
LTS-BT: A tool to Generate and Select Functional Test
Cases for Embedded Systems

ABSTRACT
Automation of model-based testing for embedded systems is
discussed. The focus is on feature and feature interruption
test case generation and selection from behavioral specifi-
cations. For this, the LTS-BT tool is presented. The tool
has been designed to suit embedded systems by focusing
on selected notations for behavior specification and tailored
techniques for test case generation and selection. This is mo-
tivated by the peculiarities of these systems that challenge
cost-effective testing.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Experimentation, Verification

Keywords
Model-based Testing, Generation, Selection

1. INTRODUCTION
Automation of software testing activities can promote re-

liability and productivity in testing. Recently, a number of
tools have been developed for test case generation, focusing
on different specification notations such as UML [8]. On one
hand, the use of testing tools in industry is highly depen-
dent on the relative costs of incorporating them in specific
development and testing processes. In this sense, tailored
solutions seems to be more appropriate as well as creating
an opportunity to bring the gap between theory and prac-
tice. On the other hand, certain kinds of testing such as
interruption testing is still not properly covered by current
tools.

A feature is a clustering of individual requirements that
describe a cohesive, identifiable unit of functionality [12].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

Features are combined into applications as the basis of a
given device. In this paper, we denote by feature inter-
ruptions those scenarios where features can interrupt other
features [12]. Such applications operate under severe con-
straints and they are also driven by user inputs and net-
work events that may trigger concurrent execution. Con-
ventional techniques and tools for desktop-like distributed
applications are not directly applicable to the embedded sys-
tems ones: goals and challenges are clearly different and the
second present new ones. For instance, interruptions can oc-
cur at any point of execution. Such interruptions are rarely
specified and also they are difficult to anticipate. Moreover,
the costs of manual test execution are high, even for reason-
able size test suites, demanding effective test case selection
techniques that can effectively cope with redundancy.

Generally, embedded systems are developed in an incre-
mental way, i.e., initially one feature is developed and af-
ter/in parallel other features are developed and integrated
with the former. Embedded systems, such as mobile phones,
are composed of a set of features. Then, when features are
put together, perhaps undesirable interrelationships with al-
ready integrated parts of the system are introduced [14].
This problem must be taken into consideration during a test-
ing phase.

This paper presents a solution for feature and feature in-
terruption test case generation and selection for embedded
applications. We focus on embedded applications, composed
of a number of features, that are highly interactive, having
their flow of execution guided mostly by external input. For
this, the LTS-BT (Labelled Transition System-Based Test-
ing) tool has been developed. In its current version, the
tool supports test case generation from an annotated La-
belled Transition System (LTS). LTSs are largely used as
the semantics formalism of specification notations, making
it easier for the tool to interoperate with other tools, spe-
cially UML modelling tools. Also, LTSs can be easily cre-
ated from mind maps of the observable behavior of an appli-
cation. The annotations are basically concerned with giving
semantics to transitions according to the general format of
embedded applications. The tool also gets specifications in
UML sequence diagrams. Two strategies for test case selec-
tion are also proposed. These are motivated by the chal-
lenges to be faced in both, feature and feature interruption
testing. To the best of our knowledge, there are no current
tools that directly support feature interruption testing or
can be used in a cost-effective way with such purpose. The
tool also includes a novel selection strategy to cope with re-
dundancy that is staple for manual testing. This paper is
structured as follows. Section 2 introduces the concepts of
feature and feature interruption testing. Section 3 presents

Figure 1: LTS-BT tool architecture

the LTS-BT tool. Section 4 presents a case study. Related
works are presented in Section 5. Finally, Section 6 presents
conclusion.

2. FEATURE AND FEATURE INTERRUP-
TION TESTING

Features are usually developed and tested in isolation [3].
This way, feature testing is very important to reduce the
number of defects that escape from one phase to another
during the test process. Feature testing, even though a func-
tional testing, has some particularities. In the embedded
systems applications area, for example, the majority of test
cases are manually executed. This fact increases the prob-
ability of human error during test cases execution. There-
fore, test cases usually have a very small number of steps.
Another characteristic of feature testing is the concept of
redundancy, specially when two test cases have the same
steps but in a different order, distinguishing them. How-
ever, these test cases can be considered redundant because
the order of steps is not important, for instance, when filling
fields of a form and the checking is performed after the data
submitting. Therefore, test case generation and selection
need further investigation.

Some embedded systems such as mobile phone applica-
tions may be composed of a number of concurrent processes
and network distributed services, where interruptions in a
flow of execution can occur at any time. The possible num-
ber of combinations of allowed interruptions at different
points of a flow of execution is huge: there are many sce-
narios where interruptions can occur. One example of an
interruption in this context is when the user is composing a
text message and a call arrives in its device, causing an inter-
ruption of feature “call” in feature “to send text messages”.
Considering that any interruption can occur at any time,
there are infinite possibilities of occurrences. This makes
the specification of each possibility unfeasible by using con-
ventional notations and strategies. As a consequence and
also due to the lack of a suitable test model, test case gener-
ation and selection is compromised. A definite challenge is
to define a cost-effective way of specifying interruptions by
composing features and properly select key test cases among
the potentially infinite set of possible test cases.

3. LTS-BT TOOL
LTS-BT is a test case generator and selector tool. It takes

as input sequence diagrams or LTS behavioural models with
annotations and generates test cases. Also, the tool selects
test cases according to a test purpose and a coverage per-
centage criteria.

In summary, the input formats are: (i) Behavioral model

- it can be Sequence Diagrams Rose(MDL)1 and Rose-RealTime(RTMDL)2

formats) or LTS (TGF and AUT formats); (ii)Test Pur-
pose - targeting transitions, including the generalizing “*”
transition; (iii) Path Coverage Percentage - determines
the desired test cases coverage degree relative to the model.
The test purpose and path coverage percentage is chosen by
the tester in the LTS-BT tool’s GUI.

The test cases generated by the LTS-BT tool are abstract,
i.e., they describe behaviors in terms of input/output in-
teractions between the tester and the System Under Test
(SUT), besides initial conditions. As an alternative output,
the tool maps the LTS to a table to facilitate the manual
execution. The table shows the initial conditions, user ac-
tions and expected results. The test case format is an LTS
that can be easily translated into a specific language such
as TTCN3.

For feature interruption testing, one behavioural model
for each feature to be considered is given as input to the
tool. Some of the features can cause interruptions in the
flow of the others. Features and Interruptions are specified
as in [7] and translated into LTS models. By default, inter-
ruptions can happen at any execution point of a given fea-
ture. Special treatments such as interruptions not allowed
at certain points and alternative behaviour can also be spec-
ified. The tool automatically build the behavioural model
by composing features according to the specification. From
this model, test cases are generated and selection strategies
can be applied.

3.1 Architecture
The architectural design can be seen in Figure 1. For each

functionality, a module was created. In next Subsections,
each module is described.

3.1.1 Parser MDL/RTMDL
The LTS-BT tool works internally with Aldebaran (AUT)

format4. Then, this module execute the derivation. This
is based on the general procedure to generate flow graphs
from sequence diagrams presented in [2]. As UML sequence
diagrams have information about different objects of an ap-
plication, and we are interested in functional testing, the
messages sent between internal objects are not considered.
The behavioral model in the AUT format is automatically
derived from sequence diagrams (MDL/RTMDL)[5].

3.1.2 Model Filter
A test purpose targets test case generation at a particu-

lar functionality. This strategy has been widely considered
in the literature, but the notations for test purpose spec-
ification are little used in practice due to the difficulty of
applying them. In this sense, LTS-BT uses a simple nota-
tion based in [10].

In the LTS-BT tool, for each LTS behavioral model,the
set of all possible transitions is displayed in the GUI, i.e.,
the conditions, steps and expected results. The user chooses
the test purpose in order to filter the LTS behavioral model.

The test purpose notation is a sequence of transitions. In
this sequence, the “*” (asterisk) can appear at the begin-
ning of the sequence or between transitions. The sequence

1http://www-306.ibm.com/software/awdtools/
developer/rose/index.html
2www.rational.com/ products/rosert/index.jsp
3http://www.ttcn-3.org/
4http://www.inrialpes.fr/vasy/cadp/man/
aldebaran.html#sect6

Figure 2: LTS-BT tool screens - Test Purpose

always ends with either an Accept transition (meaning that
the user wants all test cases that comply with the test pur-
pose) or a Reject one. In the sequence, the asterisk means
any transition. There are two ways to define a test pur-
pose: either by clicking on transitions of the LTS graphical
view (Figure 2(a)) or by clicking on buttons that represent
transitions (Figure 2(b)).

3.1.3 Generator
Having the LTS behavioral model, the next step is to ob-

tain the test cases. As we are considering functional test
cases, the generated test cases are composed by user action,
system response and initial conditions (if they are in the
model). Then, each LTS path (initial state until final or
visited state) is a test case. In order to do it, it is neces-
sary to identify all paths from the LTS, to assure that all
functionalities can be tested.

A path can be obtained, using the Depth First Search
method (DFS), by traversing an LTS starting from the ini-
tial state. Test cases are generated according to a coverage
criteria, for instance, transitions coverage, i.e., all transitions
are visited at least once. Since we are considered functional
testing, total coverage is a reasonable and feasible goal, to
guarantee a thoroughly investigation of the feature function-
alities [13].

3.1.4 Selector
This module aims to reduce the number of test cases in

situations where full coverage is unfeasible and yet we aim
to covering the model as much as possible. For this selec-
tion, the user must pass a percentage of coverage as a selec-
tion criterion. This strategy is inspired by the work of Lin
and his colleagues [11]. The strategy reduces the number
of redundant test cases according to a degree of similarity
between them. The similarity is calculated by observing the
number of identical transitions, i.e., states “from” and “to”,
and transition label are the same, and the average between
paths length [4].

4. CASE STUDY
In this section, we use a quick case study to illustrate

the use of LTS-BT for feature and feature interruption test
case (TC) generation and selection. The kind of testing is
selected by the user. This case study has been developed

using version 1.0 of the LTS-BT Tool.
This case study is divided in two subsections. The first

one presents feature test case generation and selection from
a sequence diagram (SD) while the second one shows feature
interruption test case generation and selection.

4.1 Feature test case
The focus of this test is to check all functionalities of a

feature. These can be specified by a set of sequence dia-
grams. For the sake of space, we consider only a sequence
diagram here. The scenario of this case study is “A user is
viewing a message containing a URL and can go to it”. The
feature Embedded URL in Messages follow this scenario.

We use the SD of Figure 3. The LTS behavioral model is
obtained from the sequence diagram. We chose the option to
generate and select the test cases choosing the test purpose
(TP) by clicking on a graph. The TP is *;“View text mes-
sage”;*;“Message contains more than 1 URL”;*” and also
the path coverage percentage is 100% (Figure 2(a)). The
test case generated is shown in Figure 4. Even though the
path coverage percentage was 100%, the use of a test pur-
pose decreased the number of test cases, since only one test
case attended the test purpose.

4.2 Feature interruption test case
In a typical feature interruption testing, the focus is on

TCs that can uncover defects in the scenarios where one fea-
ture interrupts another feature, assuming that the features
where thoroughly tested separately. The behavior model is
composed of number of features and the specification of the
possible interruptions. For the sake of space, we consider
only one interruption here. In this case study, the behavior
model has been specified as use cases and then converted
into the AUT input format as in [7].

The scenario of this case study is “A user is viewing a
message containing a URL and can go to it, but at any time
the phone can receives a call”. Two features contemplate
this scenario: Embedded URL in Messages and the Incoming
Call. Considering that the behavioral model has an incom-
ing call interruption when the tester is reading the message
containing a URL (Figure 5 portrays this scenario) and us-
ing the TP “*”, LTS-BT generated 12 feature interruption
test cases.

TCs with a specific purpose were generated. In order to
test a scenario where a call arrives when the user is viewing

Figure 3: SD - Go to URL contained in a text mes-
sage

the message we used the “*;Display Text Message;*;Incoming
Call;*”. In this case, LTS-BT generated 4 feature interrup-
tion TCs.

Note that the use of TPs is particularly interesting for fea-
ture interruption testing, since, in practice, the number of
possible TCs is usually too big or infinite. TPs make it pos-
sible to achieve a reasonable coverage of a given interruption
also focusing on certain functionalities.

4.3 Test Selection based on Similarity
For the sake of space, we can only present some statistics

about the effectiveness of the use of this strategy in three
case studies. According to the percentage of test cases to be
select, the tool automatically selects the less similar ones.
Table 1 presents the results obtained. We fix the percentage
on 50%.

In general, similarity based selection discards less transi-

Figure 4: TC generated from a SD (Figure 3)

Figure 5: Scenario with an interruption

Table 1: Results
AP1 AP2 AP3

Random Test Selection (%) 24.93% 36.10% 27.22%
Similarity Based Selection (%) 1.23% 11.98% 1.70%

Total of Test Cases 24 66 153

tions than random testing and therefore provides a better
coverage of the model. More detailed comparisons are pre-
sented in [4].

5. RELATED WORKS
Figure 2 presents distinguishable model-based testing tools

(PTK [1], TGV/UMLAUT [9], TestMaster [6], and the ARCHETEST
[15]) that can be considered as alternatives to the use of LTS-
BT in the embedded systems domain. The main advantages
of the LTS-BT tool are: (i) the input and output notations
are LTSs that can be derived from and to a number of dif-
ferent notations, including UML, improving the chances of
integrating the tool in different contexts/test processes; (ii)

Table 2: Comparing LTS-BT tool with other tools
TestMaster TGV/UMLAUT LTS-BT PTK ARCHETEST

Input

EFSM UML Sequence Diagram HMSC High-level
Diagrams Annotated LTS MSC use-case
IOLTS Sequence Diagram class diagram

Output Test Script IOLTS Table Format TTCN Test Script
Language (TSL) LTS SDL

Feature No No Yes No No
Interaction

Selection - Test purpose Test purpose - -
techniques Similarity

Automatic test Yes Yes Yes Yes Yes
case generation

Abstract Yes Yes Yes No Yes
Test Case
User interface Yes Yes Yes Yes Yes

this is the only tool that directly supports feature interrup-
tion testing - this can probably be done by using the others,
but artifacts are very likely to become cumbersome and un-
practical; (iii) selection techniques, especially the similarity
strategy is a unique contribution that is key for the embed-
ded systems domain where the costs of test execution are
high while high coverage is crucial; and iv) test cases are
necessarily abstract to manual testing and a user interface
is staple for making it possible for domain experts to view
and refine the test suites.

6. CONCLUSION
Automation of feature and feature interruption testing for

embedded systems is proposed and a tool is presented. The
tool is targeted at the reality of most embedded systems
companies, since the test cases can be derived from differ-
ent specification languages, specially sequence diagrams and
also it focus on the specific, yet general format of these ap-
plications.

One of the main advantages in using the presented tool is
related to the reduced size of the LTS, since LTS-BT com-
bines the feature behavioral model with the interruption
model, in the specified points where the interruption may
occur. Moreover the several techniques used in the test case
selection and generation provides a reliable coverage in both
the LTS and test cases, providing a test suite suitable for
scenarios where time and money constraints make the exe-
cution of all the test cases an unfeasible or undesired task
(considering applications with a large LTS). Research on fea-
ture testing is practically nonexistent in academia. Feature
interruption testing has been more thoroughly investigated.
Nevertheless, suitable and effective tools are still needed.

LTS-BT has been experimentally used in real case stud-
ies in cooperation with Motorola testing teams. The goal
is to assess its adequacy as well as cope with its evolution.
These case studies has shown that the tool can promote pro-
ductivity and reliability in test case generation. As further
work, the tool needs to incorporate test case generation in
the TTCN format and also cover a complete test process by
interoperating with other tools.

7. REFERENCES
[1] Baker, P., Bristow, P., Jervis, C., King, D. J.,

and Mitchell, B. Automatic generation of
conformance tests from message sequence charts. In
SAM (2002), pp. 170–198.

[2] Binder, R. Testing Object-Oriented Systems: Models,
Patterns, and Tools. 1999.

[3] Calder, M., Kolberg, M., Magill, E. H., and
Reiff-Marganiec, S. Feature interaction: a critical
review and considered forecast. Comput. Networks 41,
1 (2003), 115–141.

[4] Cartaxo, E. G., Neto, F. G. O., and Machado,
P. D. L. Automated test case selection based on a
similarity function. In Model-based Testing 07
(Motes’07) (Bremen, Germany, September 2007),
Lecture Notes in Informatics. To appear.

[5] Cartaxo, E. G., Neto, F. G. O., and Machado,
P. D. L. Test case generation by means of uml
sequence diagrams and labeled transition systems. In
IEEE International Conference on Systems, Man, and
Cybernetics 07 (SMC’07) (Montreal, Canada, October
2007), IEEE. To appear.

[6] Clarke, J. M. Automated test generation (from a
behavioral model).

[7] de Figueiredo, A. L. L., Andrade, W. L., and
Machado, P. D. L. Generating interaction test cases
for mobile phone systems from use case specifications.
SIGSOFT Softw. Eng. Notes 31, 6 (2006), 1–10.

[8] Hartman, A., and Nagin, K. The agedis tools for
model based testing. In ISSTA ’04: Proceedings of the
2004 ACM SIGSOFT international symposium on
Software testing and analysis (New York, NY, USA,
2004), ACM Press, pp. 129–132.

[9] Ho, W. M., Jquel, J.-M., Guennec, A. L., and
Pennaneac’h, F. Umlaut: An extendible uml
transformation framework. In Automated Software
Engineering (1999).

[10] Jard, C., and Jéron, T. Tgv: theory, principles and
algorithms, a tool for the automatic synthesis of
conformance test cases for non-deterministic reactive
systems. Software Tools for Technology Transfer
(STTT) 6 (2004).

[11] Lin, J.-C., and Yeh, P.-L. Automatic test data
generation for path testing using gas. Inf. Sci. 131, 1-4
(2001), 47–64.

[12] Lorentsen, L., Tuovinen, A.-P., and Xu, J.
Modelling feature interactions in mobile phones. In
Feature Interaction in Composed Systems (ECOOP
2001) (Budapest, Hungary, 2001), pp. 7–13.

[13] McGregor, J. D., and Sykes, D. A. A Practical
Guide to Testing Object-Oriented Software.
Addison-Wesley, 2001.

[14] Metzger, A. Feature interactions in embedded
control systems. Comput. Networks 45, 5 (2004),
625–644.

[15] Williams, C. E. Towards a test-ready meta-model
for use cases. In Workshop of the pUML-Group held
together with the UML 2001 on Practical UML-Based
Rigorous Development Methods - Countering or
Integrating the eXtremists (2001).

