An Estimation Model for Test Execution Effort

Eduardo Aranh&’ Paulo Borba
ehsa@cin.ufpe.br phmb@cin.ufpe.br
lInformatics Center 2Mobile Devices R&D
Federal University of Pernambuco Motorola Industrial Ltda
PO Box 7851, Recife, PE, Brazil Rod SP 340 - Km 128,7A - 13820 000
+55 81 2126-8430 Jaguariuna/SP - Brazil
Abstract estimate the required effort to execute a given set of tests

(test suite) and to justify requests for more resourcesor fo

Testing is an important activity to ensure software qual- extending deadlines.
ity. Big organizations can have several development teams In addition, Model-based testing (MBT) has become
with their products being tested by overloaded test teams. | popular in recent years. MBT is a technique for generat-
such situations, test team managers must be able to properljing test cases from system specifications [15]. Using MBT,
plan their schedules and resources. Also, estimates for thea high number of test cases can be automatically generated.
required test execution effort can be an additional criberi ~ However, it may not be possible to execute all generated test
for test selection, since effort may be restrictive in piget ~ cases, since test resources are limited. For this reasin, te
Nevertheless, this information is usually not available fo cases are usually selected using some criteria such as the
test cases never executed before. coverage metrics [19] [16].

This paper proposes an estimation model for test execu- An additional criterion that can be useful for test selec-
tion effort based on the test specifications. For that, we de-tion is the execution effort, since effort may be restriefir
fine and validate a measure of size and execution complexitypractice. However, in this case, we need a model that esti-
of test cases. This measure is obtained from test specificamates the effort to execute each test case individually) eve
tions written in a controlled natural language. We evalu- for test cases never executed before.
ated the model through an empirical study on the mobile ~ Several software development estimation models have
application domain, which results suggested an accuracy been proposed over the years. However, these models are

improvement when compared with estimations based onlynot appropriate to estimate the effort for executing a given
on historical test productivity. set of test cases, since their estimations are based on soft-

ware size and development complexity, instead of test size
and execution complexity.

In this work, we address the problem of supporting test
managers to plan their schedules and resources. We propose
a test execution effort estimation model that is based dn tes

In competitive markets, such as the mobile phone mar- specifications. We define and validate a measure of test size
ket, companies that release products with poor quality mayand execution complexity. This measure is obtained from
quickly lose their clients. Consequently, companies sthoul test specifications written in a controlled natural languag
ensure that their products conform to the clients’ expecta-Also, we want to provide execution effort estimates about
tions. A usual activity performed to ensure software qualit generated test cases as an additional criterion for test-sel
is testing. tion.

Software testing is being considered so important that The rest of this paper is organized as follows. In Sec-
organizations can assign teams only for test activities. Fo tion 2, we discuss about existent software estimation mod-
example, a big organization may have several developmenels. After, Section 3 introduces a controlled natural lan-
teams with their products being tested by few test teams. Inguage used for specifying tests. In Section 4, we propose a
such situations, test managers must be able to properly plameasure of test size and execution complexity and present
their schedules and resources. They must should be able ta model for estimating test execution effort based on this

1. Introduction

measure. After that, Section 5 presents the results of an The test specifications considered by this work are writ-
empirical study on the mobile application domain. Then, ten using a CNL described here. In a simplified way, each
we discuss about the cost of using our model in Section 6.sentence (test step) in the specification conforms to the fol
Finally, our conclusions are presented in Section 7. lowing structure: a main verb and zero or more arguments.
Table 1 shows an example of test procedure written in a con-
trolled natural language defined for the mobile application

2. Existing SW effort estimation models !
domain.

During the last few decades, several models and tech-
nigues were created for estimating size, complexity and ef-
fort on software development. The surveys presented in [2],
[12] and [7] summarize the software estimation evolution so
Egdsei)sn’;eo;itshceursesls(tjer(]jearlgd renowned software estimation| Step| Description | Expected Results |

The first model discussed here is Function Points Analy-| 1 | Startthe message cen-The phone is in mes;
sis (FPA) [6]. FPA gives a measure of the size of a system by ter. Sage center.. i
measuring the complexity of system functionalities oftere | 2 | Select the new mes-The phone is in mes;
to the user. The size of system is determined in function sage option. Sage composer.
points (FP), a unit-of-work measure, and this count is used| 3 | Insert a recipient ady The recipients field is
for estimating the effort to develop it. dress into the recipiy filled.

The Use Case Point Analysis (UCP) [11] is an extension ents field. _
of FPA and estimates the size of a system based on use cage 4 | Insert a SMS content The message body |

Table 1. Example of a test procedure written
in a controlled natural language.

)

specifications. Both UCP and FPA regard the development

into the message body

.populated.

complexity of a system, while our proposed model regards
the size and execution complexity of test cases.
The Constructive Cost Model (COCOMO) [3] converts

Send the message.

The send messag

transient is displayed.

The message is sent.

size measures such as FP and SLOC (source lines of code)

into effort estimation for developing systems. Its formula The verb identifies the action of the test step to be per-
uses effort multipliers and scale factors, and their vailes formed during the test. The arguments provide additional
defined according to the characteristics of the developmentnformation about the action represented by the verb. For
environment, teams and processes used in the project. jnstance, the senten&art the message centeas the verb
Similar to UCP, Test Point Analysis [13] is a method for start (action of starting an application) and the required ar-
estimating the effort required to perform all functionatte gumentthe message centéapplication to be started).
activities based on use case points. This model estimaesth 1he cNL can have its lexicon and grammar extended
effort required for all test activities together, such afirde ¢, specific application domains. For example, the list of
ing, implementing and executing all the tests. For example, yossible verbs and arguments may be different between the
it is not possible to estimate only the effort to execute test opile and the Web application domains.
cases that were automatically generated. The context of this work is related to testing mobile ap-
plications for Motorola Brazil Test Center site at the Infor
matics Center/UFPE. Hence, in this work, the considered
controlled natural language reflects this domain [18] [9].
Tests are usually specified in terms of precondition, pro-
cedure (list of test steps with inputs and expected outputs)
and post-condition [8]. These specifications are commonly
written in natural language, often leading to problems such
as ambiguity, redundancy and lack of writing standard. All In this section, we present a new test effort estimation
these problems make difficult test understanding and exe-model developed during our research. As illustrated by Fig-
cution complexity estimation. Nevertheless, they can be ure 1, the input of our estimation model is a test suite and
avoided using controlled natural languages. the output is the estimated effort in man-hours required to
A controlled natural language (CNL) [17] is a subset of execute all tests in the suite.
natural language with restricted grammar and lexicon in or- Our test execution effort estimation model works as fol-
der to have sentences written in a more concise and standartbws. First of all, (1) we analyze each test case in the suite.
way. This restriction reduces the number of possible waysDuring this analysis, (2) we assign to each test case a num-
to describe an event, action or object. ber of execution points, a unit of measure defined in this

3. Test specification language

4 Test execution effort estimation model

3\ that a test; can bebigger thana testt, only if ¢; is not
§> 880 similar tot,. This assumption reflects the difficult to intu-
itively compare test cases considered similar with resjgect
their size and execution complexity.
§> 445 >§> 2,674 E> 235 Here, we ca_ll T as thg set of a_lll ex@sting test cases. The
, set of all identified empirical relations is called R. Ther, w
Total Estimated
(ep) Effort call (T, R) as the empirical relation system for the attrébut
(man-hours) test size and execution complexity [5].
§> 700) To measure test size and execution complexity that is
characterised by (T, R), we must define a mapping M of (T,
EXGC“‘(‘;’;‘)%‘“‘S R) into (E, P), in which test cases in T are mapped into num-
bers (called execution points) in E and empirical relations
in R are mapped to numerical relations in P. In this way, we
can validate our measure demonstrating empirically theat th
mapping is valid for the attribute size and execution com-
plexity.
The set E of all possible numbers of execution points

.))) consists of the nonnegative integers and the set of nunherica
work for describing the size and execution complexity of \gjations P consists of the relations, and=,,, defined as
test cases. follows.

After that, (3) we sum all the execution points measured
from the analyzed test cases. This total describes the size _ | false ifa=eb
and execution complexity for the whole test suite. Finally, Zep b= { a>0b otherwise
(4) we estimate the required effort in man-hours to execute
all tests in the test suite based on the total number of execu- true if 9= <« P gnglectl « p
tion points. a~ep b= { false otherwise . oo
Next, we present the details about this estimation model.

Test Suite

s

—
[0]
17}
28
o
jo)
[
(o]
»

Figure 1. Estimating the effort to execute a
test suite.

. . . As we can see, the expression>., b is equivalent to
4.1 Test size and execution complexity the expression > b, except in the case of similar numbers
(=.p) Of execution points: andb. The definition of~,,

Our estimation model is based on the size and executionshows that numbers andb are considered similar if the
complexity of test cases in a test suite. Test size means the\psolute difference between them is less than or equal to
amount of steps required to execute the test. Test executiopercent ofa and ofb. The value ofp is discovered empir-
complexity is related to the relationship (complexity of in ically, as discussed later in Section 5.3. The relations of R
teraction) between the tester and the tested product eghjuir and P are mapped following the order of their presentations
during the test. These definitions are adaptations of the ide in this section.
of size and development complexity for software products |n practice, the execution point count of a test case gives
[14] [4] [3]. _ _ ~ us aquantitative reference about its size and execution com

Slnce_we are proposing a measure of size and e_XGQl_Jtlorplexity. For instance, a test case rated with 700 execution
complexity of a test case, itis important to have an inteitiv points is bigger than others rated with 590 and 350. In ad-
understanding of this test case attribute. This leads Ugto t dition, it allows us to better compare test productivity af c
identification of empirical relations between test caseébwi pacity. For example, a tester that executed 5 tests ratéd wit
respect to their size and execution complexity: 500 execution points each one is faster than another that ex-

o o ecuted 15 tests rated with 100 execution points during the
e The relationbigger thanindicates that one test has a ggme amount of time.

bigger size and execution complexity than another.

e The relatiorsimilar toindicates that one testhas asim- 4-2 The measurement method

ilar size and execution complexity when compared to
another. This section presents how we measure the size and exe-

cution complexity of a test case. All required informatien i

These relations were defined intuitively by analysing extracted from the test specification. Although not esaénti
how experts create associations between test cases with rewe consider in this paper that test specifications are wiritte
spect to their size and execution complexity. We considerin the CNL discussed in Section 3. The CNL simplifies the

Test Case System Characteristics Historical Data
Exercised by the Test Step

o——=t(a)[c] |
— Dol

D 1 1280 380
2 5070 1,700 Execution Points

L]A[H =L [A]H] . p— ” of the Test Suite:
w— @ @ Levels 2,674
30 - 60 TOTAL | 110,416 34,778 D
Contribution of Each Test Step: @ :

Estimated Effort:

Conversion Factor 347 8,476.58 s
(CF = Effort / EP) ' =

23.5 man-hours

Test Effort (s) EP
Suites

350 e 220 e 175

Execution Points of @
the Test Case: 880

Figure 3. Using execution points and a con-
version factor to calculate test execution ef-
fort.

Figure 2. Assigning execution points to a test
case.

use of our model and also efficiently supports a high level
of automation of our measurement method.

Figure 2 illustrates how our measurement method works.
First, (a) we individually analyze each test step of the test
specification. This step by step analysis was defined with
the objective to support the method automation. We analyze
each test step according to a list of characteristicstqC =~ 4-3- Test effort estimation
C.).

These characteristics represent some general functional The execution point count of a test suite gives us a refer-
and non-functional requirements exercised when the testence about its tests size and execution complexity. The es-
step is executed. Examples of possible characteristics aréimated effort is calculated based on this information and a
number of navigations between screens, number of pressedonversion factor (CF). The conversion factor represésts t
keys and use of network. The list of characteristics may notrelation between test execution effort and execution gpint
be the same for different application domains, as discussedvhich varies according to the productivity of the test team.
later in Section 4.4. The conversion factor is given in seconds per execution

Each characteristic considered by the model has an im-point, indicating the number of seconds required to exe-
pact in the size and execution complexity of the test and (b) cute each execution point of a test case. For calculating
this impact is rated using an ordinal scale (Low, Average the conversion factor, testers can measure the test size and
and High). Later, Section 4.4 presents how to create guide-execution complexity of several test cases. Then, the exe-
lines to help us to objectively choose the more appropriatecution time of the tests should be collected from a histbrica
impact level for each characteristic. database (if available) or by executing them.

After that, (c) we assign execution points for each char- As illustrated by Figure 3, (f) the conversion factor is
acteristic according to its impact level. The objectivesier calculated by dividing the total effort by the total numbér o
to transform the qualitative rate (impact level) into a quan execution points. This information is then used for estimat
titative value. ing the execution effort of new test suites, we just need to

For instance, a characteristi¢ €ted with the Low value (g) multiply its number of execution points by the conver-
could be assigned to 30 execution points. However, a moresion factor.
relevant characteristic rated with the same Low value may For instance, a test manager may verify a conversion fac-
be assigned to a higher number of execution points. Sectiortor of 3.5 seconds per execution point. Using this value, a
4.4 also discusses about guidelines provided for assigningnew test case with 120 execution points is estimated to be
the correct value for each possible characteristic value. executed in 7 minutes. Similar approach is used by other

To calculate the total number of execution points of a test existing estimation models [6] [11] [13] [14].

step, (d) we sum the points assigned for each characteristic
Then, (e) we measure the size and execution complexity of
a test case by summing the execution points of each one of
its test steps.

In this approach, we assume that the test productivity anduse of tools or specific hardwares and other characteristics
environment conditions are stable over time. For example,that may impact the size or the execution complexity of a
improvements in the test team, tools or environment may test case. All this process is anonymous and, in each round,
change the test productivity and consequently the conver-a moderator provides the participants with a summary of the
sion factor. In this case, the conversion factor should be experts’ decisions and their reasons for that.
recalculated using data collected after the improvements. An alternative technique that can be used to identify rel-

In summary, the conversion factor used in the estima- evant characteristics is the survey. When we have several
tions should properly represent the current situationdi a testers in the organization, we can survey them about the
dition, the conversion factor should be calculated for each relevant characteristics using questionnaires or otheegu
different test team, test type or tested product, since theyinstrument.
may have significant differences in productivity.

Guidelines
4.4 Model configuration
Once the experts have defined the list of characteristics to

Our proposed test execution effort model should be con-be considered by the estimation model, the experts continue
figured according to the target application domain in order attending the Delphi panels, but with different objectives
to maximize the estimation accuracy. This section presents First, they have to define the possible values that each

what, Why and how to Configure our estimation model. identified characteristic may have. For example, if the type
of camera is selected as a relevant characteristic forigest s
Controlled natural language and execution complexity, its possible values would be au-

tomatic shooting, required manual zoom, required use of

Test specifications written in CNL are the input of our flash, etc.
model. As shown in Section 3, the CNL grammar and After identifying the possible values of each selected
lexicon are defined according to the target application do- characteristic, the experts group these values into timee i
main. For example, on the mobile application domain you Pact levels (low, average and high). The choices are made
have the vertakethat accepts the terpictureas argument. ~ based on the impact of each value in the test size and ex-
Hence, a possible test stepTake a picture ecution complexity. This part of the guideline will help us
The list of verbs and possible arguments can be con-t0 objectively choose the more appropriate impact level of
structed by analysing requirement documents and existing? test step according to each characteristic.
test specifications. Besides, new verbs and terms may arises Finally, the experts must define for each characteristic
over the time due to the specification of new requirements, the number of execution points to be assigned for each one
technology changes, etc. The CNL grammar and lexicon isOf its impact levels. The experts proceed as follows. Each
stored in a database that can be updated whenever necegharacteristic is Welghted from 1to 10. These WEIghtS indi-

sary. cate the significance of each characteristic for the test siz
and execution complexity.
System characteristics Then, the experts give a weight from 1 to 10 for the lev-

els Low, Average and High of each characteristic. These
During the test execution effort estimation, all test steps Weights_ indicate the significance of each level for the ch_ar-
are analyzed according to a list of characteristics. These@Cteristic. In general, values 3, 5 and 8 are used to weight
characteristics represent some general functional and nonthe levels Low, Average and High, respectively. After that,
functional requirements exercised when the test step is exeth® number of execution points assigned for a level is cal-
cuted. They may depend on the target application domain. culated by multiplying its weight by the weight of its char-
We use the Delphi method [10] for obtaining a consensus &cteristic. _ _
from a group of experts about the list of relevant character- After ending the first version of the model, one or two
istics. Examples of possible characteristics are the numbe €xPerts are enough for updating the guidelines when neces-
of navigations between screens, the number of pressed key$a/y-
and the use of network.
The Delphi panel consists of 3 to 7 experienced testers4.5 Model automation
invited from different teams for attending two or more
rounds. In each round, they have the opportunity to add One of the objectives of this work was to develop an es-
or remove characteristics from the list. timation model that can be automated. This automation is
Examples of real test cases are provided as a source formportant for supporting the development of new test gen-
identifying types of test actions, software configurations eration and test selection tools.

In practice, companies may not be able to execute all culated using historical averages of test execution tiraes,
test cases generated by such tools, since its resources ample and common estimation method used in practice.
limited. For this reason, the test execution effort shodd b Following the goal-question-metric approach [1], we re-
taken in consideration for test selection. A test genematio fined our goal for this empirical study to the questions pre-
tool, for instance, can consider a minimal requirement cov- sented next:
erage and a maximum execution effort as its stop criteria.

The use of CNL for specifying tests supports the devel-
opment of an estimation tool that automatically reads and

interprets these specifications. In addition, all the infar Q2: Is the average percentage of estimates within 20% of

Q1: Is the average estimation error lower when using our
model rather than using historical execution times?

tion required for using the model, such as the list of charac- the actual values higher when using our model rather
teristics, guidelines and the conversion factor can bedtor than using historical execution times?

in a database. Actually, the CNL grammar and lexicon is S))

also stored in the database [18]. The answer for Q1 will indicate if the use of our estima-

During the analysis of the first test cases, the estimationtion model results in a small error when regarding all esti-
tool will ask the user to rate the characteristics of each tes Mates together. In its turn, the answer for Q2 will indicate
step. This information is stored in the database. Since thell the number of estimates within 20% of the actual values

use of CNL reduces the number of possible ways to describdNcreased when using our estimation model. _

a test step, it is reasonable that the same test step (or very FOr the study, we selected 33 test cases of a messaging
similar ones) occurs many times in the same test case an@plphcat}on feature for mobile phone. These test cases were
in different ones. For this reason, the necessity for manual"V'itten in a controlied natural language and their size and

assistance during the estimations tends to reduce as mucfoMplexity were measured using our method.
as you use the tool. We wanted to compare the precision of estimates made

At the moment this paper was written, only an initial pro- using historical information with estimates made using our

totype was created for validating the model automation ca-M0del. As both approaches require information related to
pability. test productivity, we split the collected execution time®i

two sets of data, one for training and other for testing. The
tests were randomly split, where the training set contained
approximately 65% of the tests. All test cases were then
executed by a tester.

This section presents the empirical study we run using The execution times were collected and stored in a

our test execution effort estimation model on the mobile spreadsheet for analysis. We used the test execution times
application domain. First, we configured our estimation of the training set to calculate:

model for the target domain. After that, we applied the es- o o
timation model in a controlled experiment. Then, we vali- ® The average test execution time (for the historical data
dated the test size and complexity measure we proposed. approach).

5. Empirical study

e The average time required to execute each execution
point of a test case (the conversion factor for our pro-
posed model).

5.1 Model configuration for the mobile
application domain

The CNL used in this empirical study was defined in With this information, we estimated the test execution ef-
[18], we just needed to reuse its definition. To define the list fort of the testing set using both approaches. The following
of characteristics to use in our estimation model, we invite Metrics were collected for answering Q1 and Q2.

6 experienced testers. They identified the relevant charac-

o . e X X e Mean magnitude of the relative estimation error.
teristics and defined the guidelines in a Delphi panel that

. T
took four hours (two sessions of two hours). The results are MMRE = 2=t MBE:
presented in Table 2. T
where:
5.2 Experiment MRE, = abs(%n;?ctwh)

)] T = number of tests
We tested the presented model running an experiment.

The main goal of this study was to analyze the accuracy *® Average percentage of estimates that were within 20%
of test execution effort estimates when using the estimatio of the actual values.
model proposed in this paper. In order to do that, we com- _ S, (1,if MRE; < .20,0, otherwise)

pared the estimates given by our model with the ones cal- PRED(.20) = T

Table 2. Guidelines for execution complexity levels evaluation and rating for each functional

and non functional characteristic.

Functional characteristics

Complexity Level / Guidelines / Rates

ID | Description -
Low Average High
] Average number of UptoS More than 5
navigations between screens. 9 13
Less than 30 30 to 100 More than 100
2 Average size of date inputs.
15 60 100
configuration of e-mail
3 Software configuration. or IM account
40
Move files from different
])) save files memories types or transfer
4 File manipulation. files though network
20 50
search list entries, .
del . add new entries
5 | List manipulation. elete entries
15 20
Standard specific
.)] ‘ sound/picture/animation camera, emoticon sound/picture/animation,
6 Multimedia manipulation. manipulation edit picture
21 26 38
Standard Authenticated
7 Server access type.
40 60
Type of screen items to be Valid characters Invalid characters Number of pixels
8 verified. 18 35 50
Non functional characteristics
o Complexity Level / Guidelines / Rates
ID | Description -
Low Average High
Wait a transient
1 | Application delay. message
10
File transfer, print Application data
2 Use of Bluetooth. messages, use headset synchronization
30 50
Sending IM MMESSALes Sending large messages
or short e-mails or .
3 | Use of network. or large e-mails

short messages

25

55

Table 3. Improvements achieved for each 6. Discussion

metric.
Test | MMRE | PRED(20) In our empirical study, we observed the cost to use our
proposed model. This cost can be decomposed into the
1 36.75% 100.00% costs to:
2 36.12% 33.33%
17.19% 50.00% ¢ Define a controlled natural language;

o |dentify relevant system characteristics;
e Define guidelines;

In order to avoid bias, we repeated the process two more ® Evaluate the size and execution complexity of test
times with different training and testing sets. Table 3 com- steps.
pare the metrics collected from the two analyzed estimation
approaches. In all tests we achieved better or equivalentes T he cost to define a controlled natural language depends
timation precision. In the first test, for example, the numbe ©On the way we define it. For instance, we can only define
of estimates within 20% of the actual values increased by 9eneral rules, such as: each test step must be an imperative
100%. We also applied t-tests and confirmed the signifi- S€ntence giving a direct command to the tester, the main

cance of the results. verb in infinitive form that defines the test action must start
the sentence, etc. In this case, we do not have a significant
cost.
5.3 Test size and complexity measure val- However, we can also specify the list of all possible verbs
idation that define test actions, their possible arguments, theéovoca

ulary to be used, etc. In this case, we have to analyze exist-
) _ ing requirement and test documents, a process that can be

In Section 4.1, we proposed a measure of the size andygne incrementally. We also need support tools to store this
execution complexity attribute of a test case. We can vali- jnformation and to check the conformity of the test cases. In
date this measure demonstrating empirically that the map-yhs way, we maximize the benefits of the controlled natural
ping between the empirical relation system (T, R) to the nu- ;gngyage: reduced grammar and lexicon, writing standard,
merical relation system (E, P) is valid [5]. etc.

During the experiment presented in the previous section, |n our study, the cost to identify the relevant system char-
we mapped several test cases in T into execution points inacteristics and to define the guidelines was low. We did a
E. It is necessary to verify that the mapped relations (in R Delphi assessment that took four hours of six experienced
and P) is valid considering the collected data. testers. Nevertheless, this cost will increase when censid

We used expert judgement and effort information to ing a large scope.
identify similar tests and tests bigger than others with re- Finally, the cost to evaluate the size and execution com-
spect to their size and execution complexity. We verified plexity of test steps is the most significant one. Although it
that tests intuitively identified as similar tests had diffet will usually take less than a minute to evaluate a test step,
measured numbers of execution points. However, the differ-there may exist hundreds of test steps to be evaluated. How-
ences between these measures were within 20% of their valever, we did not necessarily need to evaluate all test steps,
ues and this percentage valp ¢an be used for identifying ~ since it is common to have the same test step occurring sev-
similar test cases from their number of execution points. eral times in different test cases or even in the same test.

We also verified that tests identified as bigger than othersAfter evaluating a test step, we just need to assign the same
had bigger measures for their size and execution complexity"Umber of execution points to its other occurrences.
attribute. In summary, we demonstrated empirically that, N our experiment, we observed that most of times we

for all t, andt, in T: can evaluate a test step based only on the main verb of
its sentence, independently of the verb arguments. For in-
to bigger thant, < ep(t,) >ep ep(ty) stance, the act of launching an application has the same
complexity for most applications and only the exceptions
tq Similar tot, < ep(l) ~ep ep(ty) need to have a specific evaluation.

Also, we use a controlled natural language that reduces
where ep(t) is the number of execution points measured the vocabulary and consequently increases the use of the
fromt. same verb in different test steps that only change the verb

arguments. For this reason, the number of test steps to evalments when using our method, we plan to run more exper-

uate (and our cost) is even smaller. iments and to verify its results (accuracy, relevant charac
Our empirical study suggested the feasibility of our teristics, complexity levels and weights considered in the

model regarding the cost of using it. However, more experi- model) in other application domains.

ments and case studies are required to have more conclusive We also plan to test the use of other techniques to config-

results about this cost. ure the model, such as surveys for identifying relevant sys-
tem characteristics, clustering algorithms for groupingre

7. Conclusions acteristics values into impact levels and analysis of vaea
to define weights and confirm the relevance of the identified
characteristics.

This paper presented an estimation model for test execu-

. .) . The test execution effort estimation is a complex activity,
tion complexity based on the size and execution complex-

where changes in environment conditions, team experience,

ity measured from test. spe0|f|ca}t|on§ written in a cont¢|le use of tools, reuse of test setups and other factors should be
natural language. Existing estimation models in the liter- considered

ature are based on system specifications and they estimate These situations can be modeled by risk factors. A risk

the. effort required top erform more activities than test-exe factor for test execution represents some characterigtic o
cution, such as defining anq implementing te_sts. Actually, the test execution process that affects the final effort to ex
they cannot be used to estimate the execution effort of 4ecute tests. For instance, FPA and COCOMO are examples
given test case. Lo o of existing models that regard risk factors for software de-
Our model does T‘Ot require h-ISt.OI‘I.CaI execu'uon. times of velopment. We believe that is possible to extend our model
_the test cases. _Th|s characteristic is extremely important, " 1o o regard risk factors.
in several situations, such as when test cases are new and
different from any previous one. It is also important when
you do not have reliable historical data or when you gen- 8. Acknowledges
erate high numbers of test cases using model-based testing
approaches. We would like to thank all anonymous reviewers who
The use of a controlled natural language reduces the amhave helped us to improve this paper. The first author is
biguity helping the complexity measurement. Actually, the partially supported by Motorola, grant BCT-0021-1.03/05,
number of possible ways to describe the same test step in dhrough the Motorola Brazil Test Center Research Project.
controlled language is minimal, and we also observed thatThe second author is partially supported by CNPq, grant
a small and concise controlled language can support a high306196/2004-2.
number of different test cases written in a standard way.
Based on the considerations presented in previous secReferences
tions, the method for measuring test execution complexity
can be automated and optimized as follows. The complexity [1] V. Basili, G. Caldiera, and D. Rombach. The goal ques-
evaluation of test steps are recorded and reused whenever tion metric approachEncyclopedia of Software Engineer-

possible in the complexity evaluation of other test cases. ing, 1:528-532, 1994.
Over the time, the number of necessary evaluations tends to [2] B. Boehm, C. Abts, and S. Chulani. Software development
decrease. cost estimation approaches - a survéyin. Software Eng.

10:177-205, 2000.
[3] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. Clark,
B. Steece, W. Brown, S. Chulani, and C. AbtSoftware

The evaluations of similar test steps are also reused,
since their execution complexity may be determined only

by its verb. Also, it is possible to autqmate all steps of the Cost Estimation with COCOMO.IIPrentice Hall, 2000.
method, except the evaluation of the first occurrence of each [4] . Briand, K. E. Emam, and S. Morasca. On the application
different test steps. All these optimizations significamé- of measurement theory in software engineeri&gnpirical
duces the costs for using our model. Software Engineering: An International Journal(1):61—

For the mobile application domain, we defined the rel- 88, 1996.
evant system characteristics exercised by the test cades an [5] N. Fenton. Software measurement: A necessary scien-
their weights. This definition used intuition and expertgud tific basis. IEEE Transactions on Software Engineering

20(3):199-206, 1994.
[6] D. Garmus and D. HerronFunction Point Analysis, Mea-
surement Practices for Successful Software Proje&tili-

ment through a Delphi panel [10].
We run an empirical study aiming to test the model and

to evaluate its accuracy. In addition, we demonstrated em- son Wesley, 2001.
pirically the validity of our test effort and execution mea- [7] M. Jorgensen and M. Shepperd. A systematic review of soft
sures assuming a similarity criterion of 20%. Although we ware development cost estimation studi¢EEE Transac-

achieved interesting results suggesting accuracy improve tions on Software Engineering006.

(8]
(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

P. Jorgensen. Software Testing, A Craftsmans Approach
CRC Press, second edition, 2002.

D. Leitao. Translating natural language descriptioris for-

mal test case specifications. Master’s thesis, Federaltniv
sity of Pernambuco/UFPE, 2006.

H. Linstone and M. TuroffThe Delphi Method: Techniques
and Applications http://is.njit.edu/pubs/delphibook, 2002.

P. Mohagheghi, B. Anda, and R. Conradi. Effort estim@ati

of use cases for incremental large-scale software develop-
ment. InProceedings of the 27th international conference
on Software engineering (ICSEQ5ages 303-311. ACM
Press, 2005.

K. Molokken and M. Jorgensen. A review of surveys on
software effort estimation. IWSESE '03: Proceedings of
the 2003 International Symposium on Empirical Software
Engineering page 223. IEEE Computer Society, 2003.

S. Nageswaran. Test effort estimation using use caisgspo

In 14th International Internet Software Quality Week 2001
June 2001.

C. PandianSoftware Metrics: A Guide to Planning, Analy-
sis, and ApplicationCRC Press, Inc., 2003.

A. Pretschner. Model-based testing.I@SE '05: Proceed-
ings of the 27th international conference on Software engi-
neering pages 722-723, 2005.

A. Rajan. Coverage metrics to measure adequacy of black
box test suites. IASE '06: Proceedings of the 21st IEEE In-
ternational Conference on Automated Software Engineering
(ASE’06) pages 335-338. IEEE Computer Society, 2006.
R. Schwitter. English as a formal specification lan-
guage. InProceedings of the 13th International Workshop
on Database and Expert Systems Applications (DEXAO02)
pages 228-232, 2002.

D. Torres, D. Leitao, and F. Barros. Motorola specnl:\A h
brid system to generate nl descriptions from test case-speci
fications. Sixth International Conference on Hybrid Intelli-
gent Systems (HIS’08)age 45, 2006.

M. Whalen, A. Rajan, M. Heimdahl, and S. Miller. Coveeag
metrics for requirements-based testing.I$$TA '06: Pro-
ceedings of the 2006 international symposium on Software
testing and analysjpages 25-36. ACM Press, 2006.

