Comparing Different Test Strategies for Software
Product Lines

Paola Accioly Paulo Borba Rodrigo Bonifacio
Informatics Center Informatics Center Computer Science Department
Federal University of Pernambuco Federal University of Pernambuco University of Brasilia
Recife, Brazil Recife, Brazil Brasilia, Brazil
Email: prga@cin.ufpe.br Email: phmb@cin.ufpe.br Email: rbonifacio@cic.unb.br

Abstract—SPL testing has been considered a challenging task, However, such test suites may hamper manual execution
mainly due to the diversity of products that might be generaed pecause these abstractions, as often happens when testing i
from an SPL. To deal with this problem, several techniques executed by an organization (or team) and development and

for deriving product specific functional test cases have bee test desi ied b th iz ati atls]
proposed. However, this research area still lacks empiridastudies est design are carmed on by another organization, careaus

showing the benefits of using such techniques. This paper Bents testers that have to strictly follow test scripts. This caad

a study that empirically compares two different black box manual ~ to unwanted consequences, such as escaped defects —when
test design techniques: a generic technique that we have @sed testers don't find an error prior to product release. In aoajt

in a industrial test execution environment and a product speific testers may take longer to execute test cases and repoctsiefe

technique whose functional test cases could be derived ugimny that don’t exist. d inq test i ductivit
SPL technique that considers variations in functional tess. We al don't exisi, decreasing test execuon productvity.

evaluated their impact from the point of view of the test exeation Alternatively, with the adoption of an SPL technique that
process, achieving results that indicate that executing mduct manages variability in test suites, it would be possible to
specific test cases is faster and generates fewer errors. derive different versions of the same test suite customized

for the different configurations in the product line. Thisywa
testers wouldn’t get confused during test execution pr®ces

Efficient testing strategies are important for achievinfi-so and the problems above mentioned might be solved. However,
ware quality and reliability. Since an SPL can generate geanorganizations cannot decide to introduce new techniques or
of different products, it is challenging to write test cabased change their usual methods based only in assumptions. We
on product specific use case scenarios. This happens becaasgt simply assume that specific test cases will in factdorin
of the potential large number of products and because safch benefits.
the variation points scattered through different SPL fe=u To bring evidence that might help decision making in such
scenarios. context, in this paper we discuss the differences of the iene

In order to derive SPL test cases, different methodologi@echnique (GT) that uses all variants specifications tageth
such as PLUTO [1] and ScenTED [2] have been proposeslithout variability representation, and the Specific Tégha
These techniques present constructs that represent prod8%d) that uses product customized test suites (Sectiomtl) a
variability and provide a means to derive product specifijgresent an empiric evaluation (Section IlI) that compahes t
test cases. Nevertheless, the research community stk laGT and the ST and evaluate the impact of the use of these
empirical studies that evaluate these proposals in ordertigo techniques from the point of view of the test execution
give a solid foundation for software product line testing iprocess by measuring the effort of test cases executiom Wit
industry [3], [4]. this contribution we seek to investigate the benefits and

Perhaps the absence of evidence about the benefits of sdisadvantages of both techniques. We present related work i
techniques discourages their industrial adoption. As altres Section IV and our final considerations in Section V.
from what we have observed in an industrial test execution
environment, companies might use test documents with use
case scenarios that usually describe family behavior as alo better understand the two techniques, we describe some
whole, describing most commonalities and abstractingdle f practical examples of how test cases may turn up to be generic
that some steps are optional or alternative, sometimes eydascribing inaccurate family overall behavior) or produc
omitting such steps. For example, one test case that specifipecific (showing the specific steps and data values suitable
the scenario of a report generator feature would contain &l each product). Besides presenting this difference, we al
possible variants for report formats such as PDF, HTML arekplain what are the consequences of using generic test case
XLS, and testers would use this test case to test all SHLa test execution environment. As explained over Sectjon |
products, even in the cases where some of them are m@ have observed the use of the GT in test teams that
configured with all of these options. focus only on the test execution process of a multinational

|I. INTRODUCTION

II. GENERIC AND SPECIFICTEST CASES

TABLE |

GENERIC TEST CASE USER SENDSMMS WITH PICTURE ATTACHED.

Step ID | User Action System Response
1 Go to Main Menu Main Menu appears
2 Go to Messages Menu Message Menu appears
3 Select “Create new Mest Message Editor screepn
sage” opens
4 Add Recipient Recipient is added
5 Select “Insert Picture” Insert Picture Menu opens
6 Select Picture Picture is Selected
7 Select “Send Message” | Message is correctly sen
TABLE I
SPECIFIC TEST CASE FOR PRODUCTS CONFIGURED WITH THEC
FEATURE.
Step ID | User Action System Response
1 Go to Main Menu Main Menu appears
2 Go to Messages Menu Message Menu appears
3 Select “Create new Mest Message Editor screen
sage” opens
4 Add Recipient Recipient is added
5 Select “Insert Picture” Insert Picture Menu opens
6 Select Picture Picture is Selected
7 Select “Send Message” | Dialog appears: “Are you
sure you want to seng
this message? Data transg-
fer shall be charged”
8 Hit “Yes” Message is correctly sent.

In manual black-box testing, when the test specificatids fai
to agree with the product behavior, it probably means that
the test case has revealed a defect. However, when testing
a BC product, that's not what happens with the generic test
case just described. Here, the product works fine according
to its configuration. The problem is that the generic test
case does not consider all steps required to perform the task
correctly. The implementation is correct, but the spedifice
is vague, so that it roughly fit different SPL members. In
this context, when the tester is not familiar with the praduc
specificities prior to test execution, he might likely iniest
the test inaccuracy as a product defect. This misundelisigind
can be solved if the tester investigates and finds eviderate th
the test specification does not apply for that product. He can
do that by talking to a requirements analyst or reading the
products specification. However, if he can't find this evicken
he will report an invalid product defect, wasting his andewsth
people’s time to analyze the inaccuracy.

Besides reporting invalid defects, a different type of éssu
might happen. Let us imagine that the product configured
with the BC feature does not present the alert message before
sending the MMS. In this case, the product was not correctly
implemented, and the generic specification is vague. Theere i
a product defect that the tester needs to report so that the
development team can fix it. However, the tester won’t be

telecommunications company that sells mobile phones ait oable to notice this defect because the generic test case does
the world and outsources test execution activities to ®sters not consider the step that shows the alert message. If teetdef
located in different countries. To illustrate the techmigu is not reported, the product might be released to the market
we use a toy example of a mobile SPL that manages tigthout considering the requirement made by the BC. Thik wil
interaction of mobile multimedia content (pictures, videolikely lead to anescaped defecthat is, defects that are found
and music), Multimedia Messaging Service (MMS) and somiter the product release. This scenario might be worse than
requirements made by a specific mobile carrier that we wiporting invalid defects because it directly affects prod

call as Blue Carrier (BC). These examples represent what ygality, whereas reporting invalid defects only affectstitey
have observed in practice.

A. Test Case: User Sends MMS with Picture Attached

Our first example considers the scenario of an user send®g Test Case: User Checks Icon and Label on Mobile Phone
an MMS with a picture attached as detailed in Table I. Thiglain Menu

scenario applies for most products of the SPL in discussion.
However, it does not apply for products containing the BC Our second example considers the test case detailed in
feature, which corresponds to a group of requirements assdkable Ill. The tester has to check the icon and the label for
ated to the BC. This carrier specifically requires that, befoweb navigation on the mobile main menu. Again, this scenario
any data transfer, a message pops up asking the user ifapglies for the majority of products except the ones conéigur
really wants to send that message— since data transfer avillvbith the BC feature, which exposes the carrier brand logo in a
further charged. Differently, Table Il describes the re@duct different way. In practice, in a real test execution envinemt,
behavior when the product follows BC feature requirementsis test case would contain a link leading to a document that
On steps 7 and 8 we can see the differences from Table l.describes the icons that should be displayed, but here, we
In the GT, the test case detailed in Table | would serve simplified this specification by representing the mobile o
test all SPL products and the tester would be confronted wishreen in Figure 1. This figure displays the proper behavior o
an inaccuracy while testing products configured with the Bthe product with the BC logo and the label “Blue Web” instead
feature. On the other hand, when using the ST, there wouwtl“Web”. A specific test case for a product configured with
be two different test cases. The first one, detailed in TableBC would have the same steps described in Table IIl except for
would serve to test the products not configured with the B@ie differences on the logo and the label that would expose
feature, whereas the second one, detailed in Table II, wodlke BC brand logo. Again, while executing the generic test
serve to test those products that were configured with the B@se, testers confronted with this inaccuracy might waste, t

feature.

productivity.

report invalid defects or even let a defect escape.

TABLE Il
TEST CASE CHECK ICON AND LABEL ON MAIN MENU

Inaccurate
test case

Step ID | User Action System Response
1 Go to Main Menu Main Menu Appears
2 Check the browser navigat World icon appears with|)
tion option the title “Web” <<Product has same rrorsss SRroduct works fine>>
Test Test goes
[PASSED] [ON HOLD]
T 4

Test
PASSED

i:lﬂ Blue Web

Fig. 1. Correct behavior for BC products.

Fig. 2. Possible consequences of generic test cases.

TABLE IV
TEST CASE USER ATTACHES VIDEO TOMMS.

Step ID User Action System Response : ; ; ;

I o 1o Main WienG Miain Menu appears first example. AI_ternauver, they might present d|fferemta

> Open Camera Applicatior] Camera App opens values such as icons a_nd Iabels,. as we showed in our second

3 Make a 5s video Video is correctly saved td example. Lastly, they might describe more steps than nagess

Z o gh?_”e Tﬂemory for some products, like presented in our third example. Note
elec ptions ption Menu appears . . .

5 Select "Send as MMS™ | Dialog appears: “Video 18 that the generic _tes_t_smtes_ descnbeq here have no means of

too large to attach. Do yo representing variability to inform which steps apply or not

_ want to resize it?” to each product. They simply describe most commonalities,

6 Hit "Yes Z;]ddegn'zcchoerée“'y resizéd apstracting possible variations and are partly not cordest

7 Add recipient Recipient is added pending on the product configuration.

8 Select “Send Message” | Message is correctly sen

D. Problems With Generic Test Suites

In a black-box manual test execution environment, testers
C. Test Case: User Attaches Video to MMS are not required to have specific knowledge of the applinatio

Our third and last example contemplates the scenario @mde structure [5]. Only by reading test scripts, they are
tailed in Table IV. This time, the user makes a 5 secondsvare of what the system under test is supposed to do. They
video and then try to send it with an MMS. This test castllow the user action steps checking if the product behaves
aims to test a feature that limits the MMS size so that, if theccording to the described system responses. Whenever ther
user tries to attach a file that exceeds this limit, a messagean inconsistency between the test case and the product
appears asking if the user wants to resize the file in orderliehavior, testers must investigate whether this incoersist
send the MMS. The inaccuracy occurs when some produigsa defect. In this context, using generic test cases for SPL
are configured with a feature that gives the option to malgoducts may hamper test execution because when they fail
videos using low resolution. A 5 seconds video taken with lot® specify a certain product behavior, testers are not able t
resolution would not exceed the MMS limit size, so, steps i8entify if there is an issue in the test case. Instead, thightn
and 6 don't apply to these products. interpret it as a product defect.

In this scenario, the generic test case fails to specify theThe activity diagram described in Figure 2 considers the
interaction between the MMS limit size and the camera logcenarios that typically happen when a test case is notaecur
resolution features. This probably happened because, thieenThe activity flow starts when the test case doesn't correctly
low resolution feature was added to the SPL, the interactispecify the behavior of the system under test, presenting an
between these two features was not specified correctly @onsgssue similar to those described earlier in this sectiornlthe
ering this situation. A specific scenario for products camfigl fork on the diagram indicates two possible scenarios. Ihetfte
with both features should specify, on step 5 of Table I\hranch the product matches the test case description, @r oth
the following system response “Video is correctly attachedwords, there is a defect but the tester won't be able to notice
Then, the next step would be to attach the message recipidgicause the test case is also wrong. So the tester passes the
Additionally, the specific test case initial conditions ghib test and the consequence is an escaped defect. For ingtance,
mention that the low resolution mode is activated. the example described in Subsection II-B, the mobile compan

In summary, generic test cases may differ from specifigould release the BC product without the BC brand logo on
test cases in three different ways. First, they might presgéhe Web Navigation option.
less steps than the product requires, like discussed in outn the right branch, the product works fine, so the incon-

sistency is found and the tester puts the test case on hsjmcifications can be used as input to an automatic tesssuite
to start investigating whether there’s an issue in the tase c generation tool such as TaRGeT [8].
or in the product. He might search throughout requirementEither way, we believe that having product specific testgase
documents or eventually speak to a requirements analystmaht help to solve SPL test execution problems. To evaluate
the development team or to other testers who already executeis statement we propose a study to compare generic and
that test case. Then, if he finds evidence that the prodyecbduct specific test suites using the point of view of the
works as expected by costumers, he passes the test, writiegf execution process. Likewise, it is important to corapar
an observation about the test inaccuracy, and the conseguahese techniques using the point of view of the test design
is time lost with the investigation. process since the gain on test execution might not compeensat
Based on our observations in a medium size test orgathie effort to design product specific test suites. We believe
zation, this kind of investigation can take a small amouthat, initially, if we use an SPL test derivation technique,
of time, 1 or 2 minutes if the tester talks to a technicahere would be an increase of effort to design test suites
leader or a requirement specialist available personallyiamr with variability representation compared to the generieson
instant messaging. On the other hand, it can take a lot métewever, once this initial step is done, not only the test
time if, for instance, the tester needs to look throughoekecution could benefit from it but also the maintenance of
requirements documents to find out about the expected systest suites would be easier.
behavior. Finally, the tester last resource is to contaet th Unfortunately, we can’t evaluate these two processesddesi
development team, having to wait for an answer. For instanead execution) in one single study for a number of reasons.
in the organization we mentioned before, the developmefitst, the team that designs the test suites is usuallyrdiite
team worked in a different time zone, so the questions tofdlom the team that executes them. This would essentially
longer than one day to be analyzed. Meanwhile the test cagparate this study into two. Second, while the test design
remained on hold and the tester moved on with the test suiedone once and then maintained, the test execution is done
Either way, if the tester can’t find evidence about theeveral times so that it would be difficult to interpret theuks
expected product behavior, he will assume that there isirea realistic way. Finally, different companies focus diténtly
product defect. He will create a change request (CR) andhwhan these two processes. Some focus more on execution than on
the development team gets to analyze the CR, they will getdesign, whereas others do the contrary or even focus equally
the conclusion that the product works fine, then terminatiran both. This leads to problems on the generalization of the
the CR. In this case the consequences are time lost andesults.
terminated CR which is a negative metric indicating that the Because we can't evaluate the process of designing and
tester reported a failure that didn’t exist. executing SPL test cases in one single experiment and also
Therefore, the GT might impact SPL development with rdsecause we have experienced the problems from the test
spect to two aspects, quality and productivity. Qualitydhese execution point of view, making it our area of expertise, we
some defects might escape, and productivity because of tifivet focus on the test execution process, considering treat t
lost during investigations and possible terminated CR® Tlest cases are already specified as generic or specific. For
more often these inaccuracies appear on the test casesttigefuture we intend to extend this study to consider the test
more significant is the impact on the test execution procestsign process separately. We consider this first studyeas th
SPLs that contains more variation points are more likely fost step towards a deeper understanding on the benefits and
present such problems. disadvantages of adopting product specific test suites. Our
-~ results here can be particularly interesting for compatiias
E. Product Specific Test Cases for SPL focus more on test execution like the organization that we ha
To derive product specific test cases for a given SPL thesbserved.
are different possibilities. One alternative is to copy saene
test document for each product line configuration to be deste
and manually adjust the differences between them. However|n this paper we empirically evaluate both the the GT and
this solution is not really appropriate because the more-cothe ST techniques from the point of view of the SPL test
plex the SPL gets, the harder it is to maintain each prodstt texecution process. Figure 3 illustrates this comparisam. O
documents. The alternative to obtain product specific tests the figure left side, the generic technique provides onelasing
reuse test cases for the different products in a given SPis. Theneric suite that testers will use to test two differentpici:
reuse can be done in, at least, two different ways. First, W and P2. Differently, on the right side, the specific appinoa
can use an SPL technique that manages test cases variahlityvides two different suites: P1 Suite and P2 Suite, eaeh on
and derive product specific test cases. Some of the existspécifying its respective product.
approaches are PLUTO [1] and ScenTED [6]. The secondin order to compare these two techniques in terms of test ex-
alternative is to structure use cases using modularizatieoution, we conducted a controlled experiment where staden
mechanisms so that it is possible to generate specific uss cd®md to test different products from the same SPL using either
for SPL products. One existing technique for this matter the GT and ST techniques while collecting the time taken
MSVCM [7]. After deriving product specific use cases, thes® execute the test script. During this activity, studerito a

IIl. EVALUATION STUDIES

TABLE V

Generic P1 P2 LAYOUT OF EXPERIMENT DESIGN
suite suite
Feature 1 | Feature 2
Subject 1 GT ST
n @ Subject 2 ST GT

Fig. 3. Techniques.

collect reported CRs whenever they identified defects. By th Ho @ WrerminatedCRsST = WTerminatedCRsGT (3)

end of the experiment, we analyzed and discussed the achieve 1 [iTerminatedCRsST # WTerminatedCRsGT — (4)
results. All the experiment material is availaldaline® The
next subsections describe the experiment definition, johann
execution, results and, finally, we consider threats toditgli

2) Design, Instrumentation and Subjec®ringing the ele-
ments evaluated in our context to empirical terms, the wetri
evaluated are execution time and terminated CRs and the
A. Experiment Definition treatments are the GT and the ST. Furthermore, in order to

We have structured the experiment definition using the godV°id bias there are some factors that we need to control

question, metric (GQM) approach in order to collect andUfing the experiment execution as discussed next.
analyze meaningful metrics to measure the proposed pr,ocesérhe first factor_ under _contro_l is the subjects selected to
described as follows: execute the experiment, since different background kndgéde

Goal: analyze the test execution process, for the purpo@@d testing skills can influence directly on our metrics. The

of evaluating two different SPL test case design techniqué&cond factor under control is the number of variation oint

(GT vs. ST), with respect to their efficiency regarding tire texistent in the test cases since test suites with more i@riat
execute the test suites as well as the number of terminated GRINtS might benefit more from the ST than test suites with
reported during the test execution process. Using the Fnn—,imfewer variation points. In a test executl_on environmen li
view of test engineers and software engineering researiherth€ one that we have observed, test suites are usually delate

the context of controlled experiments done with graduate aff SPL features. They explore flows related to the main
undergraduate students. functionality of a feature and its interaction with otheafieres.

Research Question 1 RQ,): Does the ST reduce the test! NUS, we control the variation points factor by choosing tes

execution effort compared with the GT? suites related to two different features in the same SPL.
Metric: Test execution time Since we have two treatments, two test suites and N
Research Question 2 RQ.): Does the ST reduce thestudentg, we opted to use a I__atin Square Design [9] to control

number of terminated CRs compared with the GT? the subject and the test suites (related to features) factor
Metric: Number of terminated CRs. To apply this design to our considered factors, we dispose

To evaluate the differences between the GT and the Stbiects in the rows and the features in the columns of the
we chose to collect test time execution and the number Igfin square (see Table V). In this way, we systematically
terminated CRs metrics because, from what we have obseré®f the three principles of experiment design [9]. Also, in
the GT may decrease test execution productivity sincertest2ch given row and column, the treatment, the GT or the ST,
might take longer to execute test cases besides reporttgefé@Pears only once. Additionally, in each treatment agfivit
that don't exist. We will also collect other metrics such a!€ Subjects execute two test suites in two products. Wigh th
valid CRs —CRs that report real product defects— becausd they execute specific suites for each product. With the
we need to analyze all reported CRs in order to identify iffaT, they execute the same test suite in the two products as

terminated ones. illustrated in Figure 3. The order of the products execut®on
also randomized.
B. Experiment Planning To evaluate the test techniques, we considered products
To evaluate the elements involved in our experiment plaand test suites from the Research Group Management System
ning, first we describe our statistical hypotheses. (RGMS) SPL. It's a Java desktop product line with the purpose
1) Hypothesis:To answerR@Q; concerning the average ofof managing members, publications and research lines from a
time consumed to execute the test suites: research group. The products and the test cases are written i

Portuguese since the differences among subjects Engiith sk

could affect the execution time.
Ho + primesT = primeat () Figure 4 exhibits the RGMS feature model [L8]embers
Hi : WlimesT # WTimeGT (2) Publicationsand ResearchLinegeatures are responsible for
ganaging these entities insertion, search and deletiom fro
the system. Meanwhile, thReportsfeature is responsible for
publication reports in two different formats: PDF or Bibtex
Lhttp://goo.gl/Brx3r Also RLSearchbyMembeéieature makes it possible to know

To answerRQ, concerning the number of terminated CR
reported during test execution:

TABLE VI
GENERIC TEST CASE

User Action System Response
| Members | Publications | | ResearchLines | |GlobaISearch| Verify the options for re-| The options (PDF, Bibtex)
0/\0 \o port generation format are available.
| PubSearchByMember I | Reports | | RLSearchByMember | TABLE VII

SPECIFIC TEST CASE

m User Action System Response

Verify the options for re-| The option (PDF) is avail-
port generation format able.

Fig. 4. RGMS feature model.

tests to execute in this interval of time.

which research lines associates with each member registere, exemplify the test suites differences, Table VI desaibe
on the system. SimilarlyPubSearchbyMembeetrieves the ne step of the generic scenario that asks the tester to check
publications associated with Fhe members of the_ regeawhether the options for generating reports appear coyrectl
group. Lastly,GlobalSearchretrieves members, publications,qyever, not all products contain these two formats (PDF and
and research lines. To execute the experiment we chose #{Btex) so these values are wrong for one of the configuration
configurations as described: We adjusted this step to specify the behavior of a product

P1: RGMS, Members, Publications, ResearchLines, Rgpnfigured to support only PDF reports generation as destrib
ports (PDF, Bibtex), ResearchLineSearchbyMember in Table VII.

P2: RGMS, Members, Publications, ResearchLines, Re-|n order to measure the effort to execute the different test
ports (PDF), PublicationSearchbyMember, GlobalSearch suites, we developed an application called TestWatcher to
The features chosen to design the test suites Waldica- collect test time execution (in seconds), reported CRs ids,
tionsandResearchLinebecause they were rich and containedome possible observation about the execution and the test
different flows to explore and also sufficiently independerase result (passed or failed). TestWatcher recorded iall th

from each other generating test suites with separate flowgformation in a spreadsheet.
We didn’t choose thélembersfeature because it was really |n total, 20 persons engaged in the experiment. They were
tangled in both products and each feature should presaftcomputer science graduate (PhD or MSc) students with dif
different flows of execution, in order to avoid participantserent levels of knowledge in software testing. The pgtioits
from learning the tool from one feature execution to the othavere randomly assigned in pairs to form 10 replicas of the
In other words, if we choose features with similar flowsatin square. To form the first latin square replica, the ezt
participants might learn how to use the product when exeguti(Publications and Research Lines) were randomly assigned t
the first feature suites and then execute the second featBegiture 1 and Feature 2 and then, finally, the treatments were
suites faster. randomly assigned inside the first square replica. Then we
We manually wrote the test suites instead of using an Sképlicated the first square configuration to the 9 other capli
test derivation technique because we don't focus on stgdyin 3) Metrics Collection:Using the TestWatcher, we simulate
the benefits of one test derivation technique, but on the testest environment with some simplifications. Remembering
design techniques in general. In total, there were 6 testsui Section I, when the tester puts the test case on hold to
First, we produced the generic test suites for F1 and F®/estigate whether there is a defect on the product or jtesta
(GS-F1 and GS-F2) trying to simulate the issues discussgdue, he does different tasks depending on the environment
over Section Il. Some test cases presented steps that didwticture. To consider and simulate all those situations we
apply for both products under test to simulate the scenati@rked on the following approach to simulate the investarat
where the test case has more steps than necessary. Qih&#: whenever the tester had to investigate if there was a
test cases had some missing steps depending on the prodeféct on the product, he paused test execution, using the
configuration to simulate the scenario when the test case MastWatcher, and asked the experiment conductor who knew
less steps than necessary. And finally some test cases @@ segreviously the issues present on the test suites. If theme wa
wrong/missing data values trying to simulate the scenamiotest inaccuracy, the conductor instructed the testerrioré
when the test case fails to specify some data value. the issue continuing with the test execution and writing an
Next, GS-F1 and GS-F2 were manually adjusted to attentiservation on the TestWatcher, explaining what was wrong
P1 and P2 specificities, generating the suites SP1-F1, $P24kith the test, for example, if a step didn't apply for the puotl
SP1-F2 and SP2-F2. Each test suite comprises 6 test casesuMder test. Otherwise, if there was a product defect, hedvoul
chose this quantity because the participants would have ttedl the tester to create a CR. After that, the conductor doul
hours to execute two test suites, one for each product, givitake note of the investigation interruption. By the end & th
a total of 12 test cases in two hours. We learned from earliexperiment, the conductor would have a report on how many
experiment executions that this was a reasonable amountiofes testers interrupted execution because of test inacies.

The purpose of having the number of interruptions is that we
could run a first analysis considering just the executioretim
without the investigation time. If our analysis indicatddhtt
there was a significant difference on the test executiorrteffo
just by measuring the execution time, this means that inla rea :
scenario, considering all the interruptions for invedimya the 3 —
effort to execute generic test cases would be even greater. :
On the other hand, if the average execution time for both
techniques didn't differ significantly for both techniques
could then analyze different scenarios by adding time vater
for each noted interruption.

As for the reported CRs, every tester received a text doc-
ument with a template to report defects. Whenever the tester
found a defect, he had to pause test execution, since defect
reporting time was not relevant for our purposes, fill out the ‘ T

1400
|

1200

1000
|

Time(seconds)

800
|

600
|

400

template, report the CR id on TestWatcher, and then fail the GT. ST,
test case. Technique
C. Experiment Operation Fig. 5. Box-Plot graphic comparing techniques

We executed the experiment in three days, each day with
a two hour session. The experiment took place in a compuggr
laboratory with one experiment conductor. We divided day
1 session in two phases. The first phase had the purpose ofhis section describes our data analysis. First we present
giving some training about manual black-box testing, gjvin the time execution results and then the number of reported
demonstration to explain how subjects should proceed whirfminated CRs.
executing the test cases using the TestWatcher and fillihg oul) Time Analysisin order to interpret data, we first carried
the CR template. Since exploratory testing is not the focos a descriptive analysis to observe data tendency based on
of this paper, the main concern was to instruct the studemstsme characteristics such as dispersion and median. Weglot
to follow the test script correctly, otherwise they might b#he box-plot [11] illustrated in Figure 5 comparing exeouti
tempted to explore the tool trying different flows from thdime in both techniques. It shows that the execution timelden
ones described in the script. to smaller values on the ST compared to the GT. The average

The second phase of day 1 was a dry run. We asktafulfill the activities using the GT was 975s while the agea
the subjects to download and install the test environméd@t the ST was 824s. The ST had a average decrease of 15%
on their computers and execute a test suite with three tétime execution. Also no outliers appeared in the graphic.
cases, collecting metrics and asking questions. The comduc In addition to the median values, we wanted to compare the
monitored the whole process. After finishing these actigiti observations according to each subject results. Lookirgeat
participants sent their results (the spreadsheet geddrgtihe subjects individual responses in both techniques we saty tha
TestWatcher and the CRs reported) to the conductor email. We matter the feature used to execute the test cases, atmost t
didn't use this data to run any analysis because there wotddality (94%) of the students finished the ST in less timeatha
be a lot of interruptions caused by participants doubts am hdhe GT. From the 18 students analyzed only one took more
to proceed with the tasks. We used this data to analyze if tii@e to execute the ST than the GT. We weren't able to find
metrics were properly collected. out if something went wrong to that particular subject.

On day 2 and day 3 we ran the latin square first and secondoving on with the statistical analysis, we wanted to see if
columns, respectively following the layout of Table V. Dngi the tendency observed in our samples was indeed significant
this process, the subjects weren't aware of the differendegyrunning a hypothesis test. To do that, we chose the ANOVA
between the techniques neither which technique they wéest [12] to compare the effect of both treatments on the
working with. We made this decision because instructingsponse variable. But before running the ANOVA, we ran the
subjects about the two techniques could céhias since they Box Cox test to check if our data was normally distributed
could infer that one technique was better than the otheratpaand then we used the Tukey Test of Additivity to check
ing on the activity. Like on the dry run activity, particiggn whether our linear model was additive [9]. After ensuring
sent to the conductor email the results achieved in eachdrouthese properties, we ran the ANOVA test reaching a p-value
Because one student missed day 1 activity we decided fes the technique factor of approximately 0.0001 which give
exclude her results since she didn't attend the training. St significant evidence that the specific test suites canceedu
in total, we analyzed the results of 18 students, compledingime for execution activities.
latin square replicas. Since we were able to gather evidence showing that the

Experiment Results

technigue has influence on execution time without congiderithe technique would have such a significant influence on time.
the investigation time, we didn’'t run the second analysRerhaps, one of the causes that we have observed is that,
adding extra time for pauses in test execution since difisge when participants executing the GT met a difference between
would only increase but the scenario wouldn’'t change. the test case and the system behavior, they tried to make
total there were 19 interruptions caused by generic teg¢suia work around, looking for missing steps and pressing the
inaccuracies during the experiment execution. Consigegis return button in order to repeat some steps. When we observed
as the shortest amount of time for investigation, we woulgarticipants acting like that, we thought that maybe thighmi
have an average on approximately 1038s for the GT executitause an increase on the number of valid CRs found using the
which gives an gain of 21% compared to the ST executionGT because the students who did that would go beyond the
2) Change Request AnalysiRemembering our secondtest case scenario in comparison with the ones executing the
research question (RQ2), we wanted to investigate if the Gpecific version of the same test case. Nevertheless thistwas
would increase the number of terminated CRs. This mighbserved in the CR.
happen because the tester would get confused interpreting e suspect that generic test suites may trigger a more
test inaccuracy as a defect and reporting a CR that, in agstal xploratory behavior on the subjects. In Software Testirge
environment, would be terminated. To evaluate the statusisfan approach called exploratory testing, where testere ha
the CRs that participants reported, we first read all repd®fe the freedom to explore different flows at the same time tgstin
descriptions and classified them into the following categgor more than one feature and performing the steps back and forth
valid, invalid, duplicated and irreproducible. However, when executing script based test cases, the focus
A valid CR describes a real defect on a product. Whenewahould be on the steps described.
the participant described the same issue with more than oné\s we can see, based on this study, SPL test execution can
CR, the second one was considered duplicated. An invabiénefit from product specific test cases. These benefits are
CR represents the scenario that we're investigating —theduction on test execution time and on terminated CR rates.
subject reported a CR that didn’t exist because of test cagewever, we must make some considerations on the validity
inaccuracy. Lastly, we considered three reported CRs to bkthis experiment, as discussed next.
irreproducible because the two students who reported them
used their personal MacBooks during the activity and RGMS Threats to Validity
product line doesn’t have yet a version with full supportfte t)) _)
OS X operational system. Consequently, for them, the iaterf This sec_tlon_ descnbe; concerns that must be improved for
presented some problems such as labels that were too sfigire replications of this study and other aspects that one
for its text or fields that were too bright for reading. must take into account in order to generalize our results.
This time we didn’t run a hypothesis test because thef@ organize this section we classified our threat_s using the
were many observations with values equals to zero, that igternal External Constructand Conclusioncategories [12].
during the test suite execution, the participant didn’orepny fowever, we could not identify any threats considering the
CR. It is difficult to analyze patterns in a set of observagiorf-Onstructvalidity.
containing this considerable amount of zeros, so, we simplyl) Internal: During the experiment execution, some stu-
compared the total number of CRs reported in both techniqué§nts performed the activity using their personal laptdipss
Table VIII describes the results of the CR analysis. As w&sulted in a heterogeneous environment during the expetim
can see, there isn't a significant difference concerningdvaPpPeration. However, RGMS doesn't have yet versions that
CRs. Almost every CR that participants reported on the Sppport different Operational Systems (OS). So, when two
were also reported on the GT. The ST detected more fautudents used MacBooks to execute the activity, they regort
but not in a significant way. On the other hand, there was3q defects, related to RGMS interface that had labels that
high number of invalid CRs on the GT compared to the Syere too short for the text in it, that students who worked
Coincidentally the only invalid CR reported on the ST wa¥ith Windows OS could not find. Because we could not
reported by the same student that spent more time on the rgproduce those defects using Windows, we considered these

than on the GT. 3 defects as irreproducible and didn’t consider them in tRe C
analysis. Nevertheless, we ran a second time analysis fegiov
RET;“(E‘:TEE;/(';'RS these two students results and the results remained pthgtic
' the same. Thus, we believe that this situation didn't affect
GT | ST significantly the time metric collection.
IX\Z"iﬁd ;(5) 118 2) External: With respect to the external validity, some

conditions limit the generalization of our results. Firte
subjects involved in this experiment weren’t all testereeyl
were computer science graduate students with differefis ski
on software testing. Some of them really worked as testers in

Before the experiment execution, we didn’t expect that atifferent companies but others didn’t have the same experi-
the first analysis, without considering pauses for invesiig, ence.

E. Interpretation of Results

Some studies have already addressed the question of glide combinations in a product line instance. Unfortulyate
feasibility of conclusions drawn from results of experineenthe space of possible combinations in a realistic produet li
performed with students and some suggests that, for soimdikely to be enormous and exhaustive. What happens in
software engineering areas, using students as subjectpén-e practice is that companies follows some criteria to focies th
iments is often perceived as a good surrogate for using indtest execution on a small subset of the products.
try professionals [13], [14]. Furthermore, Runeson coragar Lastly, as discussed over Section 1lI-B2, to form the latin
the results achieved in one experiment using three differesquare replicas, we randomly assigned the subjects in pairs
groups: ungraduate students, graduate students and rindust form the rows of each square, then we randomly assigned
people. His results indicated that there was no significaRublicationsto Feature 1 andResearchLineso Feature 2 to
difference between the three groups results [15]. form the columns of the squares. Then, we raffled the tech-

Besides that, from what we have observed in the executeidues arranging them to form the first replica the same way
experiment, we believe that if we use testers to replicateeh that Table V describes. Lastly, we replicated the techrique
studies perhaps we would notice a decrease on the numéeangement to form the other replicas.
of terminated CRs for the GT. This happens because som@e different approach, randomly assigning the treatments fo
subjects with less experience in software testing, tendeddach replica, could give more solid results because it wbald
report more terminated CRs than the more experienced oreesull randomized configuration. Nevertheless, we beliéat t
even if they were all encouraged to investigate the defeitts wthis consideration didn’t compromise our results because w
the conductor. However, it is noteworthy that manual blaak b had really significant differences in individual resultslaiso
test suites are usually executed by testers with less eqpeyi because we ran tests that excluded non-additivity and non-

Another matter about the experiment subjects is that &steormality anomalies.
with more experience testing the same SPL will tend to have
fewer problems while executing generic test suites sineg th
are already familiar with each product specificities. Homrev ~ SPL Testing has been considered a challenging task [2], [3],
when the SPL incorporates new features, new configuratidid$], [4], not only due to the huge number of products that
are possible and the tester again has to take some time torgaht be generated from reusable assets [2], [17], but also
used to the new features. motivated by the lack of well known recommendations and

The results achieved by this experiment also depend best practices for testing product lines— actually, moshef
the selected SPL. Perhaps SPLs with more variation poimesearch on SPL testing focuses on proposing new approaches
might benefit more in adopting the ST than SPLs with fewemnd techniques [4], [18], instead of empirically assessieiy
variation points. The more inaccuracies, the more time ésnsp benefits.
to investigate and execute test cases. In our study, wetétjec For instance, Bertolino and Guinesi proposed a text based
2 or 3 inaccuracies in each generic test suite. use case extension tailored for product line functionat- tes

3) Conclusion: During this study we chose to work withing [1], whereas other works detail how to derive product
a non-real SPL, the RGMS. Some might see the use ofspecific test cases from activity and sequence diagrams [19]
non-real SPL as a potential threat to our results. Howev20], [21], [6]. Our investigation complements these works
this system has been evolved for some years in the disciplsiace it shows evidences about the benefits of product specifi
of Software Reuse in the Informatics Center of the Fedettalst cases, which might be generated from any derivation
University of Pernambuco and it represents situationsdhat approach.
commonly seen in real SPLs. Regarding empirical studies on SPL testing, in 2010 Ivan

Besides that, some researchers believe that empiric ewtl-al. [18] conducted a systematic mapping study with the
uations are not limited to real projects. Buse, for examplpurpose of investigating the state-of-the-art of SPL mesti
claimed in his paper about benefits and barriers in ugaractices and identifying possible gaps in existing teghes.
evaluations in software engineering [13] that non-reafeantts This study illustrated a number of areas in which additional
can often allow researchers to more easily translate reseanvestigation would be useful, specially regarding evatra
questions into successful experiments. It may reduceimigiin and validation research. This work also served as a basis to
time, simplify recruiting, and allows greater control ovepropose a novel process for supporting testing activitie3RL
confounding factors. We believe that, by choosing RGMS, w&ojects, the RIPLE-TE [22]. In addition, they conductea tw
gained all these benefits. experimental studies to evaluate the proposed process.

Because we had a limited amount of time to apply our Ganesan et al. compared the costs and benefits of two
experiment, from the 32 possible configurations of the RGMgpproaches for SPL quality assurance: one that does not
product line, we chose the 2 instances containing moreresituconsider reusable assets (and test each SPL member as an
and that were the most different from each other consideriimglependent product), and another that considers reusable
alternative features so that we could represent all RGMSsets among different components [23]. Their conclusions
features and its different variation points. This reducetda$ based onMonte-Carlosimulations, points that it is worth to
products cannot be considered unrealistic using the pdinttest the reusable assets of an SPL during domain engineering
view of test companies. Ideally, testers would validatepal- (using code inspection and static analysis), and test just

IV. RELATED WORK

product specific parts during product engineering (using ngs] B. Beizer, Black-box testing - techniques for functional testing of
only code inspection and static analysis, but also funation _ software and systems Wiley, 1995.

. . 6] A. Reuys et al, “Model-based system testing of software product
tests). Our study has only focused on functional testingndur families,” in Proceedings of the 17th International Conference Advanced

the application engineering level. Information Systems Engineering, Portugabl. 3520, 2005.
Denger and Kolb compared the effectiveness of code irff] R. Bonifacio and P. Borba, “Modeling scenario variépias crosscutting

. . . . mechanisms,” inProceedings of the 8th International Conference on
spection and functional testing to find SPL defects [24]. Aspect-Oriented Software Development, USACM, 2009.

Their findings suggest that the two techniques complemerd] L. Neveset al, “Investigating the safe evolution of software product
each Other’ flndlng different types of defects. Dlﬁerenﬁyr lines,” in PrOCeedingS of the 10th International Conference on Genera

b he | | of d ils i hich tive Programming and Component Engineering, USACM, 2011.
assessment concerns about the level of detalls in whic te{§f G. E. P. Boxet al,, Statistics for experimenters : design, innovation, and

designers specify SPL test cases, and its consequence#ton bo discovery. Wiley-Interscience, 2005.
productivity and quality of defect reports. [10] K. C. Kanget al,, “Feature-oriented domain analysis feasibility study,”

E irical di R . . Software Engineering Institute, USA990.
mpirical studies on software testing Is not so comm ![]1] A. Jedlitschka and D. Pfahl, “Reporting guidelines fmntrolled ex-

as well, as discussed by Juristo et dbyer half of the periments in software engineering,” imternational Symposium on

existing knowledge is based on impressions and perceptions Empirical Software Engineering, Australi2005.
[12] C. Wohlin et al, Experimentation in Software Engineering Kluwer

and, therefore, devoit_j .of any formal f(_)undatig[QS], and. the Academic Publishers, 2000.
lack of such an empirical body of evidence is a considerahle] R. P. L. Buse, C. Sadowski, and W. Weimer, “Benefits andidrs
challenge of the software testing research [26], [27]_ of user evaluation in software engineering researédtCM SIGPLAN

N hel irical . b . Notices vol. 46, 2011.
evertheless, empirical comparisons between testiig) . staron, “Using students as subjects in experimektguantitative

methodologies have been recently reported. For instatkee, | analysis of the influence of experimentation on studentsirnieg
nen et al. compare the effectiveness to find defects witls teflt5] proces,” inCSEE&T |EEE Computer Society, 2007.
e

. . . P. Runeson, “Using students as experiment subjects anatysis on
based on exploratory tests [28]; while Lima et al., compa graduate and freshmen student data,Pimceedings of the 7th Inter-

two test prioritization techniqued{anual x Automatic) also national Conference on Empirical Assessment in Softwagirigering.
using a latin square desian [29]. Keele University, UK2003, pp. 95-102.
9 q 9 [] [16] T. K&ékola and J. C. Duefas, EdSoftware Product Lines - Research
V. CONCLUSIONS Issues in Engineering and Managemengpringer, 2006.

[17] M. Jaring, R. L. Krikhaar, and J. Bosch, “Modeling vdnility and testa-
In this paper we described the differences between two bility interaction in software product line engineering; Proceedings

; of the Seventh International Conference on CompositioseB&oftware
techniques used to test SPL products (GT and ST) and Systems, Spain IEEE, 2008,

discussed some problems observed in a real test execufi® p. A. da M. S. Netoet al, “A systematic mapping study of software
environment that aroused from the use of the GT that might product lines testing information & Software Technologyol. 53, no. 5,
011.

. ; e 2
be mitigated with the use of the ST. In order to analyze thffg] C. Nebut et al, “Automated requirements-based generation of test

statement, we conducted a controlled experiment with stisde” ~ cases for product families,” imutomated Software Engineering, 2003.
simulating a test execution environment. While executes t Proceedings. 18th IEEE International Conference 2603.

; : ; E. Kamstieset al, “Testing variabilities in use case models,” &th
suites, they collected time and reported CRs. This data V\%@ International Workshop on Product Family Engineering,lyta2003.

later used for analysis and we concluded that the ST candhdgg] . M. Olimpiew and H. Gomaa, “Model-based testing foplgations
improve the test execution process productivity by redyicin derived from software product lines,” iRroceedings of the 1st inter-
test execution time and terminated CR rates national workshop on Advances in model-based testing,. US¥CM,

k . : . 2005.
We consider this study as a first step towards understandipg] |. c. Machadcet al, “RiPLE-TE: A process for testing software product

the impact of adopting product specific test suites. Forréutu lines,” in Proceedings of the 23rd International Conference on Sefwa

; ; _ Engineering Knowledge Engineering, US2010.
works we intend to conduct studies that evaluate these te%] D. Ganesaret al, “Comparing costs and benefits of different test strate-

niques using the point of view of the test design process SO gies for a software product line: A study from testo agternational
that we can measure the effort of designing and maintaining Software Product Line Conferenc2007.

: s ; [24] C. Denger and R. Kolb, “Testing and inspecting reusapteduct
generic and pI’OdUCt SpeCIfIC test suites. line components: first empirical results,” iAroceedings of the 2006

ACM/IEEE international symposium on Empirical softwargjieeering,
ACKNOWLEDGMENT Brazil. ACM, 2006.

We would like to thank CAPES and INES for partially(25] N-ﬂuristO. A. M. Moreno, and SI- Vegas, “RevieV\Iling 25 rgeaf testing
Supporting this work. technique experimentsEmpirical Softw. Engg.vol. 9, 2004.

[26] A. Bertolino, “Software testing research: Achievertsggnchallenges,
dreams,” inFuture of Software Engineering IEEE, 2007.

REFERENCES [27] E. Engstrom, M. Skoglund, and P. Runeson, “Empiricalleations of
[1] A. Bertolino and S. Gnesi, “Use case-based testing oflpeo lines;” regression test selection techniques: a systematic r@viewroceed-
in Proceedings of the 9th European software engineering cemfe , ings of the Second ACM-IEEE international symposium on Ecapi
Finland. ACM. 2003. software engineering and measurement, Germa®yCM, 2008.
[2] K.Pohland A. Metzger, “Software product line testingdmmun, ACM [28] J. ltkonen, M. V. Mantyla, and C. Lassenius, "Defect aition ef-
vol. 49, 2006. ficiency: Test case based vs. exploratory testing,’Pioceedings of
[3] A. Tevanlinna, J. Taina, and R. Kauppinen, “Product fgntésting: a First International Symposium on Empirical Software Eregiring and
survey,” ACM SIGSOFT Software Engineering Notesl. 29, no. 2, Measurement, Spaii2007.
2004. [29] L. Lima et al, “Test case prioritization based on data reuse an exper-
[4] E. Engstrém and P. Runeson, “Software product lineingst a sys- imental study,” inProceedings of the 3rd International Symposium on
tematic mapping study/nformation and Software Technolagyol. 53, Empirical Software Engineering and Measurement, U809

2011.

