EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008 321

Effective Software Merging in the
Presence of Object-Oriented Refactorings

Danny Dig, Kashif Manzoor, Ralph Johnson, Member, IEEE Computer Society, and
Tien N. Nguyen, Member, IEEE

Abstract—Current text-based Software Configuration Management (SCM) systems have trouble with refactorings. Refactorings result
in global changes, which lead to merge conflicts. A refactoring-aware SCM system reduces merge conflicts. This paper describes
MolhadoRef, a refactoring-aware SCM system, and the merge algorithm at its core. MolhadoRef records change operations
(refactorings and edits) used to produce one version and replays them when merging versions. Since refactorings are change
operations with well-defined semantics, MolhadoRef treats them intelligently. A case study and a controlled experiment show that
MolhadoRef automatically solves more merge conflicts than CVS while resulting in fewer merge errors.

Index Terms—Refactoring, merging, Software Configuration Management, version control systems.

1 INTRODUCTION

ONE of the important kinds of change in object-oriented
programs is refactoring [2]. Refactorings are program
transformations that improve the internal design without
changing the observable behavior (e.g., renamings, moving
methods between classes, changing method signatures).
Automated refactoring tools have become popular because
they allow programmers to change source code more
quickly and safely than manually. However, refactoring
tools make particular demands on text-based SCM systems.

SCM systems work best with modular systems. Different
programmers tend to work on different modules and, so, it
is easy to merge changes. However, refactorings cut across
module boundaries and cause changes to many parts of the
system. SCM systems signal a conflict when two program-
mers change the same line of code even if each just changes
the name of a different function or variable. So, SCM
systems have trouble merging refactorings.

A common process [3] for refactoring on large projects is
“check everything in and then wait until refactoring is
done,” analogous to a “code freeze.” However, this
serializes the development of a code. In addition, by forcing
refactorings to be performed by only a few people at a
certain time, opportunities for refactoring are lost.

Although the number of global changes varies from
system to system, our previous study [4] of five widely used

» D. Dig is with MIT CSAIL, The Stata Center, Building 32-G720, 32
Vassar Street, Cambridge, MA 02139. E-mail: dannydig@csail.mit.edu.

» K. Manzoor is with Techlogix, Pakistan.
E-mail: cashifmanzoor@gmail.com.

® R. Johnson is with the Department of Computer Science, Siebel Center,
University of Illinois at Urbana-Champaign, 201 N. Goodwin Ave.,
Urbana, IL 61801. E-mail: johnson@cs.uiuc.edu.

o T.N. Nguyen is with the Department of Electrical and Computer
Engineering, Iowa State University, 3218 Coover Hall, Ames, IA 50011.
E-mail: tien@iastate.edu.

Manuscript received 21 Jan. 2007; revised 5 Oct. 2007; accepted 21 Jan. 2008;
vublished online 22 Apr. 2008.

Recommended for acceptance by B.G. Ryder.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0016-0107.
Digital Object Identifier no. 10.1109/TSE.2008.29.

0098-5589/08/$25.00 © 2008 IEEE

mature Java components showed a significant number of
global changes. For instance, Struts had 136 API changes over
aperiod of 14 months. In each system, more than 80 percent of
the API changes were caused by refactorings. Because of lack
of support from SCM systems, these changes were tedious to
incorporate manually, although a refactoring-aware SCM
could have incorporated them automatically.

Text-based SCM systems are unreliable. They report
merge conflicts only when two users change the same line
of code. However, a merge might result in an incorrect
program, even when the changes are not on the same line.
This is especially true in object-oriented programs. For
instance, if one user renames a virtual method while
another user adds a new method in a subclass, even though
these changes are not lexically near each other, textual
merging could result in accidental method overriding, thus
leading to unexpected runtime behavior.

This paper describes MolhadoRef, a refactoring-aware
SCM for Java, and the merge algorithm at its core.
MolhadoRef has an important advantage over a traditional
text-based SCM. MolhadoRef automatically resolves more
conflicts (even changes to the same lines of code). Because it
takes into account the semantics of refactorings, the
merging is also more reliable: There are no compile errors
after merging and the semantics of the two versions to be
merged are preserved with respect to refactorings.

Correct merging of refactorings and manual edits is not
trivial: Edits can refer to old program entities as well as to
newly refactored program entities. MolhadoRef uses the
operation-based approach [5]: It represents a version as a
sequence of change operations (refactorings and edits) and
replays them when merging. If all edits came before
refactorings, it would be easy to merge the two versions
by first doing a textual merge and then replaying the
refactorings. However, edits and refactorings are mixed, so,
in order to commute an edit and a refactoring, MolhadoRef
inverts refactorings. Moreover, refactorings will sometimes
have dependences between them.

MolhadoRef uses Eclipse [6] as the front end for changing
code and customizes Molhado [7], a framework for SCM, to

Published by the IEEE Computer Society

322 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

store Java programs. Although the merging algorithm is
independent of the Molhado infrastructure and can be reused
with other SCM back ends, building on top of an ID-based
SCM like Molhado allows our system to keep track of the
refactored entities. When evaluating MolhadoRef on a case
study of three weeks of its own development and through one
controlled experiment, we found that MolhadoRef merges
more safely and more automatically than CVS while never
losing the history of refactored entities.

MolhadoRef merges edits using the same three-way
merging [8] of text-based SCMs. It is when MolhadoRef
merges refactorings that it eliminates merge errors and
unnecessary merge conflicts. So, the more that refactorings
are used, the more benefits MolhadoRef provides.

This paper makes the following contributions:

e It presents an important problem that appears when
merging refactored code in multiuser environments.

e It presents the first algorithm to effectively merge
refactorings and edit operations.

o It evaluates the effectiveness of refactoring-aware
merging on one real-world case study and one
controlled experiment.

Without losing any power to merge manual edits,
MolhadoRef converts refactorings from being the weakest
link in an SCM system to being the strongest.

2 MOTIVATING EXAMPLE

To see the limitations of text-based SCM, consider the
simulation of a Local Area Network (LAN) shown in Fig. 1.
This example is used as a refactoring teaching device [9] in
many European universities.

Initially, there are five classes: Packet, a superclass
LANNode, and its subclasses PrintServer, NetworkTes-
ter,and Workstation. All LANNode objects are linked in a
token ring network (via the nextNode variable) and they can
send or accept a Packet object. PrintServer overrides
accept toachieve specific behavior for printing the Packet.
A Packet object sequentially visits every LANNode object in
the network until it reaches its addressee.

Two users, Alice and Bob, both start from version V) and
make changes. Alice is the first to commit her changes, thus
creating version V;, while Bob creates version V5.

Since method get PacketInfo accesses only fields from
class Packet, Alice moves method getPacketInfo from
class PrintServer to Packet (71). Next, she defines a new
method, sendPacket (Packet) (72), in class Network-
Tester. The implementation of this method is empty
because this method simulates a broken network that loses
packets. In the same class, she also defines a test method,
testLosePacket (13) and implements it to call method
sendPacket (74). Last, Alice renames WorkStation.
originate (Packet) to generatePacket (Packet)
(75). Alice finishes her coding session and commits her
changes to the repository.

In parallel with Alice, Bob renames method PrintSer-
ver .getPacketInfo (Packet) to getPacketInfor-
mation (Packet) (7). He also renames the polymorphic
method LANNode.send () to sendPacket (77). Last, Bob
renames class WorkStation to Workstation (different
capitalization 73). Before Bob can commit his changes, he
must merge his changes with Alice’s.

A text-based SCM system reports merge conflicts when
two users change the same line. For instance, because Alice
moved the declaration of method (1) while Bob altered the
declaration location of the same method through renaming
(76), textual merging cannot automatically merge these
changes. This is an unnecessary merge conflict because a
tool like MolhadoRef which understands the semantics of
the changes can merge them.

In addition, because a text-based merging does not know
anything about the syntax and semantics of the program-
ming language, even a “successful” merge (e.g., when there
are no changes to the same lines of code) can result in a
merge error. Sometimes errors can be detected at compile
time. For instance, after textual merging, the code in method
testLosePacket does not compile because it calls
method send, whose declaration was replaced by send-
Packet through a rename (77). Such an error is easy to
catch, though it is annoying to fix.

Other errors result in programs that compile but have
unintended changes to their behavior. For instance, because
Alice introduces a new method sendPacket in subclass
NetworkTester and Bob renames the polymorphic
method send to sendPacket, a textual merge results in
accidental method overriding. Therefore, the call inside
testSendToSelf to sendPacket uses the empty im-
plementation provided by Alice(rs) to simulate loss of
packets, while this method call originally used the
implementation of LANNode.send. Since this type of
conflict is not reported during merging or compilation,
the user can erroneously assume that the merged program
is correct, when in fact the merging introduced an
unintended change of behavior.

Fig. 2 shows the merged program after merging with
MolhadoRef. MolhadoRef catches the accidental method
overriding caused by adding a new method (m) and
renaming another method (77) and presents it to the user.
The user decides to rename the newly introduced method
NetworkTester.sendPacket to losePacket. This is
the only time when MolhadoRef asks for user intervention;
it automatically merges all of the remaining changes. The
merged version contains all of the edits and refactorings
performed by Alice and Bob (e.g., notice that method
getPacketInformation is both renamed and moved).

3 BACKGROUND AND TERMINOLOGY

Our approach to refactorings-tolerant SCM systems is based
on a different paradigm, called operation-based merging [5].
In the operation-based approach, an SCM tool records the
operations that were performed to transform one version
into another and replays them when updating to that
version. An operation-based system treats a version as the
sequence of operations used to create it.

Our goal is to provide merging at the API level, that is,
our merging algorithm aims for correct usage of all of the
APIs. For this reason, we distinguish between operations
that affect the APIs and those that do not. MolhadoRef
treats a version as being composed of the following three
operations: API refactorings, API edits, and code edits.
MolhadoRef handles the following API refactorings: re-
name package, rename class, rename method, move class,
move method, and changing the method signature (these
were among the most popular refactorings found in
previous studies [4]). MolhadoRef handles the following
API edits: added package, deleted package, added class,

JIG ET AL.: EFFECTIVE SOFTWARE MERGING IN THE PRESENCE OF OBJECT-ORIENTED REFACTORINGS

PrintServer. java

public class PrintServer extends LANNode {
public void print(Packet p) {
String packetInfo = getPacketInfo(p);
System.out.println (packetInfo) ;
}
public String getPacketInfo (Packet p) {
String packetInfo = p.originator + ": " +
p.addressee+ "[" + p.contents + "]";
return packetInfo;
}
public void accept (Packet p) {
if (p.addressee == this) this.print(p);
else super.accept(p);

}

NetworkTester. java

public class NetworkTester extends LANNode {
public void testSendToSelf () {
Packet packet = new Packet ();
packet.addressee = this;
packet.originator = this;

y send (packet);

public woid accept (Packet p) {
if (p.originator == this)
System.out.println("network works OK");
else super.accept(p);

}

VERSION v0: A LAN Simulation Program

LANNode. java

public class LANNode ({

}
Wo!

public String name;

public LANNode nextNode;

public void accept (Packet p) {
this.send(p);

Lrotected void send (Packet p) {
System.out.println(name + nextNode.name)

this.nextNode.accept (p);
}

rkStation. java

public class WorkStation extends LANNode {

public void originate (Packet p) {
p.originator = this;
this.send(p);

public void accept (Packet p) {

}

if (p.originator == this)
System.err.println("no destination");

else super.accept (p);

}

Packet. java

public class Packet ({

public String contents;
public LANNode originator;

}

public LANNode addressee;

323

VERSION vl (Alice)

PrintServer. java

public class PrintServer extends LANNode {
public void print (Packet p) {
String packetInfo=[p.getPacketInfo ()]
p o

y e
NetworkTester. java

public class NetworkTester extends LANNode {

protected void sendPacket (Packet p) {
y // left empty to drop packets TZ

void testLosePacket (boolean losePacket) {
Packet packet = new Packet ();
packet.addressee = new LANNode ()
packet.originator = this;
if (losePacket) sendPacket (packet) ;

else send(packet) ; T3
} T
} iz
LANNode. java

WorkStation. java

public class WorkStation extends LANNode {

public void |[generatePacket |(Packet p) {- -}

} ’CS
Packet. java
public class Packet {
public String getPacketInfo () 't]
{
String packetInfo = originator + ": " +
addressee + "[" + contents + "]";
return packetInfo;
)

e

AR ERAREREEAALEAAAEAAEAEAAAEAAEAAAAEAAASAAAAAARAmAAEmEAEERmEmEmEEEEEEEEw

VERSION 2 (Bob)

PrintServer. java

public class PrintServer extends LANNode {
public void print (Packet p) {

}

T6
public StringIgetPacketInformationkPacket p) {
String packetInfo = p.originator + ": " +
p.addressee+ "[" + p.contents + "]";

}

String packetInfozlgetPacketInformation(p);

System.out.println (packetInfo);

return packetInfo;

NetworkTester. java

public class NetworkTester extends LANNode {
public void testSendToSelf () {

[sendPacket](packet) ;

LANNode. java

édﬁlic class LANNode { T7

f)fo'tected void (Packet p) |

}

System.out.println(name + nextNode.name);
this.nextNode.accept (p);

Workstation. java T8

public class |[Workstation|extends LANNode {

Packet.java

Fig. 1. Motivating example. Versions V; and V5 are created in parallel and are both based on ;. Shaded boxes show the changes in each version: 7
moves method PrintServer.getPacketInfo to Packet, » and 73 add methods, 7, adds a call to sendPacket, 75 renames
NorkStation.originate t0O generatePacket, 74 renames PrintServer.getPacketInfo t0 getPacketInformation, 7; renames
LANNode. send to sendPacket, 73 renames class WorkStation to Workstation.

deleted class, added method declaration, deleted method
declaration, added field declaration, deleted field declara-
tion. Any other types of edits are categorized as code edits.

Code edits do not have well-defined semantics, making
it difficult to merge them correctly. API edits have better
defined semantics. However, refactorings are the operations

324

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

PrintServer. java

public class PrintServer extends LANNode {
public wvoid print (Packet p) {
String packetInfo =
p.getPacketInformation () ;
System.out.println(packetInfo);
}
Packet. java

public class Packet {
0 1

originator + ": " +

public String getPacketInformation

String packetInfo =
addressee + "[" + contents + "]";
return packetInfo;

}
}

LANNode. java

ﬁﬁﬁlic class LANNode {

ﬁfétected void sendPacket (Packet p) {
System.out.println(name + nextNode.name) ;
this.nextNode.accept (p);
}
}

THE MERGED VERSION

NetworkTester. java

public class NetworkTester extends LANNode {
public woid testSendToSelf() {
Packet packet = new Packet
packet.addressee = this;
this;

()7

packet.originator =

) sendPacket (packet);

public woid accept

}
protected void losePacket (Packet p) {
} // left empty to drop packets

(Packet p) {

void testLosePacket (boolean losePacket) {

Packet packet = new Packet ();
packet.addressee = new LANNode ();
packet.originator = this;

if (losePacket) losePacket (packet);

else sendPacket (packet) ;

y !

Workstation. java

public class Workstation extends LANNode ({
}

Fig. 2. Resolved motivating example using MolhadoRef.

with the most well-defined semantics and thus are the ones
that can benefit the most from operation-based merging.
Therefore, MolhadoRef merges code edits textually and,
since it is aware of the semantics of refactorings and API
edits, it merges them semantically.

Any operation can be regarded as a function from
programs to programs, more precisely, a source-to-source
program transformation: 7 : Program — Program

When necessary, we make the distinction between
refactorings (p) and edits (o). Refactorings are transforma-
tions that preserve the semantics, while edits usually
change the semantics of programs.

Operations usually have preconditions. Adding a meth-
od to a class requires that the class exists and does not
already define another method with the same name and
signature, while changing the name of a method requires
that the new name is not in use. Applying an operation 7
inappropriately to a program P results in an invalid
program, represented by L . The result of applying an
operation to L is L :

#(P) = { Jj

The application of two operations is modeled by the
function composition, denoted by “;”. “;”

if preconditions of 7 hold
if preconditions of 7 do not hold.

(1)

;7. ;" also models the
precedence: 7;; 7; means first apply 7; and then apply 7; on
the result: 7;; 7;(P) = 7(7;(P)).

Definition 1. Two operations commute on a program P if
applying them in either order produces the same valid
program P": 1j;7;(P) = 7;;7j(P) = P" AP" #1.

Definition 2. Two operations conflict with each other if
applying them in either order produces an invalid program:
755 Ti(P) =L Aty 1(P) =L

For example, adding two methods with the same name
and signature in the same class results in a conflict.

Definition 2 describes conflicts that produce compile
errors. MolhadoRef also catches some conflicts that produce
runtime errors. MolhadoRef currently catches conflicts that
involve method overriding, such as the accidental method
overriding between 7 and 7.

When two operations do not commute for a program P,
we say that there is an ordering dependence between them.
We denote this ordering dependence with the <p symbol.

Definition 3. 7; depends on 7;(7; <p 7;) if 7; and 7; do not
commute:

7 = 7 iff 733 7(P) #L A(7i;75(P) # 153 7:(P)).

The <p dependence is strict partial order, that is, it is
irreflexive, asymmetric, and transitive.

An example of dependence is the renaming of method
WorkStation.originate to generatePacket done by
Alice (75) and the renaming of class WorkStation to
Workstation done by Bob (73). If 73 is played first, the
replaying of 75 is not possible because, at this time, the fully
qualified name WorkStation.originate no longer
exists, thus 75 <p 7s.

This dependence between 75 and 75 exists because current
refactoring engines are based on the names of the program
entities and class WorkStation no longer exists after
replaying 7s. If the refactoring engine used the IDs of the
program elements, changing the names would never pose a
problem [10]. To make name-based refactoring engines be ID-
based requires rewriting the engine. This is unfeasible, so the
next best solution is to emulate ID-based engines.

To make the current name-based refactoring engines
emulate ID-based ones, there are at least two approaches.
The first is to reorder the refactorings (e.g., rename method
WorkStation.originate() before renaming class

JIG ET AL.: EFFECTIVE SOFTWARE MERGING IN THE PRESENCE OF OBJECT-ORIENTED REFACTORINGS 325

INPUT = {V_2, V.1, V.0, refactoringLogs}

1

2

3

4+ [/ Step #1 Detecting Operations

s Operations ops= 3—wayComparison(V_2,V_1,V_0)
¢ Operations

7 Operations edits= detectEdits(ops, refactorings)
8

o [/ Step #2 Detecting and Solving Conflicts
0 repeat{

1 Conflicts
12 {edits ,
13 Graph operationsGraph =

conflicts = detectConflicts (edits ,

s} until

1w //Step #3 Inverting Refactorings

a [/ Step #4 Textual Merging

u [/ Step #5 Replaying Refactorings
s Operations

s OUTPUT = {V_merged}

refactorings= detectRefactorings (refactoringlLogs)

and Circular Dependences

refactorings)
refactorings }= userSolvesConflicts ({edits ,
createDependenceGraph (refactorings ,
14 {refactorings , edits, operationsGraph} = userRemovesCircularDependences(operationsGraph)
noConflictsOrCircularDependences (refactorings ,

8 Version V_l_minusRefactorings= invertRefactorings(V_1,
v Version V_2_minusRefactorings= invertRefactorings (V_.2,

2 Version V_merged_minusRefactorings= 3—wayTextualMerge (V_2_minusRefactorings ,V_1_minusRefactorings ,V_0)

orderedRefactorings= refactoringsTopologicalSort(operationsGraph)
% Version V_merged= replayRefactorings (V_merged_-minusRefactorings,

refactorings }, conflicts)
edits)

edits , operationsGraph)

refactorings)
refactorings)

orderedRefactorings)

Fig. 3. Overview of the merging algorithm.

WorkStation). The second is to modify the refactoring
engine so that, when it changes source code, it also changes
subsequent refactorings. For example, during the replay of
renaming class WorkStation to Workstation, the
refactoring engine changes the subsequent refactoring
RenameMethod (WorkStation.originate, generate
Packet) to RenameMethod (Workstation.origi-
nate, generatePacket). Our merging algorithm uses
both approaches.

Consider a scenario where Alice renames method m1 in
superclass A (call it operation p;) and Bob desires to
override A.ml by adding a method m1 in subclass B (call it
operation o1). Applying these two operations in either order
produces a valid program. However, only one order
preserves Bob’s intent: Applying the edit followed by
renaming the method in the superclass preserves the
overriding relationship since the renaming p; also updates
the edit o; (renaming a method updates all overriding
methods in a class hierarchy). The other order, the
renaming p; followed by the edit ¢; would result in a
program that compiles, but B.m1 no longer overrides the
superclass method, violating Bob’s intent. Thus, there is a
dependence o1 <p pi.

Definitions 1-3 are mutually exclusive and cover all the
cases.

4 MERGING ALGORITHM

4.1 High Level Overview
We illustrate the merging algorithm (see the pseudocode in
Fig. 3) using the LAN simulation example presented earlier.
The details of each module are found in the later sections.
The merging algorithm takes as input three versions of
the software: Version Vj is the base version and V; and V;
are derived from V4. In addition, the algorithm takes as
input the refactorings that were performed in V; and in V5.
These refactoring logs are recorded by Eclipse’s refactoring

engine. The output is the merged version, Vcr4q, that
contains edits and refactorings performed in V; and V5.

Step #1 detects the changes that happened in V; and V;
by performing a three-way comparison between V;, V;, and
V. From these changes and the refactoring logs, it
categorizes edits and refactorings operations. For example,
in V3, it detects two added methods, » and 73. In 15, it
detects no edits but only refactorings.

Step #2 searches for compile and runtime conflicts in API
edits and refactorings. In our example, it detects a conflict
between the add of a new method, 7 in V}, and the rename
method refactoring, 7 in V5. This conflict reflects an
accidental method overriding. The conflict is presented to
the user, who resolves it by choosing a different name for
the added method (in this case losePacket instead of
sendPacket). The algorithm also searches for possible
circular dependences between operations performed in V}
and operations in V5. If any are found, the user deletes one
of the operations involved in the cycle (in our example,
there are no circular dependences). This process of
detecting/solving continues until no more conflicts or
circular dependences remain.

Step #3 inverts each refactoring in V; and V5 by applying
another refactoring. For instance, it inverts the move method
refactoring 7, by moving method getPacketInfo back to
PrintServer and it inverts the rename class refactoring 73
by renaming Workstationback to theorem. By inverting
refactorings, all of the edits that were referencing the
refactored program entities are still kept in place but
changed to refer to the old version of these entities. This
step produces two software components, V, "¢/*orings
and V{Ref actorngs - wwhich contain all of the changes in Vj,
respectively V5, except refactorings.

Step #4 merges textually (using the classic three-way
merging [8]) all of the API and code edits from V; /ectorings
and V, fefectorings - Gince the refactorings were previously
inverted, all same-line conflicts that would have been

326 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

caused by refactorings are eliminated. For example, inside

PrintServer.print there are no more same-line con-

flicts. Therefore, textual merging of code edits can proceed

smoothly. This step produces a software component, called
—Refactorings

merged i)
Step #5 replays on I{;ﬁ;{jscmr“ws the refactorings that

happened in Vi and V3. Before replaying, the algorithm
reorders all of the refactorings using the dependence
relations. Replaying the refactorings incorporates their
changes into V;;g;fgcmmgs, which already contains all of
the edits. For example, replaying a method renaming
refactoring updates all of the call sites to that method,

including the ones introduced by edits.

4.2 Detecting Operations

To detect refactorings, API edits, and code edits, the
algorithm takes as input the source code of the three
versions Vp, Vi, and V,, along with their refactoring logs.
Recent extensions to refactoring engines (e.g., [11]) log the
refactorings at the time they were performed. This log of
refactorings is saved in a configuration file and is stored
along with the source code. Since our algorithm is
implemented as an Eclipse plug-in, it has access to this
log of refactorings. Even in cases when such a log of
refactorings is not recorded, it can be detected using
RefactoringCrawler [12], a tool for inferring refactorings.

To detect the API edits and code edits, the algorithm
employs a three-way textual comparison (a two-way com-
parison cannot distinguish between additions and deletions
[13]). This comparison (line 5 in Fig. 3) detects lines, files,
and folders that were changed. From this low level
information, the algorithm constructs (line 7) the higher
level semantic API edits (e.g., add method) by parsing and
correlating the positions of changed tokens with that of
changed lines.

Even though the scope of our merging is at the API level,
to correctly signal compile or runtime conflicts, the
algorithm detects a few edit operations that are below the
API level. These include add/delete method call, add/
delete class instantiation, add/delete class inheritance, and
add/delete typecast. From this information, the algorithm is
able to detect conflicts like the one appearing if Alice deletes
the method declaration accept and Bob adds a method call
to accept.

Some of the edit operations overlap with or are the side
effects of refactorings. For example, after renaming class
WorkStation to Workstation, a textual comparison
renders WorkStation as deleted and Workstation as
added. Using the information from the refactoring logs, the
algorithm discards these two edits since they are super-
seded by the higher level refactoring operation.

The output of this step is the list of change operations
(refactorings and edits) that happened in each of V; and V5.

4.3 Detecting and Solving Conflicts and Circular
Dependences

Detecting conflicts. Next, MolhadoRef detects conflicts
between operations in V; and V. For this, it uses a conflict
matrix (the companion technical report [14] describes all of
its cells). For any two kinds of operations, the matrix gives a
predicate that responds whether the operations conflict.
This matrix includes refactorings, API edits, and the code

hasCon flicts(RenameMethod(mi,mz2), RenameMethod(ms,my4)) :=
((m1 = mgVoverrides(mi, ms))A(simpleName(mz) # simpleName(my)))
\%

((m1 # ms A —overrides(mi, m3)) A (ma = ma V overrides(mz, ma)))

Fig. 4. The RenameMethod/RenameMethod cell in the conflict matrix.

edits that are currently handled. MolhadoRef instantiates
the conflict matrix for the concrete operations detected in
the previous step and signals any conflicts between these
operations.

Next, we present the content of one single cell in
the conflict matrix, namely the case when 7; is
RenameMethod(my, mo) and 7; is RenameMethod(ms, my).
These two renamings result in a conflict if 1) the source of
both refactorings is the same program element (e.g.,
my; = mg3) but their new names would be different or
2) the sources of both refactorings are different program
elements but the destination of both refactorings is the same
program element (e.g., mg =my). In addition, due to
polymorphic overriding, we must also consider the case
when two methods are not the same program element, but
one method overrides the other.

When the sources of both refactorings are the same
(item 1), if methods m; and mg are in the same class, there
would be a compile-time conflict since the users want to
rename the same method differently. If the methods m; and
mgy are overriding each other, renaming them differently
results in a runtime conflict because the initial overriding
relationship would be broken. When the destination of the
two refactorings is the same (item 2), if methods m; and m;
are in the same class, renaming them to the same name
results in a compile-time error (two methods having the
same signature and name). If methods m; and ms are not in
the same class and do not initially override each other,
renaming them to the same name results in a runtime
conflict because of accidental method overriding.

More formally, using first-order predicate logic, Fig. 4
describes the content of the RenameMethod/Rename-
Method cell in the conflict matrix. Similar formulas
describing the remaining cells in the matrix are in a
companion technical report [14]. The predicates in each
cell are computed “by hand,” but they are carefully revised.

Although the matrix and its predicates describe operations
independent of a particular program, in this step, MolhadoR-
ef instantiates it for the program under analysis and its
concrete operations detected in Step #1. For example,
MolhadoRef detects the accidental method overriding con-
flictbetween 7, and 77 in the motivating example. This conflict
is presented to the user who can decide how to solve it.

Detecting circular dependences. In this step, the merge
algorithm also creates the dependence graph (line 13 in
Fig. 3) between operations performed in the two versions to
be merged. Initially, there is a total (i.e., linear) order of the
change operations in each version, given by the time
sequence in which these operations were applied. However,
when merging, the operations can be replayed in any order
unless there is a dependence between them. Thus, the total
order can be ignored in favor of a partial order, induced by
the <p relation.

To create this partial order, we represent each operation
as a node in a directed graph, called the dependence graph.
When 7; <p 7j, the algorithm adds a directed edge from 7;

JIG ET AL.: EFFECTIVE SOFTWARE MERGING IN THE PRESENCE OF OBJECT-ORIENTED REFACTORINGS 327

;‘/RenameCIass(A, B)
P, 7 ‘-

R P,

RenameMethod (A.m1, A.m2)
C Add subclass C;:B /’

1

~Add method C.m1,
; overriding Bm1 -
A e =

Fig. 5. Circular dependence between operations from two users. Arrows
represent the direction of the dependences (e.g., add method C.m1
must be applied before renaming method A.m1). The left-hand side
shows operations from Bob, right-hand side shows operations from
Alice. The figure depicts the dependence graph as it is created in Step
#2 of the algorithm.

to 7;. To find out the <p dependences, the algorithm uses a
dependence matrix, which describes dependence relations
between all kinds of operations (similar to how the conflict
matrix describes conflicts). MolhadoRef instantiates the
dependence matrix for the concrete operations in the
versions to be merged. MolhadoRef places all of the
concrete operations in the dependence graph and adds
dependence edges using the information from the depen-
dence matrix.

Next, the algorithm searches for cyclic dependences in
the dependence graph. There can only be cycles between
operations from different users, not between operations
from the same user, because, for each user, it was initially
possible to play all of the operations. Fig. 5 shows a scenario
where a cycle appears between operations from two users.
[nitially, the base version contains one class A with one
method A.ml. The operations on the left-hand side are
performed by Bob and the ones on the right-hand side are
performed by Alice. Bob renames class A to B, then adds a
subclass C of B. Next, in class C, Bob adds a method with
name m1 which overrides the method in the superclass B. In
parallel with Bob, Alice renames method A.m1 to m2.

The arrows on Bob’s side indicate the original order in
which the operations took place. The arrow from Alice’s
rename method to Bob’s renaming the class points to a
dependence caused by the current refactoring engines. The
refactoring engines use the fully qualified names to identify
the program elements to be refactored; therefore, renaming
the method A.ml1 must be performed before renaming its
class declaration A; otherwise, the refactoring engine can no
longer find the element A.m1. The arrow from Bob’s adding
method C.ml to Alice’s renaming the superclass method
A.m1 points to another dependence. The subclass method
must be added before the renaming of the superclass
method A.ml such that, when replaying the Rename-
Method (A.ml, m2), it also renames C.ml (playing them
in a different order would cause the two methods to no
longer override each other).

After it finds all cycles, MolhadoRef presents them to the
user, who must choose how to eliminate cycles (see the next
section). Assuming that there are no more cycles, all
operations are in a directed acyclic graph.

User-assisted conflict and dependence resolution.
Circular dependences and compile and runtime conflicts

require user intervention. To break circular dependences,
the user must select operations to be discarded and
removed from the sequence of operations that are replayed
during merging. Discarding refactorings has no effect on
the semantics of the merged program because refactorings
are transformations that do not change the semantics.
Discarding edits can potentially affect the semantics of the
merged program. However, this solution would be used
only in extreme cases (we have never run into such a
scenario during evaluation). Alternatively, most circular
dependences (including the one in Fig. 5) can be solved
automatically by MolhadoRef by inverting the refactorings
(see Section 4.4).

To solve the syntactic or semantic conflicts caused by name
collision, the user must select a different name for one of the
program elements involved in the conflict. In our LAN
motivating example (Fig. 1), Alice renames method send to
sendPacket and Bob adds a new method declaration
sendPacket such that the two methods accidentally over-
ride each other. This conflict is brought to Bob’s attention,
who can either choose a different name for his newly
introduced method or can pick a new name to supersede
the name chosen by Alice. In the motivation example, Bob
chose to rename his newly introduced method sendPacket
to losePacket. Once Bob chooses the new name, Molha-
doRef automatically performs this rename.

The process of finding and solving conflicts and circular
dependences is repeated until there are no more conflicts or
circular dependences (line 15 in Fig. 3). The algorithm
always converges to a fixed point because it starts with a
finite number of operations and the user deletes some in
each iteration.

4.4 Inverting Refactorings

Step #3 makes a version of V; and V, without any
refactorings by inverting all refactorings. Inverting a
refactoring p; involves creating and applying an inverse
refactoring. p; is an inverse of p; if p; (pi1(P)) = P for all
programs P that meet the precondition of p;. For example,
the inverse of the refactoring that renames class A to B is
another refactoring that renames B to A, the inverse of a
move method is another move method that restores the
original method, the inverse of the extract method is the
inline method, the inverse of pull-up member in a class
hierarchy is push-down member. In fact, many of the
refactorings described in Fowler et al.’s refactoring catalog
[2] come in pairs: a refactoring along with its opposite
(inverse) refactoring.

Given any refactoring, there exists another refactoring
that inverts (undoes) the first refactoring (although such an
inverse refactoring cannot be always applied because of
later edits). There is an important distinction between what
we mean by inverting a refactoring and how the popular
refactoring engines (like Smalltalk RefactoringBrowser,
Eclipse, or Intelli] IDEA) undo a refactoring. To decrease
memory usage and avoid recomputations of preconditions,
the refactoring engines save the location of all source code
that was changed by the refactoring. When undoing a
refactoring, the engines undo the source changes of these
locations.

Although efficient, this approach has a drawback: The
only way to undo a refactoring that was followed by edits is
to first undo all of the edits that come after it. This approach

328 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

is not suitable for MolhadoRef. MolhadoRef must be able to
undo a refactoring without undoing later operations. Thus,
MolhadoRef inverts refactorings by creating and executing
an inverse refactoring operation (which is another
refactoring).

To create the inverse refactoring, MolhadoRef uses the
information provided in the refactoring logs of Eclipse.
Each refactoring recorded by Eclipse is represented by a
refactoring descriptor which contains enough textual in-
formation to be able to recreate and replay a refactoring.
Among others, the descriptor contains information such as
what kind of refactoring is created, what the program
element on which it operates is, and what other parameters
have been provided by the user through the Ul (e.g., the
new name in case of a rename refactoring or the default
value of an argument in case of refactoring that changes a
method signature by adding an argument). Out of this
information, MolhadoRef creates another refactoring de-
scriptor that represents the inverse refactoring. For exam-
ple, the inverse of the move method refactoring descriptor
representing 7 in our LAN example is another move
method descriptor representing a refactoring that moves
method Packet .getPacketInfo back to PrintServer.

From the inverse refactoring descriptor, MolhadoRef
creates and initializes an Eclipse refactoring object. Once the
refactoring object is properly initialized, the refactoring is
executed using Eclipse’s refactoring engine.

Inverting a refactoring and executing the inverse
refactoring also changes the edits. Recall the motivation
example where Bob renames method getPacketInfo to
getPacketInformation. Later, he adds a new method
call to getPacketInformation. By inverting the rename
method refactoring with the inverse refactoring (renaming
getPacketInformation to getPacketInfo), the new
call site to getPacket Information is also updated while
keeping the call site in the same place. Deleting the call site
altogether would have introduced a different behavior,
while leaving the call site untouched would have produced
a compilation error.

Probably, the most notable aspect of inverting refactor-
ings is that it inverts the dependences between edits and
refactorings, allowing refactorings to come after edits; thus,
it changes a refactoring <p edit dependence into edit <p
refactoring dependence. This has two advantages. First,
when replaying refactorings in Step #5, the fact that
refactorings come after edits ensures that all changes
caused by refactorings are incorporated into edits. Second,
inverting refactorings automatically breaks most of the
circular dependences between operations. Recalling the
example from Fig. 5 with circular dependence, Fig. 6 shows
the dependence graph after inverting the rename class
refactoring. Notice that the edits now refer to class A instead
of B and there are no more circular dependences.

Just as refactorings have preconditions, inverting a
refactoring also has preconditions and, if those precondi-
tions are not met, then a refactoring cannot be inverted.
Edits in V; and V; that were applied after refactorings could
break the preconditions of inverse refactorings. To handle
such cases, we have three heuristics: adding program
transformations, storing additional information before
inverting a refactoring, or a fallback heuristic in case the
others fail.

RenameClass(B, A) |

P, e
\
CAdd subclass C::A >
o RenameMethod (A.m1, A.m2)
N S v -

~Add method C.m1,
o overriding Am1 g
 overriding A.m]

v
P, T

i RenameClass(A, B)_,

Fig. 6. Resolved example of circular dependence from Fig. 5. This figure
shows the dependence graph after Step #3 of the algorithm. Applying
the inverse refactoring (p;) effectively pushes p; after the edits, thus
breaking the circular dependence.

Heuristic #1: Renaming a program element. This
heuristic renames a program element to a unique name
when name collisions prevent inverting a refactoring. For
example, if Bob renames PrintServer.getPacketInfo
to getPacketInformation (75) and later adds a new
method getPacketInfo in the same class, inverting the
rename refactoring in Step #3 is not possible because the name
getPacketInfo is already in use (by the lately added
method). MolhadoRef searches for potential name collisions
before inverting the refactoring and executes another renam-
ing to avoid the collision. In this case, before inverting the
refactoring, the algorithm renames the newly introduced
method getPacket Info toaunique name, say get Packet
InfoABC123, and tags this rename refactoring. Now that
there are no more name collisions, renaming 74 can be
inverted. Later, in Step #5, after all of the regular refactorings
have been replayed, the algorithm inverts all refactorings
marked with tags. Thus, it renames the new method
getPacketInfoABC123 backto getPacketInfo. At this
stage, there are no more name collisions because 75 would
have executed.

Heuristic #2: Storing additional information. This heur-
istic stores additional information before inverting a refactor-
ing since some information can get lost when inverting
refactorings. Consider the case when Bob changes the
signature of a method sendPacket by adding an extra
argument of type integer with the default value 0 tobe used in
method calls. Later, he adds a call site where he passes the
value 7 for the extra argument. Inverting the refactoring and
replaying it naively would lose the value 7 and replace it with
value 0. Before inverting the refactoring, MolhadoRef saves
the location of the new call sites and the values of
parameters so that it can restore the same values later
when replaying the refactoring in Step #5.

Heuristic #3: Fallback—treating refactorings as edits.
When no heuristic for inverting a refactoring is found, the
algorithm treats the refactoring as a classic textual edit,
namely, the refactoring is not inverted and replayed, but its
code changes are incorporated by textual merging.
Although the advantages of incorporating the semantics
of the refactoring are lost, the algorithm can always make
progress and, in the worst case, it is as good as classic
textual merging.

The first two heuristics are sufficient to invert all of the
refactorings in the evaluations we have done. Nevertheless,

JIG ET AL.: EFFECTIVE SOFTWARE MERGING IN THE PRESENCE OF OBJECT-ORIENTED REFACTORINGS 329

further evaluations might require developing new heur-
istics to handle other types of refactorings or force us to use
the fallback heuristic (heuristic #3). An analysis of all
refactorings currently supported in Eclipse shows that all of
these refactorings could be inverted by first renaming
conflicting program elements (heuristic #1) or storing
additional information before inverting the refactoring
(heuristic #2).

4.5 Textual Merging

Once refactorings are inverted, all of the edits in V; and V;
that referred to the refactored APIs now refer to the APIs
present in version Vj. The algorithm merges textually all
files that were changed by edits using the three-way
merging [8] that most text-based SCMs use.

All code changes inserted by refactorings that would
have caused same-line or same-block conflicts are elimi-
nated due to the fact that refactorings were previously
inverted. In our LAN example, although both users
changed the declaration of getPacketInfo (7 and 7),
after inverting the refactorings, the call to method get-
PacketInfo inside PrintServer.print no longer
causes same-line conflict.

Still, if two users change the same lines by code edits (not
refactorings), this can generate a same-line conflict requiring
user intervention, although MolhadoRef can automatically
merge a few more edits than textual-based merging. For
example, if Alice and Bob each add a new method declaration
at the same position in a source file, MolhadoRef merges this
automatically using the semantics of API edits. In contrast,
textual-based merging would signal a same-line conflict.
However, it is when multiple refactorings affect the same
lines that MolhadoRef shines over text-based merging.

4.6 Replaying Refactorings

Current refactoring engines identify program entities with
fully qualified names. Within a stream of operations from a
single version, names will always be consistent because
each refactoring works with the current names of program
elements. However, when refactorings are merged from
two different streams, renamings can interfere with each
other in two ways.

The first is where the refactorings refer to two different
entities, but one of them has a name that includes the other.
For example, the fully qualified name of a method includes
the name of its class. If one refactoring renames a class and
the other changes a method in that class, it is important that
the right method gets changed. MolhadoRef solves this
problem by making sure that the refactorings of a method
are performed before the refactorings that rename its class.
More precisely, MolhadoRef uses a topological sort algo-
rithm [15] to reorder the nodes in the refactorings DAG
created in Step #2.

The second is where two refactorings refer to the same
entity. Sometimes, this is a conflict that must be resolved by
the user, such as when the two refactorings change the
name of the same entity. This case would have been
resolved by Step #2. So, the only remaining cases are when
the two refactorings change the same entity, but in different
ways. For example, one refactoring could rename a method
and the other could move it to a new class (e.g., 76 and 7).
Changing either the method name or the class name will
invalidate the other refactoring. MolhadoRef solves this

problem by modifying refactorings. If a refactoring from
one version is replayed after a rename or a “move method”
refactoring from the other version, second refactoring is
changed to use the new name. This lets a name-based
system like Eclipse emulate an ID-based system.

To handle multiple refactorings to the same element, we
extended the definition and semantics of a refactoring. In
addition to source code, a refactoring changes subsequent
refactorings in a chain of refactorings. An enhanced refactor-
ing is a transformation from source code and a chain of
refactorings to another source code and another chain of
refactorings. Conceptually, our enhanced refactoring,
pPrhanced g the pair of a classic refactoring transformation,
p, with another transformation, ¢, that changes subsequent
refactorings in a chain:

0 : Refactorings — Refactorings
pEn}Lanced =< p, 0> .

Composing an enhanced refactoring with another re-

factoring changes the second refactoring:
Enhanced, , __ .0 C— 0 (0:(0s
P; ip; =< piy0i > pj = pi; (0i(p;)).

Each 0 transformation is dependent upon the type of
enhanced refactoring from which it is a part. For instance, a
Oren transformation applied on a move refactoring changes
the parameters of the move refactoring:

Mov(k — p)
Mov(z — p)

if p; = Mov(m — p)

9Ren(7n~>k)(pi) = { if p; = MOU(Z N p) (2)
Applying 0Op.,, on an empty chain of refactorings is

equivalent to applying an identity function:

Pien“U[]) = Pren; Oren((])) = pren-

Given a chain C = [p;, pit1,. .-, px), applying a 6 trans-
formation on the whole chain C incorporates the effect of
the renaming into the whole chain:

eRen([piv Pitls--- 7ka =
(Oren(pi)); (Oren(pit1)), - -+ (Oren(pr))-

The presence of # transformations elegantly solves cases
when multiple refactorings affect the same program element.
Revisiting our motivating example, consider the composition
of two enhanced refactorings, a rename (75) and a move
method (71), that change the same program element,
PrintServer.getPacketInfo. Each enhanced refactor-
ing is decomposed into the classic refactoring and its
f transformation. Suppose that the rename method is applied
first. The enhanced rename method refactoring changes the
arguments of the subsequent move method so that the move
method refactoring operates upon the new name of the
method, PrintServer.getPacketInformation.

5 CONTROLLED EXPERIMENT

We want to evaluate the effectiveness of MolhadoRef in
merging compared to the well-known text-based CVS. For
this, we need to analyze source code developed in parallel
that contains both edits and refactorings. Software devel-
opers know about the gap between existing SCM reposi-
tories and refactorings tools. Since developers know what to

330 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

TABLE 1
Demographics of the Participants

| Mean | Std.Dev. | Min. | Max |

Years Programming 8.35 1.97 5 12
Years Java Programming 4.7 1.72 2.5 7.5
Years Using Eclipse 2.1 1.24 0.5 4

avoid, notes asking others to check in before refactorings
are performed are quite common. Therefore, it is unlikely
that we will find such data in source code repositories. As a
consequence, we designed a controlled experiment.

5.1 Hypotheses

Operation-based merging has intuitive advantages over
text-based merging since it is aware of the semantics of
change operations. We hypothesize that operation-based

merging is more effective than text-based merging. Namely,
MolhadoRef:

H1 automatically solves more merge conflicts,

H2 produces code with fewer compile-time errors,
H3 produces code with fewer runtime errors,

e H4 requires less time to merge

than CVS.

5.2 Experiment’s Design

We wanted to recreate an environment, similar to the
regular program maintenance, where developers add new
features, run regression test suites, and make changes in the
code base in parallel. However, we wanted an environment
where software developers did not know and worry about
other people working on the same code base. We randomly
split 10 software developers into two groups, G1 and G2,
each group containing five developers. Each developer in
group G1 was asked to implement feature ACK, while each
developer in group G2 implemented feature MAX_HOPS.
All developers were given the same starting code base. At
the end, we took their code, stored it in both CVS and
MolhadoRef, and merged their changes using Eclipse’s CVS
client and MolhadoRef.

5.2.1 Demographics
We asked 10 graduate students at UIUC to volunteer in a
software engineering controlled experiment. We were speci-
fically looking for students who 1) had extensive program-
ming experience, 2) had extensive Java programming
experience, and 3) were familiar with the Eclipse develop-
ment environment. Table 1 shows the distribution of our
subject population. Most subjects had some previous
industry experience, two of them were active Eclipse
committers, another one was a long-time industry consultant.
We asked the subjects not to work for more than 1 hour.
For participating in the study, the subjects were rewarded
with a free lunch. During the study, the subjects did not
know who the other participants were or what we were
going to do with their code. We told them to implement the
task as if this was their regular development job. When we
got back their solutions, their implementations were not at
all similar.

5.2.2 Tasks

Each subject received the initial implementation of the LAN
simulation used in our motivating example, along with a
passing JUnit test case that demonstrated how to instantiate
the system. The system was packaged as an Eclipse project;
therefore, the subjects had to use the Eclipse development
environment. Along with the system, the subjects received a
one-page document describing the current state of the
system and the new feature they had to implement. We
asked them to write another JUnit test case that exercises
the feature they just implemented. We also gave them the
freedom to change the current design if they did not like it
by using the automated refactorings supported in Eclipse.
However, only the feature and adding a test case were
mandatory; refactoring was optional.

Task ACK required the subject to change the LAN
simulation so that when a destination node received a
packet, it sends an Acknowledgement packet back to the
sender. The Acknowledgement packet should have its
contents set to “ACK.”

Task MAX_HOPS required the subject to fix a problem.
In the current implementation, the Packet may keep on
traveling forever if the destination node does not exist. To
solve the problem, if a Packet has been traveling around
long enough without being consumed by any Node, then it
gets dumped/eaten up. “Long enough” represents the
maximum number of nodes that a Packet is allowed to
visit and this needs to be specified by the user.

5.2.3 Variables

Controlled variables. All subjects used Eclipse and Java.
Subjects started from the same version and had to
implement one of the two tasks. All mergings were done
by users expert in CVS and MolhadoRef.

Independent variables. Merging with MolhadoRef and
merging with CVS.

Dependent variables. Time spent to perform the mer-
ging, the number of conflicts that cannot be solved
automatically, the number of compile and runtime errors
after merging.

5.3 Experimental Treatment

Now that we had real data about code developed in
parallel, we wanted to merge implementations of ACK and
MAX_HOPS into a code base that would contain both
features. We used CVS text-based merging as the control
group to test whether operation-based merging (with
MolhadoRef) is more effective.

After we gathered all of the solutions implemented by
the subjects, we created pairs as the cross product among
the two groups of tasks (five solutions for task ACK, five
solutions for task MAX_HOPS, resulting in 25 pairs). Each
pair along with the base version of the LAN simulation
forms a triplet. For each such triplet, we committed the
source code in both CVS (using the Eclipse CVS client) and
MolhadoRef. We first committed the base version, then
checked it out in two different Eclipse projects, replaced the
code in the checked out versions with the code for the
MAX_HOPS and ACK tasks, then we committed the
version containing the MAX_HOPS task (no merging was
needed here), followed by committing the version contain-
ing the ACK task (merging was needed here).

JIG ET AL.: EFFECTIVE SOFTWARE MERGING IN THE PRESENCE OF OBJECT-ORIENTED REFACTORINGS 331

TABLE 2
Effectiveness of Merging with CVS versus MolhadoRef

| || Mean | Std.Dev. | Min. | Max |

CVS Conflicts 8.04 2 4 11
MolhadoRef Conflicts 2.24 1.23 0 5
CVS Compile Errors 12.08 8.43 0 39
MolhadoRef Compile Errors 1.04 1.09 0 4
CVS Runtime Errors 0.75 1.11 0 5
MolhadoRef Runtime Errors 0.48 0.58 0
CVS Time to Merge[mins] 17.5 7.56 8 35
MolhadoRef Time to Merge[mins] 4.96 3.55 1 17

By not asking the subjects to do the merging, we
prevented them from knowing the goal of our study so
that they would not make subjective changes that could
sabotage the outcome of merging. At the same time, we
eliminated one of the independent variables that could
affect the outcome of merging, namely their experience on
merging with CVS or MolhadoRef. Instead, the first and
second authors (who were both experts with CVS and
MolhadoRef) did all of the mergings. To eliminate the
memory effect, we randomized the order in which pairs
were merged.

Table 2 shows the results of merging with Eclipse’s CVS
client versus MolhadoRef.

5.4 Statistical Results

After applying analysis of variance (ANOVA) using the
Paired Student’s t-test and Fisher’s test, we were able to reject
the null hypotheses and accept H1 (MolhadoRef automati-
cally solves more conflicts), H2 (MolhadoRef produces fewer
compile errors), and H4 (it takes less time to merge with
MolhadoRef), at a significance level of o = 1%. We were not
able to reject the null hypothesis for H3 (MolhadoRef
produces fewer runtime errors) at a = 1% level.

5.5 Threats to Validity

Construct validity. One could argue why we chose number
of merge errors and time to merge as the indicators for the
quality of merging. We believe that a software tool should
increase the quality of the software and the productivity of
the programmer. Compile and runtime errors both measure
the quality of the merged code. The number of conflicting
blocks indirectly measures how much of the tedious job is
taken care of by the tool, while the time to merge directly
measures the productivity of the programmer.

One could also ask why we did all of the merging
ourselves instead of using the subjects. We wanted to avoid
confusing the effect of the tool with the experience of the
person operating the tool. We were experts with both CVS
and MolhadoRef, whereas our subjects would not have any
experience with MolhadoRef. In addition, the subjects did
not know that their solutions would be merged. This way,
we simulated an environment where the kinds of changes
are not limited by whether or not they can be easily merged,
but where programmers have absolute freedom to improve
their designs.

Internal validity. One could ask whether the design of
the experiment and the results truly represent a cause-and-
effect relationship. For instance, since we were the only
ones who merged subjects’ solutions, the repetition of

experiments could have influenced the results. To eliminate
the memory effect, we randomized the order in which we
merged pairs of solutions. In addition, we split the merging
tasks into several clusters, separated by several days.
Another question is whether the person who merged with
MolhadoRef was better at merging than the person who
merged with CVS. Before doing the merging experiment,
we tried a few cold-run merging experiments and both
persons involved in merging (the first and second authors)
had the same productivity.

External validity. One could ask whether our results are
applicable and generalizable to a wider range of software
projects. We only used one single application and the input
code developed in parallel was produced using Eclipse and
Java. Maybe by using IDEs that do not feature refactorings,
the programmers will make fewer refactorings. Although
the presence of refactorings conveniently integrated within
an IDE can affect the amount of refactoring, we noticed
cases when subjects refactored manually. In addition, Java
is a popular programming language and Eclipse is widely
used to develop Java programs.

The subjects of our experiment were all graduate
students. On one hand, this is an advantage because the
subject demographics are relatively homogeneous. On the
other hand, use of students limits our ability to generalize
the results to professional developers. However, a careful
look at Table 1 shows that the subjects had reasonable
experience, most of them had worked in industry before
coming to graduate school. Notably, two of them had
several years of professional consulting and programming
experience.

Reliability. The initial base version along with the
students’ solutions can be found online [17], so our results
can be replicated.

6 CASE STuDY

We also conducted a case study to further evaluate the
effectiveness of MolhadoRef. We used MolhadoRef to merge
its own source code. Most of the development of MolhadoRef
was done by two programmers in a pair-programming
fashion (two people at the same console). However, during
the last three weeks, the two programmers ceased working on
the same console. Instead, they worked in parallel; they
refactored and edited the source code as before. When
merging the changes with CVS, there were many same-line
conflicts. It turned out that a large number of them were
caused by two refactorings: One renamed a central API class
LightRefactoring toOperation, while the other moved
the API class LightRefactoring to a package that
contained similar abstractions.

When merging the same changes using MolhadoRef, far
fewer conflicts occur. Table 3 presents the effectiveness of
merging with CVS versus MolhadoRef. Column “conflicts”
shows how many of the changes could not be automatically
merged and require human intervention. For CVS, these are
changes to the same line or block of text. For MolhadoRef,
these are operations that cannot be automatically incorpo-
rated in the merged version because they would have
caused compile or runtime errors. The next columns show
how many compile-time and runtime errors are introduced
by each SCM.

332 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

TABLE 3
Effectiveness of Merging with CVS versus MolhadoRef

MolhadoRef | LAN Simulation
Case Study Example

CVS Conflicts 36 3
MolhadoRef Conflicts 1 1
CVS Compile Errors 41 1
MolhadoRef Compile Errors 0
CVS Runtime Errors 7 1
MolhadoRef Runtime Errors 0
CVS Time to Merge [mins] 105 5
MolhadoRef Time to Merge [mins] 2 1

The first rows show how many conflicts could not be solved
automatically and required user intervention. The next rows show the
number of compile and runtime errors after merging with each system.
The last rows present the total time (including human and machine time)
required to merge and then fix the merge errors.

Table 3 shows that MolhadoRef was able to automati-
cally merge all 36 same-line conflicts reported by CVS.
MolhadoRef asked for user assistance only once, namely
when both developers introduced method getID() in the
same class. MolhadoRef did not introduce any compile-time
or runtime errors, while CVS had 48 such errors after
“successful” merge. In addition, it took 105 minutes for the
two developers to produce the final correct version using
CVS, while it takes less than 2 minutes to merge with
MolhadoRef.

7 DiscussIiON

Our approach relies on the existence of logs of refactoring
operations. However, logs are not always available. To
exploit the full potential of record and replay of refactor-
ings, we developed RefactoringCrawler [12] to automati-
cally detect the refactorings used to create a new version.
These inferred refactorings can be fed into MolhadoRef
when recorded refactorings are not available.

Although one might expect that circular dependences
would require a lot of manual editing, in practice such
dependences are rare. Circular dependences can be elimi-
nated manually by deleting some of the operations in the
cycle or automatically by inverting refactorings (as seen in
Fig. 6) or by the enhanced refactorings (Step #5). The
enhanced refactorings eliminate dependences between
refactorings that change the same program elements since
these refactorings can be replayed in any order.

Our merging algorithm discriminates between refactor-
ings and API edits. Although both of these operations have
semantics that can be easily inferred by tools, MolhadoRef
inverts and replays refactorings only, not API edits (although
API edits” semantics are taken into account during conflict
detection). Conceptually, API edits can be treated the same
way in which MolhadoRef currently treats refactorings.
There are two reasons why MolhadoRef treats them
differently. First, API edits are harder to invert than
refactorings since API edits are not behavior-preserving.
[nverting an AddAPIMethodby removing the method would
invalidate all of the edits that refer to the new method (e.g.,
method call sites). To fix this would require also inverting the
code edits (e.g., removing the call sites that refer to new
method). Second, APl edits do not have the same global effect

as the API refactorings because only one user (e.g., the one
who introduced the new method) would be aware of the new
AP]I, leading to fewer cases of same-line conflicts than when
refactorings are involved. Since there are far fewer benefits
from inverting and replaying API edits, we decided to treat
them like code edits.

MolhadoRef is built on top of the Molhado object-oriented
SCM infrastructure [7], which was developed for creating
SCM tools. Molhado is a database that keeps track of history.
MolhadoRef translates Java source code (all Java 1.4 syntax is
supported) into Molhado structures. At the time of check-in,
MolhadoRef parses to the level of method and field
declaration and creates a Molhado counterpart for each
program element. The method/field bodies are stored as
attributes of the corresponding declarations. For each entity,
Molhado gives a unique identifier. When refactorings change
different properties of the entities (e.g., names, method
arguments), MolhadoRef updates the corresponding Molha-
do entries. Nevertheless, the identity of program entities
remains intact even after refactoring operations (for a detailed
description on implementation, see [14] and [10]).

Can such a refactoring-aware SCM system be imple-
mented on top of a traditional SCM that lacks unique
identifiers? We believe that, with enough engineering, the
features of MolhadoRef can be retrofitted on a system like
CVS. To retrieve the history of refactored elements, it is
important to keep a record of unique identifiers associated
with program elements. Identifier-to-name maps can be
saved in metadata files and stored in the repository along
with the other artifacts. At each check-out operation, the
MolhadoRef CVS client needs to load these metadata files
into memory so that they can be updated as the result of
refactoring operations. At each check-in operation, these
files are stored back into the repository.

Limitations of MolhadoRef. One obvious limitation is
that our approach requires that the SCM be language-
specific. However, we do not see this as a limitation but as a
trade-off: We are intentionally giving up generality for
gaining more power. This is no different from other tools
used in software engineering, for example, IDEs are
language-specific (along with all of the tools that make up
an IDE, e.g., compilers, debuggers, and so forth), refactoring
tools are all language-specific.

Second, adding support in MolhadoRef for a new kind of
refactoring entails adding several cells in the conflict and
dependence matrices, describing all combinations between
the new operation and all existing operations. This can be a
time-consuming task. We discovered that new cells tend to
reuse predicates from earlier cells, which makes them easy
to implement. Cells requiring new predicates are still time-
consuming to implement. Third, the correctness of the
system depends on the correctness of formulas in the
conflict and dependence matrices. However, we carefully
revisited those formulas. In addition, multiple experiments
and more experience using our system can help empirically
test the correctness of those formulas.

An alternative to the manual derivation of predicates is
the analytical approach, like the one proposed by Kniesel
and Koch [16]. However, this requires a formal model of
refactoring preconditions. Since the current refactoring
engines (including Eclipse’s) lack such formalism, this
entails implementing a whole new refactoring engine. We

JIG ET AL.: EFFECTIVE SOFTWARE MERGING IN THE PRESENCE OF OBJECT-ORIENTED REFACTORINGS 333

chose instead to build upon a mature and thoroughly tested
engine like Eclipse’s.

8 RELATED WORK

SCM systems have a long history [18], [19]. Early SCM
systems (e.g., CVS [20]) provided versioning support for
individual files and directories. In addition to version
control, advanced SCM systems also provide more power-
ful configuration management services. Subversion [21]
provides more powerful features such as versioning for
metadata, properties of files, renamed or copied files/
directories, and cheaper version branching. Similarly,
commercial SCM tools still focus on files [19]. Advanced
SCM systems also provide fine-grained versioning support
not only for programs but also for other types of software
artifacts. Examples include COOP/Orm [22], Coven [23],
POEM [24], Westfechtel’s system [25], Unified Extensional
Versioning Model [26], Ohst et al.’s fine-grained SCM
model [27], and so forth. However, none of them handle
refactorings as MolhadoRef does.

Software merging. According to Mens [13], software
merging techniques can be distinguished based on how
software artifacts are represented. Text-based merge tools
consider software artifacts merely as text (or binary) files. In
RCS and CVS [20], lines of text are taken as indivisible units.
Despite its popularity, this approach cannot handle two
parallel modifications to the same line well. Only one of the
two modifications can be selected, but they cannot be
combined. Darcs [28] is a system rising in popularity, based
on a unique algebra of patches. Darcs does not associate any
semantics to a patch: A patch is just a series of textual
changes. Darcs can only find out that two patches depend
on each other if they affect the same portions of text.
However, due to inheritance and method overriding in OO
code, patches can affect each other, even when they are not
lexically near each other.

Syntactical merging is more powerful than textual
merging because it takes the syntax of software artifacts
into account. Unimportant conflicts such as code comment
or line breaks can be ignored by syntactic merger. Some
syntactic merge tools focus on parse trees or abstract syntax
tree [29], [30], [31]. Others are based on graphs [32], [33].
However, they cannot detect conflicts when the merged
program is syntactically correct but semantically invalid. To
deal with this, semantic-based merge algorithms were
developed. In Wesfetchtel’s context-sensitive merge tool
[25], an AST is augmented by the bindings of identifiers to
their declarations. More advanced semantic-based merge
algorithms [34], [35], [36] detect behavioral conflicts using
dependency graphs, program slicing, and denotational
semantics.

Operation-based merging. The operation-based ap-
proach has been used in software merging [5], [32], [37],
[38], [39]. It is a particular flavor of semantic-based merging
that models changes between versions as explicit operations
or transformations. The operation-based merge approach
can improve conflict detection and allows better conflict
solving [13]. Lippe and van Oosterom [5] describe a
theoretical framework for conflict detection with respect
to general transformations. No concrete application for
refactorings was presented. Edwards’ operation-based
framework detects and resolves semantic conflicts from

application-supplied semantics of operations [37]. GINA
[40] used a redo mechanism to apply one developer’s
changes to the other developer’s version. The approach has
problems with long command histories and finer granular-
ity of operations. The departure point of MolhadoRef from
existing approaches is its ability to handle the merging of
changes that involve both refactoring and textual editing.

Similarly to MolhadoRef, Ekman and Asklund [41]
present a refactoring-aware versioning system. Their
approach keeps the program elements and their IDs in
volatile memory, thus allowing for a short-lived history of
refactored program entities. In our approach, program
elements and their IDs are modeled in the SCM and stored
throughout the life cycle of the project, allowing for a global
history tracking of refactored entities. In addition, their
system does not support merging.

As described, fine-grained and ID-based versioning have
been proposed before by others. However, the novelty of
this work is the combination of semantic-based fine-grained
ID-based SCM to handle refactorings and high-level edit
operations. To the best of our knowledge, we are presenting
the first algorithm to merge refactorings and edits. The
algorithm is implemented and the first experiences are
demonstrated.

9 CONCLUSIONS AND FUTURE WORK

Refactoring tools have become popular because they allow
programmers to safely make changes that can affect all
parts of a system. However, such changes create problems
for the current SCM tools that operate at the file level:
Refactorings create more merge conflicts, the history of the
refactored program elements is lost, and understanding of
program evolution is harder.

We have presented a novel SCM system, MolhadoRef,
that is aware of program entities and the refactoring
operations that change them. MolhadoRef uses the opera-
tion-based approach to record (or detect) and replay
changes. By intelligently treating the dependences between
different operations, it merges edit and refactoring opera-
tions effectively. In addition, because MolhadoRef is aware
of the semantics of change operations, a successful merge
does not produce compile or runtime errors.

This research is part of our larger goal to upgrade
component-based applications to use the latest version of a
component by replaying the component refactorings [4],
[12]. The upgrading tool needs to handle refactorings and
edits not only on the component side but also on the
application side. This is a special case of the more general
merging case presented in this paper and, therefore, we will
apply the same merge algorithm.

We believe that the availability of such semantics-aware
refactoring-tolerant SCM tools will encourage programmers
to be even bolder when refactoring. Without the fear that
refactorings are causing conflicts with others’ changes,
software developers will have the freedom to make their
designs easier to understand and reuse.

The reader can find screenshots and download
MolhadoRef from its Web page [17].

334 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

ACKNOWLEDGMENTS

The authors would like to thank Darko Marinov, Don
Batory, Frank Tip, John Brant, Jeff Overbey, Brett Daniel,
Nicholas Chen, Mathieu Verbaere, Steve Berczuk, and the
anonymous reviewers for their insightful comments on
different drafts of this paper. D. Dig would also like to
thank IBM for an Eclipse Innovation Grant and the
University of Illinois Urbana-Champaign Computer Science
Department for an Outstanding Mentoring Fellowship. This
paper is an extended version of a conference paper [1].

REFERENCES

[1] D. Dig, K. Manzoor, R. Johnson, and T.N. Nguyen, “Refactoring-
Aware Configuration Management for Object-Oriented Pro-
grams,” Proc. 29th Int’l Conf. Software Eng., pp. 427-436, 2007.

2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the Design of Existing Code. Adison-Wesley,
1999.

[3] S. Berczuk, Software Configuration Management Patterns: Effective
Teamwork, Practical Integration, private conversations with SCM
consultant, Steve Berczuk, author, Addison-Wesley, 2002.

[4] D. Dig and R. Johnson, “How Do APIs Evolve? A Story of
Refactoring,” J. Software Maintenance and Evolution, vol. 18, no. 2,
pp- 87-103, 2006.

[5] E.Lippe and N. van Oosterom, “Operation-Based Merging,” Proc.
Fifth Symp. Software Development Environments, pp. 78-87, 1992.

(6] Eclipse Foundation, http://eclipse.org, 2008.

[71 T.N. Nguyen, E.V. Munson, J.T. Boyland, and C. Thao, “An
Infrastructure for Development of Object-Oriented, Multi-Level
Configuration Management Services,” Proc. 27th Int’l Conf. Soft-
ware Eng., pp. 215-224, 2005.

8] W. Miller and E-W. Myers, “A File Comparison Program,”
Software, Practice and Experience, vol. 15, no. 11, pp. 1025-1040,
1985.

9] S. Demeyer, F.V. Rysselberghe, T. Girba, J. Ratzinger, R.
Marinescu, T. Mens, B.D. Bois, D. Janssens, S. Ducasse, M. Lanza,
M. Rieger, H. Gall, and M. El-Ramly, “The LAN-Simulation: A
Refactoring Teaching Example,” Proc. Int’l Workshop Principles of
Software Evolution, pp. 123-134, 2005.

[10] D. Dig, T. Nguyen, and R. Johnson, “Refactoring-Aware Software
Configuration Management,” Technical Report UITUCDCS-R-2006-
2710, Univ. of Illinois Urbana-Champaign, Apr. 2006.

[11] What’s New in Eclipse 3.2 (JDT), http:/ /help.eclipse.org/help32/
index.jsp?topic=/org.eclipse.jdt.doc.user/whatsNew /jdt_whats
new.html, 2008.

(12] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automatic
Detection of Refactorings in Evolving Components,” Proc. 20th
European Conf. Object-Oriented Programming, pp. 404-428, netfiles.
uiuc.edu/dig/RefactoringCrawler, 2006.

[13] T. Mens, “A State-of-the-Art Survey on Software Merging,” IEEE
Trans. Software Eng., vol. 28, no. 5, pp. 449-462, May 2002.

(14] D. Dig, K. Manzoor, R. Johnson, and T. Nguyen, “Refactoring-
Aware Configuration Management System for Object-Oriented
Programs,” Technical Report UIUCDCS-R-2006-2770, Univ. of
Illinois Urbana-Champaign, Sept. 2006.

[15] T.H.Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, second ed., pp. 549-552. MIT Press and McGraw-
Hill Books, 2001.

[16] G. Kniesel and H. Koch, “Static Composition of Refactorings,”
Science of Computer Programming, vol. 52, nos. 1-3, pp. 9-51, 2004.

[17] MolhadoRef Web page, https://netfiles.uiuc.edu/dig/Molhado
Ref, 2004.

[18] R. Conradi and B. Westfechtel, “Version Models for Software
Configuration Management,” ACM Computing Surveys, vol. 30,
no. 2, pp. 232-282, 1998.

[19] CM Yellow Pages, http:/ /www.cmcrossroads.com/, 2008.

[20] T. Morse, “CVS,” Linux J., vol. 1996, no. 21es, p. 3, 1996.

[21] “Subversion,” http:/ /subversion.tigris.org/, 2008.

[22] B. Magnusson and U. Asklund, “Fine-Grained Revision Control of
Configurations in COOP/Orm,” Proc. Sixth Software Configuration
Management Workshop, pp. 31-48, 1996.

[23]

[24]

(23]

[26]

[27]

[28]
[29]

(30]
(31]
(32]

(33]

[34]

[33]

[36]

[37]

(38]

[39]

[40]

[41]

M.C. Chu-Carroll, J. Wright, and D. Shields, “Supporting
Aggregation in Fine Grained Software Configuration Manage-
ment,” Proc. Foundations of Software Eng., pp. 99-108, 2002.

Y.-J. Lin and S.P. Reiss, “Configuration Management with Logical
Structures,” Proc. 18th Int’l Conf. Software Eng., pp. 298-307, 1996.
B. Westfetchtel, “Structure-Oriented Merging of Revisions of
Software Documents,” Proc. Third Int’'l Workshop Software Config-
uration Management, pp. 68-79, 1991.

U. Asklund, L. Bendix, H. Christensen, and B. Magnusson, “The
Unified Extensional Versioning Model,” Proc. Ninth Software
Configuration Management Workshop, pp. 100-122, 1999.

D. Ohst, M. Welle, and U. Kelter, “Differences between Versions
of UML Diagrams,” Proc. Foundations of Software Eng., pp. 227-236,
2003.

“Darcs SCM,” http:/ /darcs.net/, 2008.

U. Asklund, “Identifying Conflicts during Structural Merge,” Proc.
Nordic Workshop Programming Environment Research, pp. 231-242,
1994.

J.E. Grass, “CDIFF: A Syntax Directed Differencer for C++
Programs,” Proc. Usenix C++ Conf., pp. 181-194, 1992.

W. Yang, “How to Merge Program Texts,” The]. Systems and
Software, vol. 27, no. 2, pp. 129-135, 1994.

T. Mens, “A Formal Foundation for Object-Oriented Software
Evolution,” PhD dissertation, Vrije Univ. Brussels, 1999.

J. Rho and C. Wu, “An Efficient Version Model of Software
Diagrams,” Proc. Fifth Asia Pacific Software Eng. Conf., pp. 236-243,
1998.

V. Berzins, “Software Merge: Semantics of Combining Changes to
Programs,” ACM Trans. Programming Languages and Systems,
vol. 16, no. 6, pp- 1875-1903, 1994.

J.W. Hunt and T.G. Szymanski, “A Fast Algorithm for Computing
Longest Common Subsequences,” Comm. ACM, vol. 20, no. 5,
pp. 350-353, 1977.

W. Yang, S. Horwitz, and T. Reps, “A Program Integration
Algorithm that Accommodates Semantics-Preserving Transforma-
tions,” ACM Trans. Software Eng. Methodology, vol. 1, no. 3, pp. 310-
354, 1992.

W. Edwards, “Flexible Conflict Detection and Management in
Collaborative Applications,” Proc. 10th Ann. ACM Symp. User
Interface Software and Technology, pp. 139-148, 1997.

A. Lie, R. Conradi, T.M. Didriksen, and E.-A. Karlsson, “Change
Oriented Versioning in a Software Engineering Database,” Proc.
Second Int’l Workshop Software Configuration Management, pp. 56-65,
1989.

H. Shen and C. Sun, “A Complete Textual Merging Algorithm for
Software Configuration Management Systems,” Proc. 28th Ann.
Int’l Computer Software and Applications Conf., pp. 293-298, 2004.
T. Berlage and A. Genau, “A Framework for Shared Applications
with a Replicated Architecture,” Proc. Sixth ACM Symp. User
Interface Software and Technology, pp. 249-257, 1993.

T. Ekman and U. Asklund, “Refactoring-Aware Versioning in
Eclipse,” Electronic Notes in Theoretical Computer Science, vol. 107,
pp. 57-69, 2004.

Danny Dig received the BS and MS degrees in
computer science from the “Politehnica” Uni-
versity of Timisoara, Romania, where he built
JavaRefactor (the first open-source refactoring
engine for Java), and the PhD degree in
computer science from the University of lllinois
at Urbana-Champaign in 2007. He is a post-
doctoral associate at the Massachusetts Insti-
tute of Technology. He is particularly interested
in program transformations, automated refactor-

ing, design and architectural patterns, and broadly interested in software
reuse, software development processes, and software evolution. He is
currently doing research on refactorings that increase the parallelism of
existing sequential code. He served as the program and conference
chair of the First Workshop on Refactoring Tools (2007).

Kashif Manzoor received the BS degree in
computer systems engineering from Ghulam
Ishag Khan Institute of Engineering Sciences
and Technology, Topi, Pakistan, in 1997 and
the MS degree in computer science from the
University of lllinois at Urbana-Champaign in
2007. He is currently a director of profes-
sional services at Techlogix. His research
interests include refactoring, design patterns,
process improvement, and software develop-

Ralph Johnson received the BA degree from
Knox College in 1977 and the PhD degree in
computer science from Cornell University in
1987. He is a research associate professor at
the University of lllinois at Urbana-Champaign.
He is one of the four coauthors of Design
Patterns and the leader of the group that
developed the Smalltalk Refactoring Browser,
the first refactoring tool. He is currently working
on a tool for refactoring Fortran and for helping

programmers tune their Fortran programs for new parallel architectures.
He is a member of the IEEE Computer Society.

JIG ET AL.: EFFECTIVE SOFTWARE MERGING IN THE PRESENCE OF OBJECT-ORIENTED REFACTORINGS 335

Tien N. Nguyen received the PhD degree in
computer science from the University of Wis-
consin in 2005. He is an assistant professor in
the Electrical and Computer Engineering De-
partment at lowa State University. His software
engineering expertise is in the areas of version
control and configuration management, software
maintenance and evolution, and program analy-
sis. His research work on semantics-based

4 configuration management and collaborative
supports has produced Molhado, the first object-oriented configuration
management infrastructure, which has been successfully used in
several projects. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

