the alphabet. Since we do not change the
previously valid view, and both models are equivalent in a larger alphabet,

13



Gheyi, Massoni and Borba

intuitively they are still equivalent in a subset of it; the more abstract the
model, the easier to compare whether they are equivalent.

Fig. 7. Changing an Alphabet

decreasingAlphabet: THEOREM
∀ (m1,m2:Model, a1,a2:Alphabet, v:View) |

equivalent(m1,m2,a1,v) ∧
names(a2) ⊆ names(a1) ∧
hasOnlyItemsForAlphabet(a2,v) ⇒

equivalent(m1,m2,a2,v)

Considering the view and alphabet mentioned before, both models are still
equivalent. However, if we choose to remove Account from the alphabet, we
cannot remove it since the view contains an item for it. In this case, we
first have apply the law to decrease the view, removing the item for it; then
we can apply the law to decrease the alphabet. It is important to observe
that the conditions for decreasing a view are also syntactic. For increasing an
alphabet, we need some semantic conditions, since we have to make sure that
both models have the same values for the names added in the alphabet.

These properties are important in a chain of equivalent models while refac-
toring them since there is no need to compute the semantics of each model
again in the chain. We have just to check some syntactic conditions in the view
and alphabet involved. As a future work, we intend to prove other properties
of the equivalence notion, such as compositionality.

6 Related Work

Related work [Nuka and Woodcock, 2004] has been carried out for providing
a formal semantics and laws to the Alphabetized Relational Calculus (ARC),
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which adds a theory of alphabets to relational calculus [Tarski, 1941]. Each
ARC specification contains an associated alphabet that is equivalent to our
notion of alphabet. They used an equivalence notion for comparing models in
the laws, stating that two ARC models are equivalent if they have the values
for all names in the specification. Their equivalence notion can be used to
compare ARC models with different names. In order to do that, they give any
possible values to the names that are not in each model; in fact, they only
compare the values that are in common of both models. Our notion is similar
to theirs except that we can use it to compare models with different element
names.

A similar approach [Borges, 2004] proposes and formalizes a simplified
equivalence notion for Z specifications [Spivey, 1989]. They show how to re-
fine a model with an association by another with an attribute, where both
models have the same names. They prove this refinement using the Z/EVES
theorem prover [Saaltink, 1997]. We believe that our equivalence notion can
also be seen as a traditional refinement of Z specifications, as proposed by
the authors. However, our refinement relation must be symmetric, differently
than the proposed by them [Borges, 2004].

A refinement notion for UML diagrams [Booch et al., 1999] is proposed
elsewhere [Liu et al., 2004]. They propose refinements not only considering
structural views of software, as our work, but also behavioral views. They
state that one model refines another if the former has a more predictable
behavior than the latter one. Since our equivalence notion deals only with
structural models, we compare models with respect to their element names in
spite of their behavior.

Transformation rules [Gogolla and Richters, 1998] have been proposed for
UML class diagrams [Booch et al., 1999]. They state when two class diagrams
are equivalent. One distinction from our work is that our equivalence notion is
necessarily symmetric. Further, some of the rules compare models with differ-
ent names. Nevertheless, they do not define a general equivalence notion stat-
ing when two class diagrams are equivalent. This notion is based on an infor-
mal UML semantics. Therefore, a few transformation rules may not preserve
semantics in some situations, as previously described [Gheyi and Borba, 2004].

A previous version of the equivalence notion proposed here is described for
comparing Alloy models [Gheyi and Borba, 2004], which may have different
elements. However, this previous notion, which uses an implicit alphabet,
is limited since it actually compares only elements that belong to both Alloy
models. Moreover, the notion proposed here is defined for any object modeling
notation, differently than the related approaches mentioned in this section.

A similar work proposes laws of programming for Refinement Object-
Oriented Language (ROOL) [Borba et al., 2003], which is a language sim-
ilar to Java [Gosling et al., 1996]. This related work is similar to ours in
the sense that they propose an equivalence notion for programs. They state
that two programs are equivalent if each program refines the other. More-
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over, this refinement relationship is based on the weakest precondition seman-
tics [Cavalcanti and Naumann, 2000] of the main commands. Our equivalence
notion deals with abstract object models, rather than programs.

Another work proposes refactorings [Fowler, 1999] for Java programs. Each
refactoring changes the internal structure of the software to make it easier to
understand and cheaper to modify without affecting its observable behavior
of the software [Fowler, 1999]. The author guarantees that two programs have
the same behavior if they do not have failures in a test suite. Our equivalence
notion deals with models instead of code. Moreover, our notion can be used
to compare models with respect to the relevant structure, similarly proposed
by the author which compares the observable behavior of the software.

7 Conclusions

In this paper, we propose an abstract equivalence notion for object models.
It supports abstraction from names and elements when comparing models.
Moreover, it could also be useful for comparing parts of models. Our equiv-
alence notion compares only semantic interpretations for model elements in
an alphabet, and elements from this alphabet do not need to be in the con-
sidered model, since they are expressed in terms of other model elements by
the views. We also show some useful properties, proved by means of the PVS
prover, which can syntactically check whether previous equivalent models are
still equivalent when alphabets and views are changed.

Previously, we proposed an equivalence notion described in Al-
loy, first only for Alloy models [Gheyi, 2004]. Since the Alloy Ana-
lyzer [Jackson et al., 2000], which is a tool used to analyze Alloy models, is not
a theorem prover, we manually proved that our notion is actually an equiv-
alence relation. However, using Alloy as the framework for specifying any
modeling language can be particularly interesting, since we are able to use the
tool before proving a property. We specified each property of the equivalence
notion in a logical assertion, then asking the tool to verify whether the asser-
tion is valid for a predefined scope. The counterexamples generated by the
tool help us understanding the equivalence notion. Only after the tool does
not give any counterexample, we started to prove manually, later by using
PVS.

This equivalence notion can be useful in several contexts, such as formal-
ization of the atomization process in Alloy’s analysis [Edwards et al., 2004]
(along with modeling laws), derivation of formal refactorings and introduc-
tion of design patterns [Gamma et al., 1994] into models, and comparison of
components’ specifications [Zaremski and Wing, 1997]. Although our equiv-
alence notion was initially defined in terms of the Alloy modeling language,
allowing the proof of modeling laws for Alloy [Gheyi et al., 2004], this notion
is abstract enough to be applicable to other object modeling languages, such as
the UML [Booch et al., 1999]. In fact, proofs in PVS show the independence
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of the notion with respect to the semantics of the modeling language.

Considering future work, we intend to derive and prove a number of
additional properties of this equivalent notion, in order to ensure that our
notion is widely applicable, and make the proof process more intuitive to
modelers. For instance, it is desirable to prove the compositionality prop-
erty of the equivalence notion. In addition, we aim to relate this equiv-
alence notion to the classic notion of data refinement, as employed else-
where [Woodcock and Davies, 1996].
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