
Improving Guidance when Restructuring Variabilities in Software Product Lines

Márcio Ribeiro Paulo Borba
Federal University of Pernambuco

Recife, Brazil
{mmr3, phmb}@cin.ufpe.br

Abstract

Software Product Lines (SPLs) encompass a family of
software systems developed from reusable assets. One is-
sue during SPL maintenance is the decision about which
mechanism should be used to restructure variabilities aim-
ing at improving the modularity of the SPL artifacts. Due
to the great variety of mechanisms (Inheritance, Configu-
ration Files, Aspect-Oriented Programming), selecting the
incorrect ones may produce negative effects on the cost to
evolve the SPL. To reduce this problem, we propose a deci-
sion model to help developers to choose mechanisms to re-
structure variabilities in SPLs. The domain analyzed by this
work consists of test scripts. We also developed a prototype
tool to support developers by recommending mechanisms
according to the decision model. Using our model and tool
may improve the tests variabilities’ modularity and remove
bad smells such as cloned code.

1 Introduction

Software Product Lines encompass a family of software-
intensive systems developed from reusable assets (known
as core assets). By reusing such assets it is possible to con-
struct a large scale of products through specific variabilities
defined according to customers’ requirements [17]. On the
other hand, implementation activities become more com-
plex because they also have to realize variabilities [15].

In this context, reasoning about how to combine both
core assets and product variabilities is a challenging task
[4]. In other words, the challenge consists of understand-
ing the available mechanisms (such as Inheritance, Config-
uration Files, Aspect-Oriented Programming [12], and so
forth) for realizing variability and knowing which of them
fits best for a given variability [15]. Previous work [13, 3]
has structured product line variabilities by using only one
mechanism. Because each mechanism has strengths and
weaknesses, not all variabilities were well structured when
considering modularity criteria, for example.

Due to the great variety of available mechanisms, se-
lecting an incorrect mechanism may produce negative ef-
fects on the cost to maintain the SPL [8]. For example,
cloned code and concerns not modularized may appear, af-
fecting independent evolution of SPL artifacts, increasing
developer’s effort, and consequently decreasing productiv-
ity when evolving the SPL.

The problem of combining core assets and SPL variabil-
ities exists not only at source code, but also in other artifacts
such as requirements and tests. In order to reduce the afore-
mentioned problems, we have defined a Decision Model to
help developers on the task of choosing mechanisms to re-
structure variabilities in SPLs. To construct our decision
model, we analyzed variabilities found in Motorola mobile
phone test scripts. The test variabilities analyzed were han-
dled by usingif-elsestatements. For example, theif body
is executed to test productA, whereas theelsebody tests
productB. The motivation to restructure them is that such
approach does not provide modularity at all; variabilities
are not separated from core assets. The model aims at sug-
gesting mechanisms so that these test variabilities can be
modularized, removing theif-elsestatements from the test
cases.

In order to improve even more developer’s productivity,
a tool for supporting the decision model is essential. For
example, when evolving product line variabilities, a tool
may reduce developer’s effort, avoiding time consuming
and error-prone tasks like finding where an existing cloned
variability is. For this reason, we have developed a proto-
type tool for supporting developers when restructuring SPL
variabilities implemented usingif-elsestatements.

The main contributions of our work are:

• A decision model for improving guidance of develop-
ers in SPL maintenance. Existing models [4, 15] con-
sider a high level approach that rely basically on fea-
ture types. On the other hand, we provide a decision
model which is code-centric and more fine-grained.
Because we consider not only the feature type, but also
the exactly variability location at the source code and
some criteria, our recommendations may be more pre-

cise. In addition, being code-centric makes easier the
task of understanding how to apply the recommended
mechanism through Fowler-like refactorings [9] to re-
structure variabilities.

• A prototype tool to recommend automatically mech-
anisms for restructuring SPL variabilities, improving
the developer’s productivity when evolving them.

2 Motivating Examples

In this section we provide some motivating examples ex-
tracted from real Motorola mobile phone test scripts. The
SPL variabilities are handled by usingif-elsestatements so
that there is no modularity in the tests.

2.1 Example 1

The first variability kind analyzed in this work is at the
End of Method Body. Our example of this test variability
(illustrated in Figure 1) consists of two optional features im-
plemented at the end of theproceduresmethod. Hence, four
instances of the product line are possible: (i) neithertrans-
flashnor bluetoothare present in the phone; (ii) bothtrans-
flash and bluetoothare present in the phone; (iii) phones
with only transflash; and (iv) phones with onlybluetooth.
Notice that the order of execution of the steps (in this case,
features) must be preserved: changing it might break the
test case. Therefore, to restructure these features, the mech-
anisms must take their order into consideration.

public class extends
public void
public void

...
if

...

public void

TC_065 TestCase {
preconditions() {}
procedures() {

(has(PhoneCapability.TRANSFLASH)) {

}

}
postconditions() {}

}

if
...
(has(PhoneCapability.BLUETOOTH)) {

}

Transflash Bluetooth

Figure 1. End of Method Body.

Since theif statements are tangled in this particular test,
we can not reuse thetransflashandbluetoothcode through-
out other tests. Obviously, cloning the code in other tests
is not worthwhile to modularity. Due to the great vari-
ety of available mechanisms, deciding which one to use
in this particular case is not straightforward, being time-
consuming. In addition, such decision may be error-prone,
producing negative effects on the product line, like cloned
code and an explosion in the number of classes, as we will
see later in Section 3.1.

2.2 Example 2

The second example of variability kind showed here oc-
curs at theMiddle of Method Body. Figure 2 illustrates an
optional feature of mobile phone browsers. Some browsers
are limited and can not store web pages. On the other hand,
if such functionality is present, it should be tested.

public class extends
public void

...

if

...

TC_064 TestCase {
procedures() {

navigationTk.launchApp(PhoneApplication.BROWSER);
browserTk.

.CAN_STORE_WEBPAGE)) {

}

}
}

takeWebPageScreenshot();
(has(PhoneFunctionality
block(”Store web page”);
browserTk.storeWebPage();

...
browserTk.goToURL(”google.com”);
browserTk.takeWebPageScreenshot();

(has(PhoneFunctionality.CAN_STORE_WEBPAGE)) {
block(”Store web page”);
browserTk.storeWebPage();

}

browserTk.goToURL(”gmail.com”);
browserTk.takeWebPageScreenshot();

(has(PhoneFunctionality.CAN_STORE_WEBPAGE)) {
block(”Store web page”);
browserTk.storeWebPage();

}

browserTk.takeWebPageScreenshot();

if

if

...

...

Can store webpage

Figure 2. Middle of Method Body.

Notice that the code to store the web page is cloned
throughout the test case (and throughout many other tests,
not shown in Figure 2). There is no reuse, which means that
maintaining this code may be time consuming and error-
prone. Also, due to the hundreds of tests available at Mo-
torola, finding out where the cloned code is may affect the
developers productivity. Again, deciding which mechanism
to use to deal with this cloning may be a difficult task.

2.3 Summary

In summary, two problems have arisen: how to decide
which mechanism should be used to restructure a given vari-
ability; and how to improve developers productivity by re-
ducing the time spent when finding cloned code and at the
same time recommending automatically mechanisms able
to deal with such cloning. This way, in order to improve the
guidance of developers to restructure SPL variabilities, we
present a decision model (Section 3) and a tool (Section 4).

3 Towards a Decision Model

As mentioned in Section 1, the SPL approach contains,
besides common, variable elements. Hence, implementa-
tion activities become more complex because they have to

realize variabilities as well [15]. In particular, reasoning
about how to combine both core assets and product vari-
abilities is a challenging task [4].

Many mechanisms can be used to combine these ar-
tifacts. They range from simple ones like Inheritance
to more complex ones like Aspect-Oriented Programming
(AOP) [12]. Due to this great variety, selecting the incorrect
ones may produce negative effects on the cost to evolve the
SPL [8]. As showed in Section 2, cloned code and concerns
not modularized may appear, affecting the independent evo-
lution and decreasing productivity when evolving the SPL.

In order to reduce the aforementioned problems, we have
defined a Decision Model to help developers on the task
of choosing mechanisms to restructure variabilities in SPL.
To construct our decision model, we analyzed variabilities
found in Motorola mobile phone test scripts like the ones
presented in Section 2. In this way, the decision model is
based on variabilities handled by usingif-elsestatements.
The model aims at suggesting mechanisms so that variabil-
ities can be modularized.

In what follows, we explain the inputs and the output
of our model. Since it is code-centric, the first input is the
exactlocation of the variability at the source code. For ex-
ample, the variability of Section 2.2 appears at the middle
of a method body. The second input consists of thefeature
type (variability type). In this work, we have considered the
optional1 and alternative2 types. The last input is somecri-
teria used to compare the mechanisms. The strengths and
weaknesses of each mechanism will be analyzed through
these criteria. Each criteria is detailed as follows.

• Modularity: the primary goal of every variability
mechanism is to improve reusability by enabling sepa-
ration of reusable assets from their variabilities [16]. In
this way, the Modularity criteria represents the separa-
tion of concerns that a mechanism provides. Possible
values:yesor no;

• Source Code Size:represents the increasing/decreas-
ing of lines of code when applying the mechanism. For
example, if the number of lines of code of the inheri-
tance approach increased9% when compared to the
original if-else code, we write+9%. If it decreased
9%, we write−9%.

• Scalability: tries to discover if the mechanism pro-
vides modularity when implementing more features
than the original code. Possible values:yesor no;

• Time: represents the binding time provided by the
mechanism. Possible values:compile-timeor runtime.

1As showed in Section 2, the feature may be included or not.
2The feature replaces another feature when included, like a XOR.

The decision model should be able torecommend
mechanismsbased on the aforementioned inputs. The
mechanisms suggested by the model represent its output.
Figure 3 outlines an application of our decision model.

Decision Model

Inheritance, Mixins,
Configuration Files,

Dependency Injection...

Variability Location:
Method Parameter

Criteria:
Modularity = yes
Time = runtime

Recommended
:Mechanism(s)

Configuration
Files

Feature type:
alternative

Figure 3. Application of the Decision Model.

Notice that not always we will be able to decide which
mechanism fits best to a given variability and a set of cri-
teria. For example, if theModularity , Source Code
Size , andScalability criteria are considered and two
mechanisms are similar according to those criteria, but the
Time is not took as input of the model, we recommend both
mechanisms and leave the final decision to the user. He may
prefer the mechanism that provides runtime binding instead
of compile-time, for instance.

The methodology to construct the decision model is ex-
plained as follows. For each analyzed test variability, we
restructured it using different mechanisms. Differently of
existing models [4, 15], our decision model is based not
only on qualitative but also on quantitative studies. For this
reason, we calculate some software metrics of Separation of
Concerns (SoC), size, and coupling to compare the imple-
mentation of each mechanism and analyze the advantages
and disadvantages of the mechanisms as well. Finally, we
adapt the decision model to encompass such new variability.

The metrics used in this work are presented in Table 1.
They are an important tool to guide our decision model,
pointing out the strengths and weaknesses of each mecha-
nism, being useful to indicate the appropriate mechanism to
implement a given variability. More details of these metrics
can be found elsewhere [18]. It is important to note that we
have chosen these metrics since the majority address mod-
ularity. This way, when analyzing them we may conclude
which mechanism provides better modularity.

The remainder of this section considers each variability
separately, based on its location at the source code.

3.1 End of Method Body

Since the example of Figure 1 consists of two optional
features, the mechanisms must be able to compose them in
case of phones which have both features. This way, beyond
Inheritance, we have used theDecorator design pattern,
theMixins approach, andAOP. The details of each imple-
mentation are presented as follows:

Metric Definition
Concern Diffusion over Components (CDC) Counts the number of components that implements a concern
Concern Diffusion over Lines of Code (CDLOC) Counts the number of lines of code responsible for implementing a concern
Number of Concerns per Component (NCC) For each component, counts the number of concerns it implements
Lines of Code (LOC) Counts the number of source code lines (ignoring comments and blank lines)
Vocabulary Size (VS) Counts the number of components like classes, aspects, and configuration files
Coupling Between Components (CBC) The total coupling among the components
Depth of Inheritance Tree (DIT) Counts how far down the inheritance hierarchy a class

Table 1. Software Metrics used to compare the mechanisms implementations.

• Inheritance: this implementation consists of overrid-
ing theproceduresmethod. Therefore, two classes in-
herits fromTC 065. Each class overrides the afore-
mentioned method and calls the super method fol-
lowed by the specific feature code (transflashor blue-
tooth). Last but not least, another subclass is consid-
ered to implement both features;

• Decorator: relies on the Decorator design pat-
tern [10]. To compose both features, clients must in-
stantiate the composition of thetransflashand blue-
toothclasses;

• Mixins: analogous to Inheritance. A mixin is an ab-
stract subclass that may be applied to different super-
classes to create a related family of modified classes.
It composes related classes like a multiple inheritance.
Details about mixins can be found elsewhere [7];

• AOP: two aspects (one for each feature) are created to
crosscut theproceduresmethod using anafter advice.
Further, an extra aspect declares the precedence of the
features, being essential to define the features’ order.

Table 2 shows the metrics for theEnd of Method Body
mechanisms. For these mechanisms, consider thatDIT
represents the maximumDIT value found among all com-
ponents. Figure 4(a) illustrates that theInheritance mech-
anism does not enable feature compositions suitably: for
phones with bothTransflashandBluetooth, it is necessary
to create a new class which clones the source code of the
two classes responsible for implementing each feature sep-
arately. In other words, the mechanism does not address
Separation of Concerns (SoC) adequately. As depicted in
Table 2, the cloned code is reflected in theCDLOC and
LOC metrics: the impact on theSource Code Size is
high (+180% for CDLOC and+48% for LOC). These
metrics show how the amount of lines of code is higher
when comparing to the other mechanisms. Also, theInher-
itance mechanism does not provideScalability . For
example, if we consider three features (Transflash, Blue-
tooth, and Infrared), the amount of cloned code increases
and the hierarchy may get complicated due to the growing
on the number of classes and compositions. As illustrated in

Figure 4(b), althoughMixins solves the cloned code prob-
lem, theScalability problem remains when consider-
ing at least one more feature.

Although some metrics show that theMixins mecha-
nism is slightly better than theDecorator and AOP (see
CDLOC andLOC metrics), we concluded that this holds
only for two features. Again, if we consider one more
feature (Infrared, for example), the number of classes and
compositions increases significantly when using theInher-
itance andMixins mechanisms, being hard to maintain the
whole application. In this case, instead of defining only one
class for composing the features, the developer must imple-
ment four:Transflash& Bluetooth, Transflash& Infrared,
Bluetooth& Infrared, and Transflash& Bluetooth& In-
frared (see Figure 4(c)). Because of the last case, theDIT
metric would be3 for theMixins mechanism. According to
Table 2, theNCC metric is the same for all mechanisms:
Class, Mixins, andExtra Aspectimplement theTransflash
and Bluetooth features (NCC = 2). However, in the
Infrared scenario, bothInheritance and Mixins mecha-
nisms would have four classes whereNCC > 1 (Fig-
ure 4(c)). In other words, these four components do not sep-
arate the three aforementioned features. TheCDC andV S
metrics also increase using these mechanisms: beforeIn-
frared, CDCTransflash = CDCBluetooth = 2 andV S =
4; after Infrared, CDCTransflash = CDCBluetooth =
CDCInfrared = 4 andV S = 8.

The AOP mechanism does not have such
Scalability problem because of theExtra Aspect
responsible for declaring the precedence among the fea-
tures (only this component haveNCC > 1). Whenever a
new feature must be considered, the aspect for that feature
is written, and the existing precedence aspect (Listing 1)
is modified to take the new feature into consideration
(in the Infrared scenario,V S = 5). The CDC metric
remains the same for all features: for example, theInfrared
feature is diffused in its own aspect and in theExtra Aspect
(CDCInfrared = 2).

Listing 1. Declare Precedence Extra Aspect.
pub l i c aspec t Ex t ra Aspec t {

dec la re precedence: T r a n s f l a s h A s p e c t , B l u e t o o t h A s p e c t ;}

TC_065

Transflash Bluetooth New Feature

Transflash
Bluetooth

Code Cloned

<< inherits >><< inherits >>

(a) End of Method Body using Inheritance.

New Feature Transflash Bluetooth

Transflash
Bluetooth

<< refines >><< refines >>

<< composes >>

TC_065

(b) End of Method Body using Mixins.

TC_065

Transflash Bluetooth

<< inherits >><< inherits >>

Transflash
Bluetooth

Infrared Transflash
Infrared

Bluetooth
Infrared

Transflash
Bluetooth
Infrared

NCC = 2

CDC = 4Transflash

Bluetooth

Infrared

CDC = 4
CDC = 4

NCC = 2 NCC = 2 NCC = 3

(c) Three optional features using Inheritance. The impact on Scalability is analogous for Mixins.

Figure 4. End of Method Body: Inheritance x Mixins.

When compared to the other mechanisms, theDec-
orator mechanism is worse in the following metrics:
CDLOCTransflash, CDLOCBluetooth, V S, and CBC.
This happens because it requires an extra infrastructural
code: an interface and an abstract class. Nevertheless, the
mechanism does not need any artifact to implement both
features (CDLOCBoth = 0). Therefore, only one class is
responsible for implementing theTransflashfeature, being
important to theModularity criteria. Analogously, only
one class implements theBluetoothfeature. The same hap-
pens in theInfraredscenario, which means that theDecora-
tor mechanism does not have theScalability problem.

3.2 Middle of Method Body

The variability presented in Figure 2 can not be ad-
dressed by using pure aspects. For example: if we use
an aspect to weave the store web page code after calling
the takeWebPageScreenshotmethod, the aspect will weave
the feature in four places, which is incorrect (there are four
takeWebPageScreenshotcalls, but only threeif statements).

Since calls to methods such aslaunchApp, goToURL,
and takeWebPageScreenshotoften happen more than once
in the test scripts,Tracematches [2] may be an useful
mechanism to address these variabilities. This way, in-

stead of considering only thetakeWebPageScreenshotcall,
we can use tracematches to create a regular expression, as
showed in Listing 2. Now, after any call tolaunchAppor
goToURLfollowed by a call to thetakeWebPageScreenshot
method will be advised by thetracematchand the code to
store the web page will be executed.

According to the metrics showed in Table 3, theTrace-
matches approach is better than theOriginal one. The
Source Code Size has been decreased because there
is no cloned code throughout the test case anymore (−50%
for CDLOC and−6% for LOC). In the Modularity
context, any unanticipated change in the store web page
code is now localized: only thetracematchof Listing 2
needs changing.

Listing 2. Store Web Page Tracematch.
t racematch () {

sym launchApp a f t e r : c a l l (∗ ∗ . launchApp (. .)) ;
sym goToURL a f t e r : c a l l (∗ ∗ . goToURL (. .)) ;
sym takeWebPageScreena f t e r :

c a l l (∗ ∗ . takeWebPageScreenshot (. .)) ;
(launchApp | goToURL) takeWebPageScreen{

b lock (” S t o r e web page ”) ;
browserTk . s toreWebPage () ;

}
}

However, definingTracematchesproduces a strong cou-
pling between thetracematchand theTC 064. Any unan-

End of Method Body Inheritance Decorator Mixins AOP
CDLOC Bluetooth 36 40 36 36

Transflash 21 25 21 21
Both 44 0 2 4
Total 101 (+180%) 65 (+80%) 59 (+63%) 61 (+69%)

CDC Bluetooth 2 1 2 2
Transflash 2 1 2 2

NCC Bluetooth and Transflash (Class) 2 - - -
Bluetooth and Transflash (Mixin) - - 2 -
Bluetooth and Transflash (Extra Aspect) - - - 2

LOC Commonalities 75 75 75 75
Variabilities 101 65 59 61
Total 176 (+48%) 140 (+17%) 134 (+12%) 136 (+14%)

VS 4 5 4 4
CBC 3 6 4 4
DIT 1 1 2 0

Table 2. End of Method Body metrics.

ticipated change in theTC 064, like changing the order of
some statements, may break thetracematch. In this way,
we have a cyclical dependency situation: thetracematch
depends on theTC 064; and to change theTC 064, the de-
veloper must be aware about the tracematch.

Middle of Method Body Original Tracematches
CDLOC 24 12 (-50%)

CDC 1 1
LOC 194 182 (-6%)
VS 1 2

CBC 0 1

Table 3. Middle of Method Body metrics.

This way, we claim in this work that defining de-
sign rules [14] or crosscutting programming interfaces
(XPIs) [11] should be used to remove the dependency be-
tween thetracematchandTC 064.

3.3 Summary: Decision Model

After analyzing each variability by its exact location at
the source code and considering its feature type, we finally
present our decision model. The assumption for using the
model is that the variabilities where it will be applied use
if-elsestatements to handle their variabilities or analogous
conditionals, such as “#ifdef” and “#elif”, broadly used in
many product lines.

Although our model was defined based on some exam-
ples of test variabilities, we believe that the metrics results
of the mechanisms would be similar when considering other
examples. Of course, metrics likeLOC and CDLOC
would be different, which can affect slightly theSource
Code Size criteria. Also, depending on the number of
variabilities analyzed, the total system coupling (CBC)
would not be the same either. However,CDC andNCC

would be similar, which may guarantee theModularity
andScalability criteria in those other examples.

In summary, the decision model presented in this work
recommendssome mechanisms to restructure variabilities
in SPL. Applying the recommended mechanisms in accor-
dance to the aforementioned assumption may provide sev-
eral benefits, such as:

• Eliminating cloned code: cloned code is nothing
more than a breeding ground for bugs in the future [9].
Eliminating them means avoiding these bugs when
evolving the SPL and makes the code more modular;

• Independent evolution: because the features may be
modularized using the mechanisms recommended by
the decision model, developers might work in parallel
when maintaining the tests;

• Productivity increasing: time consuming and error-
prone tasks like evolving cloned code are avoided.
Also, due to the provided modularization, developers
may work in parallel, reducing the time-to-market.

Figure 5 illustrates our decision model3. Notice that
the exact variability location at the source code, the feature
type, and some criteria are the model’s inputs.

4 Supporting Developers

As we discussed earlier, choosing an appropriate mech-
anism to restructure a given variability may be a difficult
task. If no tool support is available, such task may get
worse. For example, if a variability is scattered throughout
many classes, discovering in what classes the variability is
increases the developer’s effort.

3Due to space restrictions, we did not detail all locations of the model.

Figure 5. Decision Model.

To minimize such difficulties, we present here a proto-
type tool that we have developed based on the Eclipse Java
Development Tool (JDT) [1]. The tool is able torecom-
mend mechanismsaiming at restructuring SPL variabili-
ties. This way, given a variability implemented usingif-
elsestatements, the tool may recommend a suitable mech-
anism to restructure such variability according to the deci-
sion model depicted in Section 3.3.

To get the recommendation, the user must select the de-
sired if-else statement. Afterwards, the tool searches for
clones of the selected code and starts the process of recom-
mending mechanisms. In this paper, we provide two ex-
amples of using our tool. For more details, some videos of
the tool are available inhttp://www.cin.ufpe.br/
˜mmr3/recommender-tool/ .

4.1 Variability Cloned

Listing 3 illustrates two test cases:TC 045andTC 063.
According to our decision model showed in Figure 5, the
variability is at theBeginning of Method Body Cloned:
the if statement to setup theTransflashpreconditions is
cloned. After selecting theif statement inTC 045 and
clicking on the recommendation button, the tool searches
for clones in all available.javafiles. Afterwards, it recom-
mends a mechanism, which in this case wasAOP.

Listing 3. Cloning in two test cases.
pub l i c c l a s s TC 045 ex tends Tes tCase{

pub l i c vo id p r e c o n d i t i o n s (){
i f (has (P h o n e C a p a b i l i t y .TRANSFLASH)){

phone . s e t B i t s (PhoneB i t s .TRANSFLASH ,t rue) ;
phone . f l u s h B i t s () ;

}
. . .

}
}

pub l i c c l a s s TC 063 ex tends Tes tCase{
pub l i c vo id p r e c o n d i t i o n s (){

i f (has (P h o n e C a p a b i l i t y .TRANSFLASH)){
phone . s e t B i t s (PhoneB i t s .TRANSFLASH ,t rue) ;
phone . f l u s h B i t s () ;

}
. . .

}
}

Therefore, our tool may improve the productivity by re-
ducing painful tasks like finding cloned variabilities in hun-
dreds of classes. At the same time, the tool recommends a
mechanism able to deal with the cloning, which avoids fu-
ture errors and helps on modularizing the complete feature.

4.2 Searching for a Valid Tracematch

Figure 6 shows anif statement at the middle of a certain
method body. As mentioned in Section 3.2,Tracematches
can be useful to restructure this variability. To avoid prob-
lems like introducing the code into wrong places, the tool
must guarantee that there is a unique tracematch. Other-
wise, theTracematchesmechanism is not recommended.

Figure 6 also summarizes how the tool searches for a
unique tracematch. The first upper neighbor is considered:
takeWebPageScreenshot. Next, it verifies if there is an-
other call to thetakeWebPageScreenshotmethod (Step 1).
Since there are two calls to this method, after calling the
takeWebPageScreenshotmethod is not a unique trace be-
cause the variability code would be wrongly introduced into
two places, instead of only one. Thus, the tool takes another
neighbor into consideration: it verifies if the next trace (go-
ToURL followed by takeWebPageScreenshot) exists (Step
2). Because such trace already exists, it considers another
neighbor (Step 3). Since the trace of theStep 3is unique,
the tool recommends this trace.

...
browserTk.verifyBrowserHistory();

browserTk.goToURL("gmail.com");

browserTk.takeWebPageScreenshot();

(has(PhoneFunctionality.CAN_STORE_WEBPAGE)) {
block("Store web page");
browserTk.storeWebPage();

}
...
browserTk.goToURL("gmail.com/app");

browserTk.takeWebPageScreenshot();
...

if

1
... after

?takeWebPageScreenshot

1

... after followed by
?

goToURL
takeWebPageScreenshot

2

3

2

3 ... after
followed by

followed by
?

verifyBrowserHistory

goToURL

takeWebPageScreenshot

NO!

NO!

YES!

Is it possible...

Figure 6. Searching for a unique tracematch.

The biggest test case analyzed has 424LOC. In this case,
without tool support, finding valid traces would be much
more difficult, being error-prone and impacting directly on
the developers productivity. When considering the smallest
test case analyzed (42LOC), a tool could not be necessary.

5 Evaluation: Comparing Recommendations

Existing models [4, 15] are neither code-centric nor fine-
grained. Basically, they consider a high level approach that
rely on feature types: given a feature type, they say whether
a mechanism is able or not to implement that feature type.
Since our model requires not only the feature type, in this
section we evaluate how useful our three inputs are.

5.1 Location and Feature Type

The models presented in [4, 15] claim that is possible to
implement (i) optional features by usingAOP; and (ii) alter-
native features by usingInheritance or design patterns [10]
like the Strategy. Notice that our model is in accordance
with such information (Figure 5). Despite very important,
the feature type is not always enough to recommend mech-
anisms, as showed in the following scenarios.

Scenario 1:Consider the two examples of optional fea-
tures presented in Figures 1 and 2. Based only on the na-
ture of the features, if we decided to useAOP according
to [4, 15], we would have problems in the example of Fig-
ure 2, since it is not always easy to create valid pointcuts
at the middle of method bodies by using pure aspects. A
refactoring should be performed before applyingAOP.

Scenario 2: Figure 7 illustrates an alternative feature.
EitherOperaor a proprietaryMotorola browser is selected
in the product line instance. Although [4, 15] say that
Inheritance is able to implement alternative features, we
can see that usingInheritance in Figure 7 would not be
straightforward without previous refactorings [9]. In other
words, it is not clear how to applyInheritance is this case.
Instead, we recommendConfiguration Files or AOP inter-
types due to the fine-grained nature of the variability, which

in this case is at theMethod Parameter (see Figure 5). No
previous refactoring is needed in our recommendations.

public void

if

else

if

else

procedures() {
...

(has(PhoneFunctionality.OPERA_BROWSER)) {
editorTk.typeText(BrowserURLContent.URL_013);

} {
editorTk.typeText(BrowserURLContent.URL_017);

}
...

(has(PhoneFunctionality.OPERA_BROWSER)) {
browserTk.selectLink(BrowserLink.PAGE_01);

} {
browserTk.selectLink(BrowserLink.PAGE_02);

}
...

}

Figure 7. Method Parameter.

Hence, the location of the variability can also be impor-
tant when deciding which mechanism to use. Thereby, to
evaluate if our locations are comprehensive, we analyzed
all variabilities of50 Motorola mobile test scripts and cal-
culated the occurrence of each location. The locations pro-
posed here covered 71% of the variabilities analyzed (the
results are detailed in Table 4). TheNot Analyzedrow rep-
resents locations that our model does not cover: (i) nested
if-elsestatements; and (ii) some locations with other feature
type (for example:Middle of Method Body - Alternative).

Location Feature Type %
Middle of Method Body Optional 37%
Beginning/End of Method Body Optional 11%
Beginning/End of Method Body Cloned Optional 5%
Method Parameter Alternative 16%
Whole Method Body Alternative 2%
Not Analyzed Both 29%

Table 4. Occurrences of each location.

5.2 Criteria

The results of the metrics used in this paper can help
even more the developer’s decision. For example, sup-
pose a SPL of mobile software with limited resources. Al-
thoughDecorator andAOP are suitable for restructuring
the variabilities of Figure 1 with respect toModularity
andScalability , the difference in metrics likeLOC,
CDLOC, and V S might be crucial to the developer’s
choice. Due to the limited resources, theSource Code
Size may be the most important criteria so that he
would prefer theAOP mechanism instead ofDecorator.
Modularity andScalability are considered in [4].

5.3 Better Recommendations

We definitely claim that using only the feature type may
be insufficient to recommend mechanisms. The examples

showed that the recommendations may change drastically
when including the location and/or criteria. We can obtain
better recommendations through the three inputs because:

• Based on both location and feature type makes eas-
ier the task of understanding how to apply the recom-
mended mechanism. Besides, due to a code-centric
and fine-grained recommendation, no refactorings are
needed to prepare the code to receive the recom-
mended mechanism. Therefore, the task of applying
such mechanism may be realized faster.

• Using the criteria may avoid future problems. For ex-
ample: consider that only theTransflashfeature ex-
ists in Figure 1. If the developer is aware about new
features, he would consider theScalability cri-
teria. Considering only the feature type,Inheritance
might be recommended, generating cloned code and
an unclear and complex hierarchy when dealing with
the new features in the future. On the other hand, such
problems would be avoided by recommendations that
take theScalability criteria into consideration.

Nevertheless, the main disadvantage of being code-
centric and fine-grained is that the model seems to be only
useful when the SPL is already implemented, satisfying
only the evolution phase of the SPL life cycle.

6 Related Work

The first related work discussed here [4] examines vari-
ous implementation approaches with respect to their use in
a product line context. They present a model for making a
comparison of variability implementation approaches based
on the following feature types: positive, negative, optional,
alternative, and multioptional (XOR). The work describe,
for each mechanism, the possibility of addressing the afore-
mentioned feature types with respect to the following levels:
possible, not possible, difficult, and questionable. Also, it
compares the mechanisms using criteria such as traceabil-
ity, scalability, and binding time. However, this work nei-
ther provides a code-centric study nor quantitative studies as
we do, being a high-level approach when compared to our
proposal. In contrast, they also make a programming lan-
guage mapping: for each mechanism, they analyze whether
it is possible or not to use the mechanism in the languages
Java, C++, Delphi, and Smalltalk. Because our test cases
are written in Java, we focused on this language only.

Another related approach [15] summarizes product line
implementation technologies from a programming lan-
guage point-of-view. Besides presenting a deep compari-
son among the available programming languages consider-
ing items like domain issues and paradigms, a framework to

compare mechanisms was constructed with respect to fea-
tures types, similar to [4]. Even though the work provides
a little case study with source code, the analysis often re-
mains strict to the feature types, which means that it does
not consider the variability location, much less quantitative
studies to compare the mechanisms.

The next work [3] proposes a method to address the cre-
ation and evolution of SPLs focusing on the implementa-
tion and feature level. The method first bootstraps the SPL
and then evolves it with a reactive approach. Such work
also provides a refactoring catalog obtained from an em-
pirical study of some mobile phone games. The proposed
method relies on this catalog to extract variabilities from
Java classes to AspectJ aspects. Although [3] provides a
framework to compare variability implementation mecha-
nisms, the method relies only onAOP refactorings. Such
refactorings helped us to learn how to restructure some test
variabilities (usingAOP) after analyzing similar variabili-
ties found in mobile games. In contrast, our work proposes
a model that uses different mechanisms (not onlyAOP),
since previous work [4, 15, 6] showed thatAOP is not al-
ways suitable for addressing SPL variabilities. However,
we did not provide refactorings, only recommendations.

A recent work [5] has proposed an approach that identi-
fies aspect candidates in code and infers pointcuts expres-
sions for these aspects by using clusters of join points. The
proposed tool is very powerful for encountering effective
pointcut expressions, including AspectJ wildcards. For ex-
ample, suppose that the tool found a crosscutting concern
at the beginning of bothpromptNewandpromptOpenmeth-
ods. Thus, the tool identifies that they share the same prefix
“prompt” and infers a pointcut like this:before(): execu-
tion(* *.prompt*(..)). The approach used is very similar to
our tool: the statements before and after the identified con-
cern are analyzed. However, since these statements may be
repeated in the same method body, the work claims that it is
difficult to capture a pointcut. Indeed, we showed that such
task is not always difficult when considering theTrace-
matchesmechanism. Besides, our tool searches for cloned
code, whereas [5] searches for crosscutting concerns.

7 Concluding Remarks

This paper presented a decision model to guide develop-
ers when restructuring variabilities in SPL. Differently of
existing ones, our model is code-centric and fine-grained.
Further, to compare the mechanisms, we used not only qual-
itative, but also quantitative studies through metrics. Be-
sides, we developed a prototype tool to support develop-
ers when evolving variabilities in SPLs. It can recommend
mechanisms to restructure variabilities faster and precisely
according to the decision model, reducing developer’s effort
and increasing their productivity.

Although we have discussed throughout the paper that
our approach targetsif-elsestatements encountered in test
scripts, applying our work may also be useful in other do-
mains/scenarios: (i) analogous variabilities found in the test
scripts were also encountered in a different domain: J2ME
Games [8]. Given the different natures of the domains in
which the variabilities were found, we believe that they are
likely to occur in other domains as well. Thus, it seems
that our model can address variabilities found in other do-
mains beyond testing; (ii) since theConditional Compila-
tion mechanism uses analogous conditionals, like “#ifdef”
and “#elif”, our approach is easily applied in product lines
that use this mechanism to structure their variabilities;

As we showed in the evaluation of this work, the three
inputs of our model may be useful when recommending
mechanisms. For example, the criteria might be useful to
analyze theSource Code Size of a mechanism, help-
ing developers when working on limited devices. Besides,
we showed that the proposed locations of our decision
model cover 71% of all analyzed test script variabilities.

On the other hand, our approach has some limitations:

• There is a great variety of other mechanisms such as
Program Transformations andGenerics, and many
other design patterns [10] that we did not consider. Ad-
ditionally, there are other feature types that we did not
addressed, like positive, negative, and multioptional
(OR). In addition, we have used only four criteria.

• We did not study all feature types in all proposed lo-
cations because some of them are not likely to occur
at a determined location. For example, all variabili-
ties found at theMethod Parameterwere alternative.
However, we need to analyze mode deeper this topic.

We intend to address such limitations as future work.

References

[1] Eclipse Java Development Tools, January 2008.
http://www.eclipse.org/jdt/.

[2] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, O. Lhot́ak, O. de Moor, D. Sereni, G. Sittam-
palam, and J. Tibble. Adding Trace Matching with Free
Variables to AspectJ. InProceedings of the 20th ACM SIG-
PLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA’05), pages
345–364, New York, NY, USA, 2005. ACM Press.

[3] V. Alves, P. M. Jr., L. Cole, P. Borba, and G. Ramalho.
Extracting and Evolving Mobile Games Product Lines. In
Proceedings of the 9th International Software Product Line
Conference (SPLC’05), volume 3714 ofLNCS, pages 70–
81. Springer-Verlag, September 2005.

[4] M. Anastasopoulos and C. Gacek. Implementing Product
Line Variabilities. InProceedings of the 2001 Symposium on

Software Reusability (SSR’01), pages 109–117, New York,
NY, USA, 2001. ACM Press.

[5] P. Anbalagan and T. Xie. Automated Inference of Pointcuts
in Aspect-Oriented Refactoring. InProceedings of the 29th
International Conference on Software Engineering (ICSE
2007), pages 127–136, New York, NY, USA, 2007. ACM
Press.

[6] S. Apel and D. Batory. When to Use Features and Aspects?
A Case Study. InProceedings of the 5th international con-
ference on Generative Programming and Component En-
gineering (GPCE’06), pages 59–68, New York, NY, USA,
2006. ACM Press.

[7] G. Bracha and W. Cook. Mixin-Based Inheritance. InPro-
ceedings of the European Conference on Object-Oriented
Programming on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA/ECOOP’90), pages
303–311, New York, NY, USA, 1990. ACM Press.

[8] M. de Medeiros Ribeiro, P. M. Jr., P. Borba, and I. Cardim.
On the Modularity of Aspect-Oriented and Other Tech-
niques for Implementing Product Lines Variabilities. InPro-
ceedings of the 1st Latin American Workshop on Aspect-
Oriented Software Development (LA-WASP’07), pages 119–
130, October 2007.

[9] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, June 1999.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addison-Wesley, January 1995.

[11] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari,
Y. Cai, and H. Rajan. Modular Software Design with Cross-
cutting Interfaces.IEEE Software, 23(1):51–60, 2006.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect–Oriented
Programming. InProceedings of European Conference on
Object–Oriented Programming (ECOOP’97), LNCS 1241,
pages 220–242, 1997.

[13] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi. A Case
Study in Refactoring a Legacy Component for Reuse in a
Product Line. InProceedings of the 21st International Con-
ference on Software Maintenance (ICSM’05), pages 369–
378, Washington, DC, USA, 2005. IEEE Computer Society.

[14] C. V. Lopes and S. K. Bajracharya. An Analysis of Modu-
larity in Aspect-Oriented Design. InProceedings of the 4th
International Conference on Aspect-Oriented Software De-
velopment (AOSD’05), pages 15–26, New York, NY, USA,
March 2005. ACM Press.

[15] T. Patzke and D. Muthig. Product Line Implementation
Technologies. Technical Report 057.02/E, Fraunhofer In-
stitut Experimentelles Software Engineering, October 2002.

[16] C. Pohl, A. Rummler, V. Gasiunas, N. Loughran, H. Ar-
boleda, F. Fernandes, J. Noye, A. Nunes, R. Passama, J.-C.
Royer, and M. Sudholt. Survey of existing implementation
techniques with respect to their support for the practices cur-
rently in use at industrial partners, July 2007.

[17] K. Pohl, G. Bockle, and F. J. van der Linden.Software Prod-
uct Line Engineering. Springer, 2005.

[18] C. Sant́anna, A. Garcia, C. Chavez, C. Lucena, and A. von
Staa. On the Reuse and Maintenance of Aspect-Oriented
Software: A Assessment Framework. InProceedings of
the 17th Brazilian Symposium on Software Engineering
(SBES’03), pages 19–34, October 2003.

