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Abstract. For some organizations, the proactive approach to product
lines may be inadequate due to prohibitively high investment and risks.
As an alternative, the extractive and the reactive approaches are incre-
mental, offering moderate costs and risks, and therefore sometimes may
be more appropriate. However, combining these two approaches demands
a more detailed process at the implementation level. This paper presents
a method and a tool for extracting a product line and evolving it, re-
lying on a strategy that uses refactorings expressed in terms of simpler
programming laws. The approach is evaluated with a case study in the
domain of games for mobile devices, where variations are handled with
aspect-oriented constructs.

1 Introduction

There are several approaches for developing software Product Lines (PL) [10]:
proactive, reactive, and extractive [18]. In the proactive approach, the organi-
zation analyzes, designs, and implements a fresh PL to support the full scope
of products needed on the foreseeable horizon. In the reactive approach, the or-
ganization incrementally grows an existing PL when the demand arises for new
products or new requirements on existing products. In the extractive approach,
the organization extracts existing products into a single PL.

Since the proactive approach demands a high upfront investment and offers
more risks, it may be unsuitable for some organizations, particularly for small to
medium-sized software development companies with projects under tight sched-
ules. In contrast, the other two approaches have reduced scope, require a lower
investment, and thus can be more suitable for such organizations. Although the
extractive and the reactive approaches are inherently incremental, it should be
pointed out that the proactive approach can be incremental as well. In this case,
products are simply derived based on whatever assets are in the core asset base
at the time (a core asset is an artifact used in the production of more than one
product in a PL). However, there still needs to be a potentially high investment
for this first increment and, although we do not need to have all core assets in
hand before starting to build products, all such assets need to be designed and



planned. An interesting possibility is to combine the extractive and the reac-
tive approaches. But, to our knowledge, this alternative has not been addressed
systematically at the architectural and at the implementation levels.

In all approaches, variability management must be addressed in the domain:
while focusing on exploiting the commonality within the products, adequate
support must be available for composing PL core assets with product-specific
artifacts in order to derive a particular PL instance. The more diverse the do-
main, the harder it is to accomplish this composition task, which in some cases
may outweigh the cost of developing the PL core asset themselves.

This paper addresses the issues of structuring and evolving the code of prod-
uct lines in variant domains. In particular, we present a method that relies on
the combination of the extractive and the reactive approaches, by initially ex-
tracting variation from an existing application and then reactively adapting the
newly created PL to encompass other variant products. The method systemati-
cally supports both the extractive and the reactive tasks by defining refactorings.
Additionally, we show that such transformations are derived from simple Aspect-
Oriented Programming (AOP) laws [11]. Further, we evaluate our approach in
the context of an mobile game product line. Finally, we provide tool support for
the method.

Indeed, there are a number of techniques for managing variability from re-
quirements to code level. Most techniques rely on object-oriented concepts. These
techniques, however, are well-known for failing to capture crosscutting concerns,
which often appear in variant domains. Mobile games, in particular, must comply
with strict portability requirements that are considerably crosscutting, thereby
suggesting AOP to handle variation [1], which is explored in our method.

The next section describes our approach, including its strategy and both ex-
tractive and reactive refactorings. Section 3 then analyzes how some refactorings
from our method can be derived from existing elementary programming laws. In
Section 4, the case study evaluating the approach is presented. Tool support for
the method is described in Section 5. We discuss related work in Section 6 and
offer concluding remarks in Section 7.

2 Method

Contrary to the proactive approach, we rely here on a combination of the ex-
tractive and the reactive approaches. Our method [4] first bootstraps the PL
and then evolves it with a reactive approach. Initially, there may be one or more
independent products, which are refactored in order to expose variations to boot-
strap the PL. Next, the PL scope is extended to encompass another product:
the PL reacts to accommodate the new variant. During this step, refactorings
are performed to maintain the existing product, and a PL extension is used to
add a new variant. The PL may react to further extension or refactoring.

The method is systematic because it relies on a collection of provided refac-
torings. Such refactorings are described in terms of templates, which are a concise
and declarative way to specify program transformations. In addition, refactor-



ing preconditions (a frequently subtle issue) are more clearly organized and not
tangled with the transformation itself. Furthermore, the refactorings can be sys-
tematically derived from more elementary and simpler programming laws [11,
17]. These laws are appropriate because they are considerably simpler than most
refactorings, involving only localized program changes, with each one focusing
on a specific language construct.

In the remaining of this section, we detail the steps of our strategy, explaining
the extractive and the reactive processes, and their associated refactorings. In
Section 3, we explain these refactorings in terms of more elementary program
transformations.

2.1 Extraction

The first step of our method is to extract the PL: from one or more exist-
ing product variants, strategies based on refactorings (detailed in Section 2.3)
extract core assets and corresponding product-specific adaptation constructs.
These constructs correspond to aspects and possibly supporting classes (classes
only appearing in one product). Figure 1 depicts this approach. In this case,
only one core asset is shown, but in general there could be more. Additionally,
during evolution of the PL, a product-specific asset could become a core asset,
in which case it be used to derive at least two PL members.

Fig. 1. Bootstrapping the Product Line. Core assets appear above the dashed line.

Product 1 and Product 2 are existing applications in the same domain (for
example, versions of a J2ME game for two platforms). Core represents common-
ality within these applications; it is usually a partially specialized OO framework,
but can also contain aspects, in which case such aspects modularize the imple-
mentation of crosscutting concerns shared by at least two PL instances. The
core is composed either with Aspect P1 and its supporting classes (Classes P1 ),
if any, or Aspect P2 and its supporting classes (Classes P2 ), if any, in order to



instantiate the original specific products. The • operator represents aspect com-
position (weaving). These aspects and their supporting classes thus encapsulate
product-specific code.

In order to extract the variation within Product 1 and Product 2, thus defin-
ing Aspect P1 and Aspect P2, we must first identify it in the existing code
base. When more than one variant exists, diff-like tools provide an alternative.
In either case, however, such a view is too detailed at this point. Indeed, the
developer first needs to determine the general concerns involved. This could be
described more concisely and abstractly with concern graphs, whose construc-
tion is supported by a specific tool [24]. Concern graphs localize an abstracted
representation of the program elements contributing to the implementation of
a concern, making the dependencies between the contributing elements explicit.
Therefore, the actual first step in identifying these variations is to build a concern
graph corresponding to known variability issues.

Once the variability is identified, the developer should analyze the variability
pattern within that concern. Depending on the pattern, a refactoring may be
applied in order to extract it from the core (Section 2.3). Indeed, refactorings
can be used to create product lines in an extractive approach, by extracting
product-specific variations into aspects, which can then customize the common
core [1, 4].

Although our method focuses on code assets, it is important to describe its in-
teraction with configurability-level artifacts, such as feature models [13]. Indeed,
the method requires feature modelling and a configuration knowledge, which are
essential for effectively describing the PL variability and product derivation. It
is outside the scope of this paper to describe in detail the transformation at the
feature model level; we specifically address this issue elsewhere [3].

The mapping between features and aspects needs to be specified by a config-
uration knowledge mechanism [13], which imposes constraints on features and
aspect combinations like dependencies, illegal combinations, and default combi-
nations. Constraints involving only feature combinations are also specified in the
feature model. Throughout the paper, we use a configuration knowledge map-
ping groups of features to aspects and classes: the set of features common to
both products map to PL core assets; the set of product-specific features map
to product-specific aspects and supporting classes.

However, our method does not bind a particular configuration knowledge.
Other mappings are possible, depending on the granularity of the features and
aspects. For example, with finer-grained variability, single features–rather than
feature subsets–could be mapped directly to aspects. Other examples of config-
uration knowledge can be found elsewhere [20].

2.2 Evolution

Once the product line has been bootstrapped, it can evolve to encompass addi-
tional products. In this process, a new aspect is created to adapt the core to the
new variant. Moreover, a new feature is added to the feature diagram in order to



represent the new product, and the configuration knowledge is updated to map
the new feature to the new aspect (Figure 2).

Fig. 2. Evolving the Product Line. Core assets appear above the dashed line.

The refactorings in Table 1 (Section 2.3) can also be used for evolution. As
Figure 2 also indicates, the core itself may evolve because some of the com-
monality between Product 1 and Product 2 might not be shared completely by
Product 3. That is, Product 3 has different commonality with Product 1 and
Product 2 than these latter have with each other; therefore, a slightly different
core is necessary. This may trigger further adaptation of the previously exist-
ing aspects, too. However, AspectJ tools can identify parts of the core on which
these previous aspects depend, and some refactorings could also be aspect-aware
according to the definition of Hanenberg et al [15]: evolving the core may change
some join points within it, so the aspect-aware refactorings accordingly adjust
aspects’ pointcuts to refer to the new join points, thereby minimizing the need
to revisit such previous aspects. The end of Section 2.3 discusses how our refac-
torings could be extended to be aspect-aware according to this definition.

Another evolution scenario (Figure 3) involves restructuring the product line
to explore commonality within aspects. Such commonality (AspectFlip aspect)
then becomes a core asset, since it is now explicitly shared by at least two PL
instances.

Figure 3 can become more complex with the addition of new platforms and
identification of reusable aspects. However, constraints in the feature model as
well as the configuration knowledge (the mapping of features to aspects) limit
aspect combinations, thereby providing support for scalability.

2.3 Refactoring Catalog

This subsection defines a refactoring catalog, which is a set of refactorings sup-
porting the extractive and the evolutive activities described in the previous sub-
sections. Section 4 shows some strategies (sequence of applications of refactor-
ings from this catalog) that manage to handle the implementation of variable



Fig. 3. Refactoring the Product Line. Core assets appear above the dashed line.

features [13]. We have developed this catalog empirically by analyzing variability
in a number of mobile games [4, 1]. It has allowed us to address most variabil-
ities in this domain, but we have not proved this catalog to be complete. We
first specify the AspectJ subset necessary for applying these refactorings. Next,
we motivate some refactorings by considering an example of feature extraction.
Finally, we list the remaining refactorings.

AspectJ subset We consider a subset of AspectJ [11]. This simplifies the
definition of transformations and does not compromise our results. However, this
may limit the number of refactorings we are able to derive with our laws. For
example, the use of this to access class members is mandatory. Also, the return
statement can appear at most once inside a method body and has to be the last
command. Additionally, we consider only the following pointcut designators:
call, execution, args, this, target, within and withincode.

Restricting the use of this simplifies the preconditions defined for the laws.
This can be seen as a global precondition instead of a restriction to the language.
Most of the laws dealing with advice require this restriction. This restriction
allows an easy mapping from the executing object referenced from this to the
executing object exposed inside advice with the pointcut designator this.

We only support the mentioned pointcut designators because we think they
may represent the core designators of this aspect-oriented language: they have
sufficed for us capture join point in 4 different application domains in previous
work [11] and in this work. Extending the set of laws to include other AspectJ
constructs would be time demanding but not difficult. Besides, it would not
affect the already defined laws. This is regarded as future work.

An Example In the context of the mobile device game domain, we consider
the optional figures concern of a game. We examine the code declaring and using
the dragonRight image. First, we consider class Resources.

class Resources {...
Image dragonRight;...
void loadImages() { ...



dragonRight = Image.createImage("dragonRight.png");...
} ...

}

where such field is not used anywhere else in the class. The developer may de-
cide that dragonRight is an optional feature specific to Platform 1 (P1) and thus
could extract it into an aspect with inter-type declaration and advice constructs.
We would thus have

class Resources { ...
void loadImages() {...}

}

Aspect AP1 {
Image Resources.dragonRight;
after() returning(): execution(Resources.loadImages()) {
dragonRight = Image.createImage("dragonRight.png");

} ...
}

where Resources now represents a construct in the game core being built
and AP1 denotes an aspect adapting it for a specific platform, namely P1. The
fact that the field is not used anywhere else in the class allowed us to move
the attribution towards the method border (end of method in this case), which
allows the variation to be described by a single after advice.

Refactorings like these occur frequently and we thus generalize them using a
notation that follows the representation of programming laws [11, 17]. Refactor-
ing Extract Resource to Aspect - after, whose transformation template is shown
shortly ahead, generalizes this transformation and has the purpose of extracting
a single variant field, along with part of its usage, into an aspect.

On the left-hand side of Refactoring 1’s transformation template, the f field
and the this.f=exp; command (exp is an arbitrary expression) denote the vari-
ability pattern to be extracted. On the right-hand side, such variability is ex-
tracted into aspect A. Aspect A uses an inter-type declaration construct to in-
troduce field f of type T (in the transformation template, T also encompasses
the access modifier) into class C and an advice construct to add the extracted
command to method m.

We denote the set of type declarations (classes and aspects) by ts. Also, fs,
ms and pcs denote field declarations, method declarations and pointcut declara-
tions, respectively. σ(C .m) is used to denote the signature of method m of class
C , including its return type and the list of formal parameters. Γ (ps) denotes
the type list from parameters ps, and αps denotes the parameter names from
ps. For brevity, we write exec and ret instead of execution and returning,
respectively.

Each refactoring provides preconditions to ensure that the program is syntac-
tically valid (not necessarily syntactically equivalent) and semantically equivalent



(behavior preserving) after the transformation. The first and second precondi-
tions are necessary to ensure that the code still compiles after applying the trans-
formation, whereas the last three preserve behavior. In particular, although the
right-hand side of the refactoring template is not syntactically equivalent to the
left-hand side, both sides are semantically equivalent, since the third refactoring
precondition (shown shortly ahead) guarantees that the this.f=exp command
can be the last one or in the middle of method m.

Refactoring 1 〈Extract Resource to Aspect - after〉

ts
class C {

T f
fs
ms
T ′ m(ps) {

body
this.f = exp;
body ′

}
}

→

ts
class C {

fs
ms
T ′ m(ps) {

body
body ′

}
}
privileged aspect A {
T C .f ;
after(C cthis, ps) ret(T ′ t) :

exec(T ′ C .m(Γ (ps)))
&& this(cthis)
&& args(αps) {
cthis.f = exp[cthis/this];

}
}

provided

• A does not appear in ts;
• if the field f of class C is private, such field does not appear in ts nor

in ms;
• f does not appear in body’ ; exp does not interfere with body’ ;
• A has the highest precedence on the join points involving the signature

σ(C .m);
• there is no designator within or withincode capturing join points

inside this.f=exp;

In the preconditions above, we require that, if the field f of class C is private,
such field does not appear in ts nor in ms because, when moved to the aspect,
the field would be private with respect to the aspect and not with the class,
hence a reference to f in ts or ms would not compile (according to AspectJ
semantics, visibility modifiers of inter-type declarations are related to the aspect
and not to the affected class).



The preconditions on the third bullet are necessary to allow moving the com-
mand this.f=exp; to the end of method m, which is done as an intermediate
step during refactoring. Section 3.2 and Figure 4 explain the refactoring in terms
of consecutive applications of elementary fine-grained transformations. The pre-
condition requiring exp not to interfere with body’ is specified at a semantic level,
but it can also be specified syntactically if we have further information about
the structure of exp, which happens frequently, including in our example above
and in our case study. In such cases, exp is a static method call on third-party
API to load image attributes, thus not interfering with body’.

Despite its syntactic form, the semantic intent of the higher precedence pre-
condition is the following: the newly created after advice has the highest prece-
dence on the join points involving the signature σ(C .m). However, the only way
AspectJ allows specifying precedence among advice of different aspects is by
specifying precedence on aspects containing these advice, thus implying that all
advice of a certain aspect A have precedence over all advice of another aspect B,
which is a too coarse-grained way to do so. In fact, we may want some advice of
A to have precedence over some advice of B and some advice of B to have prece-
dence over advice of A, which would lead to an unsolvable constraint among the
precedence of such aspects.

Therefore, applying the same refactoring twice works if the code is extracted
into the same aspect (advice precedence within the aspects is addressed as shown
shortly ahead); otherwise, it will depend on whether there is already a precedence
constraint on the existing aspects. If so, the refactoring could not be applied;
otherwise, the refactoring can be applied and the new aspect A will have the
highest precedence. This is a limitation of AspectJ’s expressiveness. An AspectJ
extension could be accomplished to define advice precedence on a fine-grained
approach, by using the ABC compiler [6], for example. In this case, the semantic
intent of the refactoring could be expressed syntactically.

The fifth precondition means that there are no within or withincode point-
cut designators in any aspect in the PL that could match join points in the
this.f=exp; statement. This precondition is necessary because moving such
statement may break those pointcuts. Despite declarative, this precondition is
verifiable by examining the PL aspects in the IDE using AJDT’s API.

The refactoring described creates aspect A. A slight variation of this refactor-
ing assumes A already exists. In this case, such aspect would have a particular
form after applying the transformation:



privileged aspect A {
T C .f ;
pcs
bars
afs
after(C cthis, ps) ret(T ′ t) :

exec(T ′ C .m(Γ (ps)))
&& this(cthis)
&& args(αps) {
cthis.f = exp[cthis/this];

}
}

Note that, in this case, the advice can not be considered as a set, since order
of declaration dictates precedence of advice. According to the AspectJ semantics,
if two advice declared in the same aspect are after, the one declared later has
precedence; in every other case, the advice declared first has precedence. Thus,
we divide the list of advice in two. The first part (bars) contains the list of all
before and around advice, while the second part contains only after advice
(afs). This separation ensures that after advice always appear at the end of
the aspect. It also allows us to define exactly the point where the new advice
should be placed to execute in the same order in both sides of the refactoring.
Additionally, for advice declared in different aspects, precedence depends on their
hierarchy or their order in a declare precedence construct (this is addressed
by the fourth precondition of the refactoring). Similar considerations apply to
the remaining refactorings. For brevity, we will assume the aspect is created in
each case.

Remaining refactorings Table 1 summarizes all refactorings from our catalog.

Table 1. Summary of Refactorings.

Refactoring Name

1 Extract Resource to Aspect - after

2 Extract Method to Aspect

3 Extract Context

4 Extract Before Block

5 Extract After Block

6 Extract Argument Function

7 Change Class Hierarchy

8 Extract Aspect Commonality

Some of the refactorings in Table 1, such as Change Class Hierarchy, are
coarse-grained; others, such as Extract Argument Function, are fine-grained;



some, such as Extract Method to Aspect, have medium granularity. Part of their
names refers to an AspectJ construct that encapsulates the variation. For ex-
ample, the Extract Resource to Aspect - after we described previously extracts
the variant part of a concern, appearing as a field and its uses in the class, into
AspectJ’s after construct. Finally, the refactorings we present are not aspect-
aware according to the definition of Hannenberg et al [15], but these could be
adapted to be so by relaxing some preconditions such as the fifth of the Extract
Resource to Aspect - after refactoring and accordingly changing the within and
withincode pointcuts involved following the guidelines presented elsewhere [15].
In a broad sense, however, our refactorings are aspect-aware, since they can be
used in the presence of aspects and manipulate aspects constructs in transfor-
mation templates and preconditions.

3 Formal Reasoning for AspectJ Refactorings

This section analyzes how some aspect-oriented extractive refactorings can be de-
composed into or derived from existing elementary programming laws [11], which
are simpler and easier to reason about than the refactorings, thereby increasing
correctness confidence in such extractive transformations. This is specially rele-
vant because it reduces the burden on testing, which is extremely expensive in
the PL scenario. Section 3.1 reviews some existing fine-grained aspect-oriented
programming laws [11]. Then, in Section 3.2, we relate such refactorings and
laws by showing how the former can be described in terms in of the latter. This
is illustrated by decomposing refactoring Extract Resource to Aspect - after of
Section 2.3 into a set of programming laws.

3.1 Programming Laws

Programming laws [17, 11], like refactorings, are transformation structures which
preserve program consistence and behavior. In contrast, they are much simpler
than most refactorings: they involve only localized program changes, and each
one focuses on a specific language construct.

Differently from refactorings, laws can be applied not only from the left
to right side, but also in the opposite direction. Therefore, there are different
preconditions depending on the direction the law is used. This is represented by
arrows, where the symbol (←) indicates that this precondition must hold when
applying the law from right to left. Similarly, the symbol (→) indicates that this
precondition must hold when applying the law from left to right. Finally, the
symbol (↔) indicates that the precondition must hold in both directions.

For example, the following law has the purpose of adding an after advice. On
the left-hand side of the law, body ′ is the last block of code to execute in method
m. Thus, we can extract it to an after advice. On the right-hand side, body ′ is
not present in method m, although it is executed after the execution of method
m by an after advice declared in aspect A. In this aspect, the symbols used in the
advice construct have the same meaning as in Refactoring 1.



Law 1 〈Add After-Execution Returning Successfully〉

ts
class C {

fs
ms
T m(ps) {

body
body ′

}
}
privileged aspect A {

pcs
bars
afs

}

=

ts
class C {

fs
ms
T m(ps) {

body
}

}
privileged aspect A {

pcs
bars
afs

after(C cthis, ps) ret(T ′ t) :
exec(T ′ C .m(Γ (ps)))
&& this(cthis)
&& args(αps) {
body ′[cthis/this]

}
}

provided

(→) body ′ does not use local variables declared in body ; body ′ does not
call super;

(↔) A has the highest precedence on the join points involving the sig-
nature σ(C .m);

(↔) there is no designator within or withincode capturing join points
inside body ′;

The highest precedence precondition of this law is analogous to the highest
precedence precondition of Refactoring 1, which was discussed in Section 2.3.
Likewise, the last precondition of this law corresponds to the fifth precondition
of Refactoring 1. Therefore, the constraint refers to any aspect.

Examining the left-hand side of this refactoring, we see that body ′ executes
before all after advice possibly declared for this join point. This means that the
new advice on the right-hand side of the law should be the first one to execute,
preserving the order in which the code is executed in both sides of the law. Thus,
the after advice should be placed at the end of the after list (afs). Moreover,
in order to ensure that the new advice created with this law is the first one to
execute, we have a precondition stating that aspect A has the highest precedence
over other aspects defined in ts. This precondition must hold in both directions.

The next law represents the language construct which introduces a field into
a class. Analyzing this transformation from the left to the right, we can see that
field declaration is removed from class C. However, we introduce field in this
class by using an inter-type declaration construct declared in aspect A.



Law 2 〈Move Field to Aspect〉

ts
class C {

fs
T field
ms

}
privileged aspect A {

pcs
bars
afs

}

=

ts
class C {

fs
ms

}
privileged aspect A {

T C .field
pcs
bars
afs

}

provided

(→) The field field of class C does not appear in ts and ms.

This precondition is necessary for the same reason that the second precon-
dition of Refactoring Extract Resource to Aspect - after is necessary, which was
explained in Section 2.3.

3.2 Deriving Refactorings

In this section we use aspect-oriented programming laws [11] to show that the
refactorings previously discussed in Section 2.3 are behavior preserving trans-
formations. Although we do not conduct a strictly formal proof, the derivation
is still useful for understanding refactorings in terms of simpler transformations.
Additionally, representing the refactorings as a composition of programming laws
helps to better define the preconditions under which those refactorings are valid.
For their simplicity, programming laws [17] are suitable for this. A complete for-
mal proof requires establishing the validity of the laws with respect to a formal
semantics, which is still on going work [12].

The laws we use (defined elsewhere [11]) consider the entire context, and
therefore apply to closed programs. Nevertheless, their associated side condi-
tions are purely syntactic. Furthermore, although the context is captured for
each particular law application, this is by no means a requirement that the con-
text be fixed for successive transformations. If, eventually, a modified context
no longer satisfies the conditions of a law previously applied, this does not in-
validate the effected transformation; it just means that in the current context
the application of the law would not be valid. Accordingly, the laws compose
in the sense that their consecutive application is equivalent to a coarse-grained
transformation (refactoring). Indeed, such composition is not as flexible as in
Hoare’s laws [17]–which can be applied to open programs–, but has sufficed to
derive the refactorings.



For example, Refactoring 1(Extract Resource to Aspect - after), presented in
Section 2.3, can be represented as a sequence of object-oriented transformations
and aspect-oriented programming laws (Figure 4). In this case, starting from the
left-hand side template of this refactoring, we first need to rearrange the source
code manipulating field f because AspectJ does not provide any mechanism to
introduce crosscutting behavior in the middle of a method. In order to move
the crosscutting code to an aspect, we first need to move the such code to the
beginning or end of the method; this allows the creation of a before or after
advice, respectively. In this refactoring, the crosscutting code was moved to end
of the method (we name such transformation by OO law in Figure 4). The OO
law holds if the code to be moved is independent of the remaining method code,
which is guaranteed by the third precondition of the Refactoring 1 (Section 2.3).
Once the crosscutting code is at the end of the method, we can use Law 1
(Add after-execution returning successfully), mentioned in Section 3.1, to create
a new advice that is triggered after the method’s successful execution. At this
point, Law 2 (Move Field to Aspect) can be applied to extract field f into the
aspect. The summary of transformations necessary to accomplish this refactoring
is shown in Figure 4.

The remaining refactorings can be similarly derived from programming laws.
In Table 2, each row summarizes the derivation of a refactoring whose name is
on the first column (this matches the refactorings from Table 1) in terms of the
consecutive applications of aspect-oriented laws (defined elsewhere [11]) in the
second column. In the table, consecutive application of laws is represented by
→, and repeated application of the same law is denoted with a superscript *.

Table 2. Summary of Refactorings Derivations. Consecutive application of laws is
represented by →. Repeated application of a law is denoted with a superscript *.

Refactoring Derivation of refactoring in terms of laws

Extract Method to Aspect Extract Method → Move Method to Aspect

Extract Resource to Aspect - after OO Refactoring →
Add After-Execution Returning Successfully →
Move Field to Aspect

Extract Context Add Around-Execution

Extract Before Block Add Before-Execution

Extract After Block Add After-Execution Returning Successfully

Extract Argument Function Add Around-Call

Class Hierarcy Extend From Super Type

Extract Aspect Commonality Change Advice Order → Move Advice*
→ Merge Advice

We notice that refactorings can have different levels of complexity when com-
pared to laws. Some refactorings, like Extract Aspect Commonality, can be con-
siderably coarse-grained, representing a combination of some laws. On the other



Fig. 4. Derivation of Refactoring Extract Resource to Aspect - after. The dashed lines
denote application of programming laws (fine-grained transformations); the continuous
line denote the application of the refactoring (coarse-grained transformation)

hand, some refactorings, like Extract Before Block, can be mapped directly into
a single law.

4 Case Study: Rain of Fire

Rain of Fire (RoF) is a classic arcade-style game where the player protects
a village from different kinds of dragons with catapults. The game is a com-
mercial product currently offered by service carriers in South America and Asia.
Although it is less than 5K LOC, LOC is neither a necessary nor sufficient condi-
tion for complexity. In fact, complexity in the mobile game domain arises mostly
due to variability. In general, the mobile game domain is highly variant due to
a strong portability constraint: applications have to run in numerous platforms,
giving rise to many variant products [2], which are under a tight development
cycle, where proactive planning is often unfeasible to achieve.



Although the PL that actually exists in our industrial partner encompasses
12 members, in this case study we investigated how RoF was adapted to run in
3 platforms (P1, P2, and P3), which encompass most variability issues in this
PL. P1 relies solely on MIDP 1.0, whereas P2 and P3 rely on MIDP 1.0 and
a proprietary API. Some of the variability issues within these products are as
follows: optional images, proprietary API for flipping images, screen sizes, and
image loading policy. After applying our approach (details shortly ahead), the
resulting PL has the feature model of Figure 5, and the following instances, as
described by the selection of features.

Fig. 5. Variability within Game Product Line

P1 = {Dragon, Bonus Weapon, Levels, Optional Image, At startup, Flip, 176x208};
P2 = {Dragon, Bonus Weapon, Levels, On demand, Flip, 120x160};
P3 = {Dragon, Bonus Weapon, Levels, Optional Image, At startup, 128x128};

Although this case study has focused only on 3 instances, the feature model
shows that other configurations are also possible: the feature model has a total
of 24 configurations. Future work is underway to address more configurations.

In order to evaluate our approach, we created a PL implementation of the
three products and then compared the PL version with the original implemen-
tation of these products. To create and evolve the PL, we first identified the
variabilities (such as optional images) with concern graphs and then moved their
definition to aspects using the Extract Resource to Aspect refactoring. In another
step, we addressed method body variability within the platforms. Accordingly,
we made extensive use of the Extract Method to Aspect refactoring. The Extract
After Block and Extract Before Block refactorings were used when the variant
code appeared at the end or beginning of the method body. On the other hand,
the Extract Context refactoring was used when the variation surrounded common
code, representing a context to it. The Extract Argument Function refactoring
was used when variation appeared as an argument for a method call. Finally,
we used the Change Class Hierarchy refactoring to deal with class hierarchy
variability.

During the evolution of the PL to include P3, we had to deal with the load
images on demand concern. This concern was specific to this platform, as it



had constrained memory and processing power. To implement this concern, we
had to define a method for each screen that could be loaded. Before a screen
was loaded, the corresponding method was called. In contrast, in P1 and P2

implementations, the images were loaded only once, during game start-up. In
this case, there was only one method that loaded all the images into memory.
This situation illustrates the scenario in Figure 2.

We addressed this by applying a sequence of Extract Method refactorings in
the core to break the single method loading all images into finer-grained methods
loading images for each screen; the call of this single method was then moved
from the core to P1’s and P2’s aspects, and the calls to such smaller methods
were moved to P3’s aspect by the Extract Before Block refactoring.

Another evolution scenario took place when we realized that some common-
ality existed between P1 and P2 with respect to the Flip feature (proprietary
graphic API allowing an image object to be drawn in the reverse direction, with-
out the need for an additional image): these two platforms are from the same
vendor and share this feature, which is not shared by P3, from another vendor.
Therefore, the Flip feature is isolated in the corresponding aspects of P1 and
P2, but it would be useful to extract this commonality into a single module. In
fact, we were able to factor this out into a single generic aspect (AspectFlip)
with the Extract Aspect Commonality refactoring, thus illustrating the scenario
in Figure 3.

Table 3 reports the occurrence of each refactoring for achieving the resulting
PL. Extract Method to Aspect was the most frequently employed, since variabil-
ity within method body was common for extracting most features. As the PL
evolves, we expect to employ Extract Aspect Commonality more frequently.

For the resulting the PL, we also employed the Move Field to Aspect pro-
gramming law from Section 3.1. This law was used 28 times. This is consistent
with the results of Table 3, since we do not claim these to be complete (the
argument in Section 3 is on soundness). Additionally, if we had only used the
programming laws themselves instead of the refactorings (composition of the
programming laws), we would have to apply approximately twice as many pro-
gramming laws. In general, the method can combine the refactorings and the
programming laws themselves. As the set of refactorings evolve closer to com-
pleteness, the direct use of the fine-grained programming laws is expected to
decrease and the proportional use of the coarse-grained refactorings is expected
to increase.

The resulting configuration knowledge maps sets of features to implementa-
tion artifacts:

{Levels, Dragon, Bonus Weapon} -> CoreClasses
{Flip} -> AspectFlip
{176x208, Optional Image, At startup} -> AspectP1
{120x160, On demand} -> AspectP2
{128x128, Optional Image, At startup} -> AspectP3

where CoreClasses is a set of core assets comprised of classes common to all prod-
ucts; AspectFlip is a core asset aspect dealing with the Flip feature; AspectP1,



Table 3. Occurrence of each refactoring

Refactoring Name Occurrence

1 Extract Resource to Aspect - after 5

2 Extract Method to Aspect 41

3 Extract Context 1

4 Extract Before Block 2

5 Extract After Block 10

6 Extract Argument Function 1

7 Change Class Hierarchy 1

8 Extract Aspect Commonality 1

AspectP2, and AspectP3 deal partially with specific products features of prod-
ucts P1, P2, and P3, respectively. The arrow notation means that the set of fea-
tures to its left, which are from the feature model represented in Figure 5, map
to the aspects or classes to its right. According to this configuration knowledge
and to the configuration of each product presented previously, the PL instances
are synthesized by

P1 = CoreClasses • {AspectP1, AspectFlip};

P2 = CoreClasses • {AspectP2, AspectFlip};

P3 = CoreClasses • {AspectP3};

where • denotes composition. According to this derivation of the PL members,
the PL core assets consist of the following: 1) eighteen classes in CoreClasses; 2)
one core aspect (AspectFlip). P1 and P2 are each comprised of CoreClasses and
two product-specific aspects; P3 is comprised of CoreClasses and one product-
specific aspect.

Indeed, the configuration knowledge is coarse-grained: there are few reusable
aspects across different PL instances. In fact, AspectFlip is the only reusable
aspect. Current work is underway to explore finer-grained mappings (i.e. more
reusable aspects across the PL) and more configurations. Additionally, some
scalability issues include having to reduce the granularity of the aspects, so that
these become reusable across more instances.

After creation and evolution of the PL, we analyzed code metrics. Table 4
shows the number of Lines of Code (LOC) for each product in the original
implementation, in contrast with the PL implementation. We calculate the LOC
of a PL instance as the sum of the core’s LOC and the LOC of all aspects
necessary to instantiate this specific product.

According to Table 4, LOC is slightly higher when comparing each PL in-
stance with the corresponding product in the original implementation. This is
caused by the extraction of methods and aspects, which increase code size due to
new declarations. On the other hand, there is a 48% reduction in the total LOC
of the PL implementation, when compared to the sum of LOCs of the single



Table 4. LOC in original and PL implementations

Original Implementation PL Implementation

P1 P2 P3 Total Core assets P1 P2 P3 Total
Core classes Core aspects

2965 2968 3143 9076 2477 72 3042 3047 3210 4405

original versions. This was possible because of the core assets, which represent
57% of the PL LOC. Although, we have a considerable commonality between
the three original products source code, it is worth to consider it as different
code, because it is repeated for each product and tightly coupled with it. This
code repetition increases the effort of program reasoning and maintenance. A
reduction due to the avoidance of code repetition could also be obtained using a
different product line approach or some modularization techniques, like compo-
nentization. Another factor that contributes to the reduction in PL LOC is the
existence of reusable aspects.

Table 5 shows the sizes of the PL aspects. The only reusable aspect is con-
siderably smaller than the product-specific ones. The small size of this aspect
is convenient for it to be reusable across different PL instances. With a more
fine-grained configuration knowledge, we expect that there would be a higher
number of reusable aspects and the relative size of the product-specific ones
would decrease. Eventually, it could happen that, for some PL instances, no
product-specific aspect would be necessary, in which case such instance would
be derived solely by reusing core aspects.

Analyzing Table 5 in conjunction with the configuration knowledge presented
previously, we can infer that the relative size of aspect code in the PL members
ranges from 16% for P1 and P2 to 20% for P3.

Table 5. LOC of aspects in the PL.

Aspect LOC

AspectP1 421

AspectP2 426

AspectP3 661

AspectFlip 72

Another analyzed metric was the packaged application (jar files) sizes of the
original and of PL implementations (Table 6). Jar files, that are released to
final users, include not only the bytecode files, but also every resource necessary
to execute the application, such as images and sound files In the case study
products, additional resources represents, on average, 45% of the total jar file
size. To measure the impact of our approach on bytecode size, we are considering,
in Table 4, the jar files containing only the class files, excluding other resources.



The jar file size is a very important factor in games for mobile devices, due to
memory constraints.

Table 6. Jar size (kbytes) in original and PL implementations

Original Implementation PL Implementation

size reduced size size reduced size

P1 32,4 29,0 67,5 38,4

P2 33,2 28,8 69,1 33,3

P3 56,1 52,4 93,5 56,7

Total 98,1 86,6 206,6 104,8

We can notice a jar size increase from original versions to PL instances.
The reason for this is the overhead generated by the AspectJ weaver on the
bytecode files. We also noticed that very general pointcuts intercepting many
join points can lead to greater increases in bytecode file sizes. This considerably
influenced us in the definition and use of the refactorings. Moreover, we can
gain a significant reduction in the jar size when using a bytecode optimization
tool [27]. The reduced size of each original version and PL instance are shown
in Table 6.

Although in this case study the PL implementation offers to the user of our
approach the same functionality but with a higher application size, our approach
is useful mostly because of the benefits that the PL approach brings to the
development process: reuse and maintenance are improved, code replication is
minimized, and derivation of new products is faster and less costly. Further, the
increase on bytecode size can be minimized by further advances in optimization
tools. Our initial results show that, in cases where pointcuts matches few join
points, by inlining the body of the advice in the base code, we can already reduce
bycode size.

5 Tool Support

We have designed and implemented a prototype of a tool for supporting vari-
ability management in the PL context. Currently, the tool aims at extracting
variations from existing products, by isolating such variations into aspects, which
in turn customize the incrementally emerging PL core. The tool currently imple-
ments a subset of the refactorings discussed in Section 2. The subset comprises
all but the Extract Aspect Commonality and the Extract Argument Function
refactorings.

For example, in order to perform the Extract Before Block Refactoring, the
user first selects a piece of code to extract (in this refactoring such piece must
be at the beginning of a method) and then clicks on the button to perform the
refactoring. Next, a dialog box pops up, where the user specifies to which aspect



the variability is to be moved. It can be moved to either an existing aspect or to
a new one available from the combo box. After confirming the dialog, the tool
first checks the refactoring preconditions and, only if these are met, applies the
refactoring transformation, resulting in a new version of the emerging core and
in a new version of the aspect isolating the selected variability. For performing
the other refactorings, the user interacts likewise with the tool.

The prototype has been implemented as an Eclipse plug-in [26]. It defines the
Product Line Perspective, comprising some buttons in the tool bar corresponding
to the refactorings.

Figure 6 illustrates the basic workings of the tool. At first, the user selec-
tion from the editor is captured as text via the Workbench API which is used
by the ExtractRefactoringAnalyzer to look up for the equivalent statements in
Abstract Syntax Tree (AST). Then, the refactoring preconditions are checked in
the AST. In the sequence, the AST pieces necessary to perform the refactoring
transformation are determined. Finally, such the transformation is performed
in the original AST and also in the aspect. In the latter, the code is generated
as text buffer without manipulating AspectJ’s AST API, since such API itself
is not currently available. In contrast, the AST API Java is available at JDT’s
jdt.core.dom package [26].

6 Related Work

Our research is in the convergence of a number of areas involving PLs, AOP,
refactoring, programming laws, and model refactoring. In the next sections, we
compare our work to research in recurring combinations of these areas.

6.1 AOP, PLs, and Refactoring

As in our previous research [4], the current work addresses PL refactoring in
the extractive and reactive contexts. However, the current work has three major
improvements over our previous research.

Formalization Section 3 of the current work shows how refactorings (coarse-
grained program transformations) in the product line context can be understood
in terms of programming laws (finer-grained program transformations). The pro-
gramming laws themselves (not the refactorings) have been defined by the third
author in previously [11]. But the novelty in the current work is to decompose
the product line refactorings in terms of such laws. Figure 4 shows how Refac-
toring 1 (Section 2.3) is derived from consecutive applications of these laws, and
the second column of Table 2 summarizes how each product line refactoring in
the first column of the same table is decomposed into a sequence of application
of such laws. Indeed, only the first column of the Table 2 is in previous work, but
not the second column (the derivation), a conceptually substantial difference. In
this way, the new work presented in Section 3 lays a more formal foundation for



Fig. 6. Basic workings of the tool. User selection is parsed and matched in the program
AST. Then the refactorings transformations are applied to classes and aspects, and the
output generated.

the work presented previously [4]. By expressing refactorings in terms of pro-
gramming laws, we can increase the confidence that the refactorings are indeed
correct. This is feasible because the laws are simpler and easier to reason about
than the refactorings themselves [12]. Further, this is relevant because it reduces
the burden on testing, which is extremely expensive in the product line scenario.

Extension/refinement of method . Refactoring preconditions are a subtle
issue in object-orientation [7, 8] and in aspect-orientation [12]. Accordingly, the
preconditions of some refactorings we present have improved slightly since our
previous work, and the current work has been updated accordingly. This is also
a consequence of having a more formal foundation in the current work.

Tool support The scientific contribution of the prototype itself is rather lim-
ited, but it helps to show that our approach can benefit from effective tool
support, which is essential in the product line scenarios we focus on (extractive
and reactive). Additionally, this is a step towards showing the viability of AOSD
in industry.



Prior research by other researches also evaluated the use of AOP for building
J2ME product lines [5]. We complement this work by considering the implemen-
tation of more features in an real application, explicitly specifying the refactor-
ings to build and evolve the PL, and raising issues in AspectJ that need to be
addressed in order to foster widespread application in this domain. Additionally,
we rely on concern graphs [24] to identify variant features. Concern graphs pro-
vide a more concise and abstract description of concerns than source code. Once
the concern is identified, we extract it into an aspect and may further revisit it
during PL evolution.

AOP refactorings have also been described elsewhere [23, 16]. The former pro-
poses a catalog for object-to-aspect and aspect-to-aspect refactorings, whereas
the latter provides an abstract representation of object-to-aspect refactorings as
roles. However, their use in the PL setting is not explored, and the refactorings
format follows the imperative style [14]; in contrast, our approach is template-
oriented, abstract, concise, and thus does not bind a specific implementation,
which could be done, for instance, with a transformation systems receiving as
input refactoring templates.

In another approach, a language-independent way to represent variability is
provided, and it is shown how it can be used to build J2ME game PLs product
lines [29]. Our approach differs from such work because, although ours relies on
language-specific constructs, it has the advantage of not having to specify join
points in the base. Moreover, their approach, despite language-independent, con-
siderably complicates understanding the source code due to the tags introduced
to represent variability.

A recent work [28] reports the AOP refactoring of a middleware system to
modularize features such as client-side invocation, portable interceptors, and
dynamic types. Nevertheless, such work does not describe the refactorings ab-
stractly and does not attempt to express them in terms of simpler programming
laws as a way to guarantee behave preservation, as we do.

6.2 Programming Laws, Model Refactoring, and Optimization

Previous work [11] presented 30 aspect-oriented programming laws and showed
how these could derive some aspect-oriented refactorings. In our work, we have
explored the usefulness of such approach in validating extractive and evolutive
refactorings for building product lines in the mobile game domain. Additionally,
this task prompted not only an extension of the number of laws initially pro-
posed, but also a more careful description of some subtle issues of these laws,
such as handling AspectJ’s precedence semantics, which were skipped in the
original work. Finally, the experience in using the laws during derivation sug-
gested that these be organized in a more concise notation, which could lead to
the implementation of a generative library.

The process of defining programming laws and showing how these can be
used to derive refactorings has also been addressed for for object-oriented lan-
guages [7]. Such research additionally formally proves not only the completeness
of such set of laws, but also the correctness of each law, by relying on a weakest



precondition semantics [9]. Our work, despite not formally proving the laws, still
benefits from understanding coarse-grained transformations in terms of simpler
ones.

If high-level algebraic specification of products are available, as described
in [21], an efficient optimization algorithm could be applied in order to extract
the product line core from these specifications with the Shared Class Extractor
operator. However, the hypothesis of having this high-level specification may
not be met in practice, in such a way that the domain engineer would need
to address handling legacy software directly at the design or at the implemen-
tation level. Our approach addresses building a product line from existing de-
sign/implementation artifacts. Additionally, the variations handled by our ap-
proach are considerably crosscutting and may have fine-granularity, which is not
the focus of the work mentioned.

6.3 Aspect composition

Section 3.2 shows that the laws compose in the sense that their consecutive
application is equivalent to a coarse-grained transformation. Note, however, that
the application of each law assumes a fixed context. During composition, this
context can change from the application of one law to another, but this shows
the laws assume a closed-world approach. Therefore, they are not appropriate
for working exclusively with libraries, for example, but are suitable for PLs,
since the assets are available in the PL scope and can be considered as the
context. Moreover, these compositions of laws have shown to be useful for the
case study in this work and in case studies in four other domains [11]. However,
more general and functional composition among aspects has shown to be limited
within AspectJ [22]. Nevertheless, we believe this is not a strong disadvantage
because handling variability in PL does not necessarily need to be addressed by
using aspect composition. In fact, feature interaction and interaction between
the core and the extension –common PL phenomena– may prevent functional
composition from being applied. Current work on XPI [25] and EJP [19] suggest
that such interactions are not rare.

7 Conclusion

We present a method and a tool for creating and evolving product lines combin-
ing the reactive and extractive approaches. Our method uses a set of refactorings,
which can be extended when necessary. We show that these refactorings can be
derived from a combination of programming laws, allowing us to better under-
stand these refactorings and increase the confidence that they are correct. This
is specially relevant because it reduces the burden on testing, which is extremely
expensive in the PL scenario. Our refactorings rely on AOP to modularize cross-
cutting concerns and to generalize the implementations of these concerns in order
to increase code reuse.



Our evaluation with an existing mobile game suggests that we can benefit
from extensive code reuse and easily evolve the PL to encompass other products
while still maintaining code correctness, since the refactorings are derived from
sound elementary programming laws. It also provides some examples of strategies
on the applications of refactorings that manage to handle the implementation of
variant features.

Although our case study has addressed only a fraction of the configurations
from a concrete PL, such fraction exposes most variability issues in the domain.
Further, although the evaluation is in the mobile game domain, we argue that
the method and the issues addressed here are valid for mobile applications in
general, of which mobile games are representative. We also believe that other
variant domains could benefit from our method.
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