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The code shows possible 
variation points and variations...



but feature models show 
more...



and help visualize and manage 
variations...

From Feature-Oriented Domain Analysis, Kang et al 1990



for non trivial product lines

Based on http://gp.uwaterloo.ca/files/2006-lau-masc-thesis.pdf
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Cardinalities and attributes 
yield the power of DSLs...

From http://www.sei.cmu.edu/productlines/ppl/



when model is targeted at 
configuration

From http://www.sei.cmu.edu/productlines/ppl/



Feature model transformational 
semantics
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Reduction strategy to features 
and formulae language
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Valid configurations semantics
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Feature model refactorings as 
improved configurability
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Feature models and 
configurability improvement
semantics(fm)  =
 {c:Config | satConstraints(fm,c)}

fm     ifm =
 semantics(fm) ⊆ semantics(ifm)
⊑



But no need to think about 
semantics directly: add 
alternative node
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Refactoring catalog
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Refactoring populations and 
families: feature models
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   fm1 fm2 ⊑ fm =
    fm1 ⊑ fm ∧ fm2 ⊑ fm 



Case study: feature model 
refactoring
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Instance models define 
products



Feature model instantiation 
might be...
 Manual, defined by developers
 Automatic, inferred from context



Instance models as equations

p1 = base + s40 + Screen128x128

p2 =   base + Arena + s60M1 
     + Screen128x128

p3 = base + s60M1 + Screen128x160

Doesn’t work for 
feature interaction



Configuration knowledge 
builds products



In this case, property files...



that are used to build 
products

S40.ajproperties

S40.properties



Configuration knowledge 
essentially is...

a mapping from feature 
expressions to core assets



eShop configuration 
knowledge



without relationship between 
cart and bonus...



CK avoids

 scattering of configuration info
 core asset dependence on feature 

model
 feature model pollution, one-to-one 

mapping between features and 
components

 limitation to a single variability 
mechanism
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