
Generating Interaction Test Cases for Mobile Phone 
Systems from Use Case Specifications 

André L. L. de Figueiredo 
GMF/DSC – Universidade Federal  de 

Campina Grande (UFCG) Caixa 
Postal 10.106 – 58109-970 – Campina 

Grande – PB – Brasil 

andrel@dsc.ufcg.edu.br 

Wilkerson L. Andrade 
COPIN/DSC – Universidade Federal 
de Campina Grande (UFCG) Caixa 

Postal 10.106 – 58109-970 – Campina 
Grande – PB – Brasil 

wilker@dsc.ufcg.edu.br 

Patrícia D. L. Machado 
COPIN/DSC – Universidade Federal 
de Campina Grande (UFCG) Caixa 

Postal 10.106 – 58109-970 – Campina 
Grande – PB – Brasil 

patricia@dsc.ufcg.edu.br 
 
 

ABSTRACT 
The mobile phone market has become even more competitive, 
demanding high quality standards. In this context, applications are 
built as sets of functionalities, called features. Such features are 
combined in use scenarios of the application. Due to the fact that 
the features are usually developed in isolation, the tests of their 
interactions in such scenarios are compromised. In this paper, we 
present a proposal of specifying feature interaction requirements 
with use cases; generating a behavioral model from such 
specification; and a strategy for generating test cases from the 
behavioral model that aims to extract feature interaction scenarios 
in such a way that interactions can be tested.   

Categories and Subject Descriptors 
D.2.1 [Software Engineering]: Requirements/Specifications – 
methodologies, tools. D.2.4 [Software Engineering]: 
Software/Program Verification – validation. D.2.5 [Software 
Engineering]: Testing and Debugging – testing tools.  

General Terms 
Algorithms, Verification. 

Keywords 
Feature interaction, software testing, use case. 

1. INTRODUCTION 
The mobile phone market has grown even more in the lasts years, 
with this type of mobile communication device becoming 
sufficiently popular. It is happening in a way that the system 
responsible for controlling these devices has become highly 
complex, due to both the need of evolving due to the market 
dispute and the need of coming along with the hardware and 
network infrastructure evolution. On one hand, the need of quality 
products is eminent in front of this competitive market. On the 
other hand, the systems complexity lead us to a context where 

reaching such quality levels demands effective tools and 
techniques. 

An important characteristic of this type of system is that its 
development happens in an evolutionary manner, where new 
functionality sets (called features, e.g., send and receive text 
messages) are inserted into the previously developed versions. In 
general, the new features are developed and tested in isolation, or 
at least with the features that they depend on [4]. 

However, handling the features in isolation can cause some 
problems, as that caused by the feature interactions. The term 
interaction between features has been used by the community to 
express the problems caused by functionality added to the systems 
that generate conflicts with features already added [2, 4, 6, 10]. 
For instance, a feature that redirect a call from B to C when the 
mobile phone A is busy, can conflict with other feature that show 
the B mobile phone number to the user of A when A is busy. We 
can say, in this case, that feature interaction occurs if the features 
work in isolation, but the same system will not be able to 
implement both features. 

In our context, we call feature interactions the flows where a 
feature functionality interact in some way with a functionality of 
the other feature. For instance, when a user is composing a text 
message, an incoming call can arrive, causing an interaction 
between the features of send message and incoming call. In these 
cases, we identify the flow that is executing (called the main 
flow) and another caused by an interruption. In the example, the 
composing message is the main flow and the interruption is that 
caused by the incoming call flow. This example do not show the 
conflict between requirements, as we previously mentioned for 
the features interaction term, however this is a flow that is not 
usually specified, due to fact that the features are developed and 
tested in isolation. 

Software testing has being used in mobile phone applications as 
an important tool for evaluating system quality. However, besides 
the known difficulties of testing distributed [5, 9] and mobile 
systems, the test of this king of system present other difficulties, 
such as feature interactions. Since the features are developed and 
tested in isolation, feature interaction testing can be neglected. 

This work is part of a research project from a cooperation 
between Motorola and CIn-UFPE/Brazil. The main goal of the 
project is defining an integrated process for generating, selecting 
and evaluating mobile phone applications test cases. While other 
works in this project deal with features in isolation, as we 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
 
 

ACM SIGSOFT Software Engineering Notes Page 1 November 2006    Volume 31 Number 6



previously said, in this paper, we present a proposal in which 
features interactions information are added to the features 
development process, making test case generation for testing such 
interactions possible. The proposal consists of: 

• A way of specifying interactions in use cases; 

• A behavioral model architecture, based on the CSP 
notation, in which feature interactions can be presented; 

• A strategy for feature interaction test case generation. 

This paper is structured as follows. In Section 2, an overview of 
CSP [8] is presented. In Section 3, the context where our proposal 
is inserted into is presented. In the Sections 4, 5, and 6 we present 
our proposal showing, respectively, how to specify feature 
interactions in use cases, the behavioral model generated from 
those use cases, and a strategy for test cases generation. In Section 
7, we discuss the related works. Finally, the conclusions are 
showed in Section 8. 

2. CSP OVERVIEW 
The process algebra CSP is a formal specification language 
primarily designed to describe the behavior of concurrent and 
distributed systems [14].  The fundamental idea of CSP is a 
communication based on events; events are abstractions of real 
world actions. Events are assumed to be drawn from a set ∑, the 
alphabet of a specification. Thus, the set ∑ contains all possible 
communications that a CSP specification can perform. 

In a specification, events are introduced by channel declarations; 
channels can be typed or untyped. Untyped channels (turnOn) 
are indeed events (or simply synchronization points) whereas 
typed channels (send) are collection of events (also seen as 
vehicles to communicate data of the respective type). Types are 
built-in (Int for integers) or user-defined (datatype denotes 
enumerations and nametype abbreviations). The following 
fragment of a CSP specification illustrates these elements: 

datatype MESSAGES = SMS | MMS | EMS 
nametype PHONE = Int 
channel turnOn 
channel send, receive: MESSAGES.PHONE 

The typed channel send can communicate any data from the 
composed type MESSAGES.PHONE. Thus, an event from this 
collection is an element whose name is send, followed by (.) a 
value formed from the enumerated type MESSAGES (or an SMS, 
MMS or EMS message), followed by (.) a phone, specified by the 
type PHONE (the integers set). For instance, one such an element 
is send.SMS.1. 

Typed events can be used to input or output data. Thus, to 
describe an input using the channel receive, we write 
receive?msg?phone. This pattern introduces two variables: 
msg and phone. Their values are only determined after a 
communication has occurred successfully.  

CSP uses the concept of process to input or output data, 
synchronize communications, and describe behaviors. A process 
is a behavioral unit. Here, we consider the following simplified 
CSP process grammar: 

 

P ::= STOP 
| SKIP 
| a -> P 
| P |˜| P 
| P [] P 
| P [|X|]P 
| Q 

The communication between two processes can only occur 
through synchronization, i.e., the same event occur in two 
processes at the same time. 

In CSP, two basic processes deserve special attention: the first is 
the process STOP, which represents a broken machine (that is, a 
machine that is unable to communicate anything), and the second 
is the process SKIP used to denote a successfully terminated 
process. 

The simplest behavior, with the exception of STOP and SKIP, is 
given by the prefix (->) operator. The process e -> P offers the 
event e to its environment and waits indefinitely for its 
occurrence. Once the event e occurs, the process e -> P 
behaves like P. A CSP environment is anything which can 
interact with a process. 

Alternative behavior is characterized by two kinds of choice 
operators: The internal or non-deterministic choice (|˜|) and the 
external or deterministic choice ([]). The process P |˜| Q 
behaves like P or Q independent of the environment. That is, the 
process P |˜| Q passes to behave like P or Q and only after that 
the environment can interact with it. On the other hand, the 
process P [] Q can behave like P or Q but the choice is decided 
by the environment. That is, if the environment is only able to 
interact with P, then P is chosen, otherwise Q is chosen. 

Processes can be combined to describe the architecture of systems 
through parallel composition. The parallel composition, denoted 
by [|X|], is used to put two processes in parallel, in which case 
they should synchronize in all communication events in the set X. 
For instance, the process P [|ch|] Q describes the parallel 
composition of processes P and Q, where they should execute all 
events from channel ch simultaneously. Events outside X should 
be executed independently on each process. 

A CSP process is defined by an equation, where the left-hand side 
has the name of the process with eventual parameters, and the 
right-hand side has a process body given by a composition of the 
previous operators. The following equation defines the process 
TEST_CASE_1 as a series of prefixes terminating successfully. 
TEST_CASE_1 =  

setup -> goTo.MESSAGE_EDITOR.1 -> 
create.SMS.1 -> test -> send.SMS.1 -> 
receive?mesg.1 -> open.mesg -> cleanup -
> delete.mesg -> goTo.IDLE -> SKIP 

To capture non-terminating behavior, we simply use recursive 
processes. The last element of the simplified CSP process 
grammar refers to a recursive process call (Q). This occurs when 
in the right-hand side of an equation, P = ... Q, the name of a 
process corresponds to the left-hand side of some (other or the 
same) equation (Q = ...). 

ACM SIGSOFT Software Engineering Notes Page 2 November 2006    Volume 31 Number 6



In this case, the behavior is simply transferred to the right-hand 
side of the called process. Therefore, recursive behavior allows 
infinite system modeling. 

3. BACKGROUND 
In this section, we present the context where our solution is 
inserted. Such context is related to the other works of our project 
that are straightly connected to our proposal. Thus, as mentioned 
in Section 1, the features are implemented and tested in isolation. 
As we are interested about test, we present the process from a 
tester’s point of view, from the requirements specification to test 
case generation. We do not present details of test case execution 
because it is not in the context of our work, which is limited to 
identifying the test cases. 

In general, the process is as follows: first, the feature 
requirements are specified in use cases using a controlled natural 
language; second, the behavioral model is generated in CSP from 
use cases; and finally, the test cases are extracted from this 
behavioral model, as is shown in Figure 1. 

 

 
Figure 1. General view of feature test process 

 
In the next subsections, we show, through an example, how each 
step of the process is contemplated in other to illustrate the 
context where our proposal is inserted into. Our use case example 
is called “Moving a Message from inbox to the Hot Message 
folder”, which means that a new folder used for store the user’s 
favorite messages is added to the mobile phone. The user can 
move messages to this new folder through shortcuts as well as 
perform other operations relating to the new folder.  

3.1 Feature Requirements Specification in the 
Use Cases Notation 
The features are specified as use cases using a controlled natural 
language as the example shows in Figure 2 [3]. The controlled 
natural language is a subset of natural language (English) with a 
fixed grammar, in order to allow an automatic processing. Figure 
2 presents the main flow of the use case, whereas Figure 3 
presents an alternate flow. The flows are described through steps 
that include a user action and the respective system response. For 
instance, the step “5S” has the selection of the option “Move to 
Hot Message”, and the respective system response is to show an 
alert saying that the message was moved. 

Besides the actor action and the system response, each step has a 
condition (System State) that determines if the system response 
will happen or not. If the condition is not satisfied, an alternative 
flow must be specified, we have as an example the step “5S” of 
the main flow that has one alternative flow (steps “1E” and “2E” 
in Figure 3). 

 
Figure 2. Example of use case – main flow 

 

 
Figure 3. Example of use case – alternative flow 

 

3.2 Generating the Behavioral Model in CSP 
The general strategy for test cases generation consists of obtaining 
a formal behavioral model in CSP (automatic generation [3]) from 
the feature use cases. Then, using a test case extraction tool [13], 
the test cases can be obtained. In this section, we present the CSP 
model structure generated from use cases, however the algorithm 
for such generation will be not presented in details. 

In this CSP model, each use case will be modeled by a process. 
The system process (System), as a whole, will consist of a 
random choice between the use cases processes, as the Figure 4 
shows. 

 

 
Figure 4. CSP behavioral model – System process 

 
For instance, the UseCase1 process can model the use case 
presented in Figures 2 and 3.  

In the CSP Model, each use case step, both user action and system 
response, will be modeled as an event of the respective process. In 
our context, the events are automatically generated from the use 
case phrase, using a tool [11]. The tool [11] generates CSP events 
from the controlled natural language (English phrases). For 
instance, such tool receives as input the phrase “Go to Message 
Center” and returns the respective CSP event 
“goto.DTGOT_APPLICATION. (MESSAGE_CENTER, 
{})”. The CSP behavioral model is automatically generated 
using another tool [3] that is responsible for generating formal 
specifications from requirement documents. With the first tool 
that generates CSP events from phrases, and the second tool that, 
given a use case set, it generates a CSP behavioral model, we 
obtain the model presented in Figure 5. 

Note that the main flow is modeled in the UseCase1 and 
UseCase1_1 processes and the alternative flow is in 
UseCase1_2. Thus, the choice shown in line 13 represents the 
condition contained in the use case related to the step “5S”. 

Feature 
Specification as 

Use Cases 

Behavioral 
Model in CSP 

Test Cases 

ACM SIGSOFT Software Engineering Notes Page 3 November 2006    Volume 31 Number 6



 
Figure 5. CSP behavioral model – UseCase1 process 

 

3.3 Test Case Generation 
From the generated behavioral model presented in the previous 
subsection, a test case generation tool [13] based on test purposes 
[16] can be run to generate test cases. Test purposes are system 
properties which the test cases must satisfy. Following the 
example shown in the previous subsections, a possible test 
purpose could be: 

UNTIL “Message moved to Hot Message Folder” is displayed. 

This test purpose, using the UNTIL notation, represents all system 
executions that make the system display the message “Message 
moved to Hot Message Folder”. As an example of a test case 
generated from the UseCase1 process (see Figure 5), we have 
that shown in Figure 6. Note that the test case expression takes the 
system to the response “Message moved to Hot Message Folder”. 

 

 
Figure 6. Test case 

4. INTERRUPTION SPECIFICATION IN 
USE CASES 
As shown in the previous section, each feature is specified and 
tested in isolation. As the use cases, and consequently the 
generated behavioral model, do not have any information about 
features interactions, test cases for such cannot be generated. In 
this section, we will present an approach for specifying flows that 
cause feature interactions, called interruptions, as well as flows 
that do not permit or redefine interruptions behaviors. 

The features interactions occur when a feature is executing a flow 
and other flow from another feature interrupt the first flow and 
then, begin its execution. For instance, given that a compose text 
message flow, of a send messages feature, is executing, i.e., the 
user is composing a text message. Then, an incoming call can 
arrive characterizing the interaction between send message and 
incoming call features. 

For this flow to be present in the behavioral model and, 
consequently, test cases that exercise it can be identified, we need 
to: (1) specify the interrupt flow in use cases and (2) the main 
flow need to allow such interruption to occur. In Figure 7, we 
have an example of  incoming message interruption use case. 

 

 
Figure 7. Incoming message interruption use case 

 
The interruption use cases are specified when the feature related 
to that interruption is developed, and will be useful as default 
behavior for all other features that can interact with this 
interruption. The first step of the use case main flow contains 
condition information (System State) whose value is the 
interruption name, and the system response to when this 
interruption occur, that is, in this case it is shows an incoming 
message alert. The remaining parts of the flow are like a normal 
use case, including the alternate flows. 

Once this interruption flow is specified, we assume that it can be 
executed at any time that another use case is executing. However, 
some flows can forbid any interruption or redefine its behavior. 
Using the use case presented in Section 3, we specify some 
interruption flows, as shown in Figure 8. 

 

ACM SIGSOFT Software Engineering Notes Page 4 November 2006    Volume 31 Number 6



 
Figure 8. Interruptions behavior specification 

 
A new table called Interruptions is added to the use case. In this 
table, we can specify interruptions that are not permitted, 
specifically one or all, as in the step “2I” (Figure 8). Moreover, 
the interruption behavior can be redefined, as occur in the step 
“1I” (Figure 8), where, with incoming message interruption, the 
system behavior will be only to show an alert informing that a 
new message has arrived. This behavior is different from the 
default, where the read message option is shown too. Each 
interruption table entry set refers to a main or alternative flow 
step, as the column “From Step” specifies. The acronyms AA and 
SR inform if the specification refers, respectively, to occurred 
interruption before the actor action or the system response. 

In practice, with the specification presented in Figure 8, whenever 
a new message arrives when the user selects the move message to 
Hot Messages folder, only an alert will appear (step “1I” of 
Figure 8). Moreover, when a memory insufficient dialog box 
appears to the user, no interruptions can occur before the user 
confirms the message (step “2I” of Figure 8). 

In summary, our strategy for interruptions specification in use 
cases consists of: 

• Specify the default flows for interruptions as a use case 
when a feature inserts a new interruption on the system 
(see Figure 7); 

• For each use case step, specify in the Interruption table 
(see Figure 8) if the interruptions are permitted or not, 
and the redefined behavior for each specific step. By 
default, the interruptions are permitted. 

With this strategy of interruptions specification, interruptions 
behavior are defined during features development, without 
changing the typical development of features in isolation. 
Moreover, each specific feature can redefine the behavior of each 
interruption in each use case step, including, not permitting their 
execution. Thus as shown in the next sections, these information 
are used to build a behavioral model in CSP from where the test 
cases are extracted. 

5. BEHAVIORAL MODEL GENERATION 
FROM USE CASE 
With the feature use cases, a CSP behavioral model is generated, 
as shown in Section 3. However, as well as the use cases 
presented, the behavioral model do not have interruption 
information and then, flows with features interactions are not 
generated. In this section, we present the CSP behavioral model 
architecture that can generate flows with interruptions. Then, we 
show how the use cases presented in Section 4 are used to get the 
behavioral model. 

For the sake of simplicity, Figure 9 shows a general view of the 
proposed solution to the CSP behavioral model. In that model, we 

can see the behavioral model processes. Besides the process that 
execute a feature general use cases (Feature X) and a process that 
represents the feature interruption use cases (Feature Y), the 
model presents two other processes responsible for launch and 
manage the interruptions. It is important to note that this is a 
behavioral model, and that such processes do not have any 
relation to the possible software components. 

 

 
Figure 9. General view of the behavioral model 

 

Figure 9 presents an example of a model where we have “Feature 
X” as a main feature (that is executing), “Interruption Dispatcher” 
as a process responsible for generating interruptions, 
“Interruption Manager” as a process responsible for delegating 
the interruption handling to the responsible features, and “Feature 
Y” as a feature responsible for handling a specific interruption. 

The “Interruption Dispatcher” communicates with the 
“Interruption Manager” through two signals: interrupt and 
noInterruption. With the interrupt signal we have that an 
interruption has occurred in the system, for instance, an incoming 
message. And with the noInterruption signal follows the 
information that no interruption has occurred. The features 
communicate with the “Interruption Manager” through four 
signals: allowInterruption, interrupt, restart, and finish. 
allowInterruption is used by the features to inform the 
“Interruption Manager” that in that executing point interruptions 
are allowed. interrupt is used by “Interruption Manager” to 
inform the features that an interruption has occurred. restart is 
used by “Interruption Manager” to inform the feature that it can 
continue its execution. And finish signal is used by the features 
that handle interruptions to inform the “Interruption Manager” 
that such handling has finished.  

As we can see in Figure 9, an example of this model flow would 
be as follows. After the Feature X executes a specific step (step1), 
it sends an allowInterruption signal to “Interruption Manager” 

ACM SIGSOFT Software Engineering Notes Page 5 November 2006    Volume 31 Number 6



informing that in that point interruptions are allowed. At this 
moment, the “Interruption Dispatcher” can send a noInterruption 
signal informing that no interruption has occurred, or interrupt, 
making the “Interruption Manager” transfer the execution to the 
Feature Y, that is responsible for the interruption handling. When 
this feature finishes the handling, a finish signal is sent to 
“Interruption Manager” that send a restart signal to the main 
feature (Feature X), so that it continues its execution. 

Notice that the “Interruption Manager” process has a feature 
scheduling as its main functionality, defining which feature 
should be executing at a time. In our behavioral model, the 
interruptions event is a random event generated by the 
“Interruption Dispatcher”. It is important to remark that the 
presented model captures the parallelism that there is between the 
features execution and the model is very scaleable in a way that 
we can model even nested interruptions.  

5.1 CSP Behavioral Model 
The behavioural model is specified in CSP, where each 
component is modeled as a CSP process, as we showed in Section 
3. Due to space restrictions, we present only fragments of the 
extended CSP model. 

Figure 10 presents the process that models the system without 
interruptions (System), as we showed in Section 3, and the process 
that represents the system with interruptions behaviors 
(System_INT). This system consists of the parallel execution of 
the feature (use cases set), the process relating to the “Interruption 
Manager”, and the process relating to the “Interruption 
Dispatcher”. 

Figure 5 presents a portion of the CSP model relating to the 
respective feature. For this CSP model be able to interact with the 
“Interruption Manager”, we need to add events to the model. 
Thus, we have to add the fragment code shown in Figure 11 
between two events that allow interruptions. Note that the open 
parenthesis symbol in Line 2 (Figure 11) does not have the 
respective close parenthesis symbol, and therefore, we need to 
add a close parenthesis symbol at the final of each process for 
each fragment added. In the fragment (Figure 11), intRedirect is 
the interruption set that closes the use case flow. For instance, an 
interruption caused by low battery in the mobile phone turns off 
the device. The intNotAllowed set contains the not allowed 
interruptions. 

 

 
Figure 10. CSP model with interruptions –  System_INT 

process 
 

 
Figure 11. Code to be added between the behavioral model 

events 
 
The allowInterruption event in Line 1 (Figure 11) informs to the 
“Interruption Manager” that interruptions are allowed. In Line 5 
(Figure 11), there will be synchronization if an interruption of the 
intRedirect set occurs, i.e., if an interruption that closes the use 
case flow occurs. In Line 11 (Figure 11), there will be 
synchronization if an interruption not belonging to the intRedirect 
set occurs, i.e., if an interruption that does not close the use case 
flow occurs. After synchronizing, the event defaultHandling 
informs to the “Interruption Manager” that the interruption 
behavior handling is default, i.e., there is not behavior redefinition 
to this step. The Line 18 (Figure 11) contains the handling for 
when a not allowed interruption occurs, and the Line 23 (Figure 
11) contains the handling for when no interruption occurs.  

As we can see in Figure 11, the synchronization channels are 
indexed (in the figure, with value 0). This is due to the fact that 
the “Interruption Manager” can handle many features, as occur 
when interruptions interrupt the others interruptions behavior, and 
so on. In this way, we are using indexes to identify which feature 
is been handling, and as it is the main feature, i.e., the first that 
can be interrupted, its index is 0. 

Thus, with the Figure 11 code fragment added, part of the model 
presented previously in Figure 5 can be seen in Figure 12, where 
such code fragment was added between the steps of Lines 3 and 
31. 

 

ACM SIGSOFT Software Engineering Notes Page 6 November 2006    Volume 31 Number 6



 
Figure 12. CSP model with interruption – UseCase1 process 

 

The process that models the Interruption Dispatcher is presented 
in Figure 13. This process behaves as an interruption selector, that 
is, it can dispatch an interruption (intEvent.INCOMING_CALL or 
intEvent.INCOMING_MSG) or not (noInterruption). 

 

 
Figure 13. CSP model with interruption – 
INTERRUPTION_DISPATCHER process 

 
A process fragment that models the Interruption Manager can be 
seen in Figure 14. When the feature synchronizes the 
allowInterruption event, the Interruption Dispatcher will dispatch 
an interruption or the event noInterruption (see Figure 13). If no 
interruption is dispatched (Line 17 in Figure 14), the Interruption 
Manager will only restart the feature execution (restart signal). 

 

 
Figure 14. CSP model with interruption – 
INTERRUPTION_MANAGER process 

 
If an interruption occurs, there are two possible behaviors: 

• Default Behavior. When synchronizing the 
defaultHandling event (Line 7 in Figure 14), the 
INTERRUPTION_PROCESS process begins to behave 
as a parallel process between the process responsible for 
the interruption behavior and itself, with the increased 
indexes (Line 9 in Figure 14). 

• New Behavior. The feature itself defines the behavior, 
and therefore the Interruption Manager does not need to 
do anything. 

When a feature that is handling an interruption finishes its 
execution, it sends a finish signal (Line 30 in Figure 14) to the 
Interruption Manager that restart the last interrupted feature 
(restart.(index - 1)). 

As we showed in the Section 3, a use case can contain a new 
behavior specification to a given interruption. In our example, 
such specification is present in the code fragment of the Figure 
15. Note that the fragment between the Lines 16 and 19 (Figure 
15) was added in order to redefine the behavior of the incoming 
message feature. If this interruption occurs, the behavior defined 
in the USE_CASE_1_INCOMING_MSG_REDEFINED_1 
process will be executed instead of the default behavior, as we 
had specified in the Figure 8. 

 

ACM SIGSOFT Software Engineering Notes Page 7 November 2006    Volume 31 Number 6



 
Figure 15. CSP model with interruption – UseCase1 process 

with redefined behavior 
 

5.2 Behavioral Model Generation 
Thus, as mentioned in Section 3, from the use cases specifications 
of features, a CSP behavioral model is generated. In this sense, 
using the use cases with interruptions information (presented in 
Section 4), and with the CSP behavioral model generated for 
features, we will present a strategy for the automatically 
generation of the extended behavioral model presented in this 
section. 

As shown in Figure 10, the process relating to the system as a 
whole is placed in parallel with the Interruption Manager and the 
Interruption Dispatcher. The next step of the strategy is to insert 
the synchronization events with the Interruption Manager into the 
process relating to the use cases (e.g. UseCase1), according to the 
interruptions specifications. This step is composed, basically, of 
three rules: 

Rule 1. The code present in Figure 11 must be added between 
events where the interruptions are allowed. 

Rule 2. No code needs to be added if no interruptions are 
allowed, but if only an interruption set is not allowed , the code 
present in Figure 11 must be added, where the intNotAllowed set 
is a set containing such interruptions not allowed. 

Rule 3. If an interruption is redefined, as we can see in Figure 8 
for an incoming message interruption, its behavior must be 
specified in a new process (e.g. 
USE_CASE_1_INCOMING_MSG_REDEFINED_1) and a code, 
such as the one presented in Lines 16 to 19 (Figure 15), must be 
added. 

6. AUTOMATIC GENERATION OF TEST 
CASES 
We have shown in Section 3 that, from the CSP behavioral model, 
a test case generation tool, that does such generation based on test 
purpose, is used for obtaining test cases. Thus, we will show how 
to build test purposes in a way of generating test cases to the 
feature interaction test, i.e., test cases with interruptions flows 
(not possible before). 

Test purpose is a system property specification that allows the test 
case generation to focus on the test of such property in the 
implementation. For this, we need to define some properties for 
interaction test. We divide the properties into two groups: specific 
properties for interruptions and properties extracted from 
requirements. 

To generate specific test cases (e.g. INCOMING_MSG) for a 
given interruption, we have the test purpose of the Figure 16. This 
test purpose specifies flows where, before moving a message to 
the hot messages folder, an incoming call is received by the user. 

 

 
Figure 16. Test purpose for INCOMING_MSG interruption  

 
When we give this test purpose (Figure 16) together with the 
model presented in Section 5 as input to the test case generation 
tool, we will obtain the test cases set presented in Figure 17.  The 
events between the Lines 5 and 12 (see Figure 17) represent the 
occurrence of the incoming message interruption. The other test 
cases generated will differ from this, for example, by the moment 
where the interruption will occur. 

 

 
Figure 17. Test case for the Figure 6 test purpose 

A test purpose can be specified for testing a requirement that is 
not present in the use case. For instance, we have the requirement 

UNTIL “Incoming Message” alert is displayed 

UNTIL “Message moved to Hot message folder” is displayed 

ACM SIGSOFT Software Engineering Notes Page 8 November 2006    Volume 31 Number 6



shown in Figure 18, which cannot be specified in use cases. 
However, we can test it using test purposes, as the test purpose 
presented in Figure 19. This test purpose will generate test cases 
where the Auto-Cleanup operation occurs, but soon later, at least 
one message can be founded in the hot messages folder, meaning 
that such operation did not change anything in the folder, as 
specifies the requirement of the Figure 18. Amongst such test 
cases, we have the test cases of the Figure 20. 

 

 
Figure 18. System requirement 

 

 
Figure 19. Test purpose for Figure 18 requirement 

 

 
Figure 20. Test cases for Figure 16 test purpose 

 

7. RELATED WORKS 
This section presents some works related to our proposal. Ryser 
and Glinz [15] show a practical approach to test systems using 
scenarios (use cases). They proposed a procedure to use scenarios 
in a defined way to systematically derive test cases for system 
test. This is done by formalization of natural language scenarios 
into state charts, annotation of state charts with helpful 
information for test case creation/generation and by the path 
traversal in the state charts to determine concrete test cases. As a 
drawback, we can mention the use of natural language, since a 
scenario transformed into a state chart by one developer may 
differ significantly from a state chart developed from the same 
scenario by another developer and it is very difficult to automate 
the process. Our proposal uses a template that is filled out with a 
controlled natural language, and then we obtain the behavioral 
model automatically. 

Hartmann et al [7] present a way of generating integration test 
cases from UML State charts. Developers first define the dynamic 

behavior of their components via UML State charts, specify the 
interactions amongst them (using CSP annotated in the diagrams) 
and finally annotate them with test requirements. Test cases are 
then derived from these annotated State charts using a tool 
developed by the authors. Besides the use of commercial UML 
modeling tools such as Rational Rose, the developers need to 
build state chart diagrams that are not very popular and know the 
process algebra CSP. In our proposal, the user only needs to fill 
out the templates and define the test purposes. 

Bertolino and Gnesi [1] propose a methodology to manage the 
testing process of product lines, based on the requirements 
expressed in the use cases. The use cases are described through 
structured natural language in a proposed template, but the 
template does not allow specifying interactions between use 
cases. 

Finally, Lorentsen et al [12] propose a way of identifying 
categories of interactions and create behavioral models that 
capture those interactions. They have been used Colored Petri 
Nets to manually model the interactions. The disadvantage of this 
proposal is because the developers need to know Petri Nets and 
the process is not automatic. 

8. CONCLUDING REMARKS 
This paper presents a strategy for test case generation aiming to 
test feature interactions in a context where features are developed 
in isolation. Also, a way of specifying interaction requirements in 
use cases is presented. In this strategy, the engineer specifies the 
possible interruptions that can or cannot occur for a given use 
case step, besides the interruptions behavior. A CSP behavioral 
model architecture is presented, besides a strategy of generating 
such behavioral model from interruption specifications contained 
in the use cases. Finally, a strategy for generating test cases using 
a test purpose-based tool is presented, including possible ways of 
specifying the test purposes and how to build them. 

Since the interruptions specification uses an existing template, our 
proposal of specifying interruptions will not have problems 
relating to the engineers acceptance that are responsible for 
writing requirements. They will continue writing the features 
requirements in isolation [3]. The example showed in this paper 
was used as case study in order to compare the current process 
used in Motorola with our proposal. We verified that in the 
current test case set there were tests only for the auto cleanup 
interruption. Our proposal added some kind of interruptions as 
incoming call, incoming message, and remove battery. As a 
result, we have seen that our proposal generated more test cases 
than the current process and our proposal identified new 
interactions scenarios that were not being exercised. 

Relating to the process automation, the behavioral model 
generation from use cases is a process completely automatic and 
the test case generation is an automatic process too that uses other 
tools of our research project. 

9. ACKNOWLEDGMENT 
This work has been developed in the context of a research 
cooperation between Motorola Inc. and CIn-UFPE/Brazil. We 
thank the entire group for all the support, criticisms and 
suggestions throughout the development of this research. In 
particular, we thank Alexandre Mota for commenting on and 

UNTIL Cleanup is executed 

UNTIL Go to Hot Message folder 

UNTIL Message is highlighted 

The Auto-Cleanup operation must not erase the 
messages of the hot messages folder  

ACM SIGSOFT Software Engineering Notes Page 9 November 2006    Volume 31 Number 6



making effective suggestions for improving the final version of 
the CSP behavioural model. This work is also supported by 
FAPESQ/CNPq (Projeto 060/03 e Processo CNPq 550466/2005-
3). Second author is supported by CNPq/Brazil. 

10. REFERENCES 
[1] Bertolino, A.,  and Gnesi, S. Use case-based testing of 

product lines. In Proceedings of the 9th European software 
engineering conference held jointly with 11th ACM 
SIGSOFT international symposium on Foundations of 
software engineering, ACM Press, Helsinki – Finland, 2003, 
pp. 355–358. 

[2] Bousquet, L., Ouabdesselam, F., Richier, J. L., and  Zuanon, 
N. Feature interaction detection using asynchronous 
approach and testing. Computer Networks, 2000, 32(4), pp. 
419–431. 

[3] Cabral, G., and Sampaio, A. Formal Specification 
Generation from Requirement Documents. In Proceedings of 
the Brazilian Symposium on Formal Methods (SBMF 2006), 
2006, pp. 217–232. 

[4] Calder, M., Kolberg, M., Magill, E. H., and Reiff-Marganiec, 
S. Feature interaction: a critical review and considered 
forecast. Computer Networks, Amsterdam – Holand, 1999, 
41(1), pp. 115–141. 

[5] Ghosh, S., and Mathur, A. P. Issues in testing distributed 
component-based systems. In First ICSE Workshop Testing 
Distributed Component-Based Systems, 1999. 

[6] Godkesen, J. C. A formal framework for feature interaction 
with emphasis on testing. K. E. Cheng, and T. Ohta, editors. 
In 3rd International Workshop on Feature Interactions in 
Telecommunication Networks and Software Systems, IOS 
Press, Amsterdam - Holand, 1995, pp. 21–30. 

[7] Hartmann, J., Imoberdorf, C., and Meisinger, M. UML-
Based integration testing. In Proceedings of the ACM 
SIGSOFT international symposium on Software testing and 
analysis, ACM Press, Portland - United States, 2000, pp. 60 
– 70. 

[8] Hoare, C. A. R. Communicating sequential processes. 
Communications of the ACM, 1978, 21(8), pp. 666–677. 

[9] Jard, C.  Principles of distributed test synthesis based on 
true-concurrency models. I. Schieferdecker, H. König, and 
A.  Wolisz, editors. IFIP Conference Proceedings, 2002, 
210, pp. 301–316. 

[10] Keck, D. O., and Kuehn, P. J. The feature and service 
interaction problem in telecommunications systems: A 
survey. IEEE Transactions on Software Engineering, 1998, 
pp. 779–796. 

[11] Leitão, D., Torres, D., and Barros, F. Motorola SpecNL: a 
Hybrid System to Generate NL Descriptions from Test Case 
Specifications. To appear in 6th International Conference on 
Hybrid Intelligent Systems (HIS'06), 2006. 

[12] Lorentsen, L., Tuovinen, A.-P., and Xu, J. Modelling Feature 
Interactions in Mobile Phones. In Feature Interaction in 
Composed Systems (ECOOP 2001), Hungary, 2001, pp. 7–
13. 

[13] Nogueira, S. C. Generating Test Cases from CSP Models. 
M.Sc. Thesis, Centro de Informática – UFPE, 2006. 

[14] Roscoe, A. W. The Theory and Practice of Concurrency. 
Prentice-Hall (Pearson), 1997. 

[15] Ryser, J., and Glinz, M. A Practical Approach to Validating 
and Testing Software Systems Using Scenarios. In 3rd 
International Software Quality Week Europe (QWE 99), 
Brussels, Nov. 1999. 

[16] Tretmans, J. Testing Concurrent Systems: A Formal 
Approach. J. Baeten, and S. Mauw, editors. In 10th 
International Conference on Concurrency Theory 
(CONCUR’99), Lecture Notes in Computer Science, 
Springer-Verlag , 1998, 1664, pp. 46–65. 

 
 

 

ACM SIGSOFT Software Engineering Notes Page 10 November 2006    Volume 31 Number 6



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


