
Software product lines

Paulo Borba
Informatics Center

Federal University of Pernambuco

Models for software product
lines

Paulo Borba
Informatics Center

Federal University of Pernambuco

The code shows possible
variation points and variations...

but feature models show
more...

and help visualize and manage
variations...

From Feature-Oriented Domain Analysis, Kang et al 1990

for non trivial product lines

Based on http://gp.uwaterloo.ca/files/2006-lau-masc-thesis.pdf

file://localhost/phmb/Researcher/FLIP/DemoAOSD/fm_bestlap.jpg
file://localhost/phmb/Researcher/FLIP/DemoAOSD/fm_bestlap.jpg

Cardinalities and attributes
yield the power of DSLs...

From http://www.sei.cmu.edu/productlines/ppl/

when model is targeted at
configuration

From http://www.sei.cmu.edu/productlines/ppl/

Feature model transformational
semantics

A

B

forms

=C

A

B

forms ⋀
(B ⇒ ¬C) ⋀ (C ⇒ ¬B)

C

Reduction strategy to features
and formulae language

A

B

forms

=
C

A

B

forms ⋀ (A ⇒ (B ⋁ C))

C

Valid configurations semantics

A

B C

{A,B}
{A,C}
…)   =semantics(

Feature model refactorings as
improved configurability

A

B C

A

B C
⊑

 {A,B} ⊆ {A,B}
 {A,C} {A,C}
 … {A,B,C}
 …

….

Feature models and
configurability improvement
semantics(fm) =
 {c:Config | satConstraints(fm,c)}

fm ifm =
 semantics(fm) ⊆ semantics(ifm)
⊑

But no need to think about
semantics directly: add
alternative node

A

B C

A

B C
⊑

D

15

Refactoring catalog

A

B

forms

C

A

B
fsB

forms

C
fsC

⊑

A

B

forms

⊑
A

B

forms

Refactoring populations and
families: feature models

A

B C

A

B C
⊑

A

B

FM1 FM2 FM3

 fm1 fm2 ⊑ fm =
 fm1 ⊑ fm ∧ fm2 ⊑ fm

Case study: feature model
refactoring

Startup Clouds Startup Clouds Startup Clouds

Game

OnDemand Hybrid

Game

OnDemand

Game

OnDemand

Game

OnDemand Hybrid CloudsStartup

Game Game GameReflexive

Reflexive

Product 2

Product 1

SPL 1-2

SPL 2

SPL 1

Instance models define
products

Feature model instantiation
might be...
 Manual, defined by developers
 Automatic, inferred from context

Instance models as equations

p1 = base + s40 + Screen128x128

p2 = base + Arena + s60M1
 + Screen128x128

p3 = base + s60M1 + Screen128x160

Doesn’t work for
feature interaction

Configuration knowledge
builds products

In this case, property files...

that are used to build
products

S40.ajproperties

S40.properties

Configuration knowledge
essentially is...

a mapping from feature
expressions to core assets

eShop configuration
knowledge

without relationship between
cart and bonus...

CK avoids

 scattering of configuration info
 core asset dependence on feature

model
 feature model pollution, one-to-one

mapping between features and
components

 limitation to a single variability
mechanism

Models for software product
lines

Paulo Borba
Informatics Center

Federal University of Pernambuco

