
Comparing Different Test Strategies for Software
Product Lines

Paola Accioly
Informatics Center

Federal University of Pernambuco
Recife, Brazil

Email: prga@cin.ufpe.br

Paulo Borba
Informatics Center

Federal University of Pernambuco
Recife, Brazil

Email: phmb@cin.ufpe.br

Rodrigo Bonifácio
Computer Science Department

University of Brası́lia
Brası́lia, Brazil

Email: rbonifacio@cic.unb.br

Abstract—SPL testing has been considered a challenging task,
mainly due to the diversity of products that might be generated
from an SPL. To deal with this problem, several techniques
for deriving product specific functional test cases have been
proposed. However, this research area still lacks empirical studies
showing the benefits of using such techniques. This paper presents
a study that empirically compares two different black box manual
test design techniques: a generic technique that we have observed
in a industrial test execution environment and a product specific
technique whose functional test cases could be derived using any
SPL technique that considers variations in functional tests. We
evaluated their impact from the point of view of the test execution
process, achieving results that indicate that executing product
specific test cases is faster and generates fewer errors.

I. I NTRODUCTION

Efficient testing strategies are important for achieving soft-
ware quality and reliability. Since an SPL can generate a range
of different products, it is challenging to write test casesbased
on product specific use case scenarios. This happens because
of the potential large number of products and because of
the variation points scattered through different SPL features
scenarios.

In order to derive SPL test cases, different methodologies
such as PLUTO [1] and ScenTED [2] have been proposed.
These techniques present constructs that represent product
variability and provide a means to derive product specific
test cases. Nevertheless, the research community still lacks
empirical studies that evaluate these proposals in order to
give a solid foundation for software product line testing in
industry [3], [4].

Perhaps the absence of evidence about the benefits of such
techniques discourages their industrial adoption. As a result,
from what we have observed in an industrial test execution
environment, companies might use test documents with use
case scenarios that usually describe family behavior as a
whole, describing most commonalities and abstracting the fact
that some steps are optional or alternative, sometimes even
omitting such steps. For example, one test case that specifies
the scenario of a report generator feature would contain all
possible variants for report formats such as PDF, HTML and
XLS, and testers would use this test case to test all SPL
products, even in the cases where some of them are not
configured with all of these options.

However, such test suites may hamper manual execution
because these abstractions, as often happens when testing is
executed by an organization (or team) and development and
test design are carried on by another organization, can mislead
testers that have to strictly follow test scripts. This can lead
to unwanted consequences, such as escaped defects —when
testers don’t find an error prior to product release. In addition,
testers may take longer to execute test cases and report defects
that don’t exist, decreasing test execution productivity.

Alternatively, with the adoption of an SPL technique that
manages variability in test suites, it would be possible to
derive different versions of the same test suite customized
for the different configurations in the product line. This way,
testers wouldn’t get confused during test execution process
and the problems above mentioned might be solved. However,
organizations cannot decide to introduce new techniques or
change their usual methods based only in assumptions. We
can’t simply assume that specific test cases will in fact bring
such benefits.

To bring evidence that might help decision making in such
context, in this paper we discuss the differences of the Generic
Technique (GT) that uses all variants specifications together
without variability representation, and the Specific Technique
(ST) that uses product customized test suites (Section II) and
present an empiric evaluation (Section III) that compares the
GT and the ST and evaluate the impact of the use of these
two techniques from the point of view of the test execution
process by measuring the effort of test cases execution. With
this contribution we seek to investigate the benefits and
disadvantages of both techniques. We present related work in
Section IV and our final considerations in Section V.

II. GENERIC AND SPECIFIC TEST CASES

To better understand the two techniques, we describe some
practical examples of how test cases may turn up to be generic
(describing inaccurate family overall behavior) or product
specific (showing the specific steps and data values suitable
to each product). Besides presenting this difference, we also
explain what are the consequences of using generic test cases
in a test execution environment. As explained over Section I,
we have observed the use of the GT in test teams that
focus only on the test execution process of a multinational



TABLE I
GENERIC TEST CASE: USER SENDSMMS WITH PICTURE ATTACHED.

Step ID User Action System Response
1 Go to Main Menu Main Menu appears
2 Go to Messages Menu Message Menu appears
3 Select “Create new Mes-

sage”
Message Editor screen
opens

4 Add Recipient Recipient is added
5 Select “Insert Picture” Insert Picture Menu opens
6 Select Picture Picture is Selected
7 Select “Send Message” Message is correctly sent

TABLE II
SPECIFIC TEST CASE FOR PRODUCTS CONFIGURED WITH THEBC

FEATURE.

Step ID User Action System Response
1 Go to Main Menu Main Menu appears
2 Go to Messages Menu Message Menu appears
3 Select “Create new Mes-

sage”
Message Editor screen
opens

4 Add Recipient Recipient is added
5 Select “Insert Picture” Insert Picture Menu opens
6 Select Picture Picture is Selected
7 Select “Send Message” Dialog appears: “Are you

sure you want to send
this message? Data trans-
fer shall be charged”

8 Hit “Yes” Message is correctly sent.

telecommunications company that sells mobile phones all over
the world and outsources test execution activities to test centers
located in different countries. To illustrate the techniques,
we use a toy example of a mobile SPL that manages the
interaction of mobile multimedia content (pictures, videos
and music), Multimedia Messaging Service (MMS) and some
requirements made by a specific mobile carrier that we will
call as Blue Carrier (BC). These examples represent what we
have observed in practice.

A. Test Case: User Sends MMS with Picture Attached

Our first example considers the scenario of an user sending
an MMS with a picture attached as detailed in Table I. This
scenario applies for most products of the SPL in discussion.
However, it does not apply for products containing the BC
feature, which corresponds to a group of requirements associ-
ated to the BC. This carrier specifically requires that, before
any data transfer, a message pops up asking the user if he
really wants to send that message– since data transfer will be
further charged. Differently, Table II describes the real product
behavior when the product follows BC feature requirements.
On steps 7 and 8 we can see the differences from Table I.

In the GT, the test case detailed in Table I would serve to
test all SPL products and the tester would be confronted with
an inaccuracy while testing products configured with the BC
feature. On the other hand, when using the ST, there would
be two different test cases. The first one, detailed in Table I,
would serve to test the products not configured with the BC
feature, whereas the second one, detailed in Table II, would
serve to test those products that were configured with the BC
feature.

In manual black-box testing, when the test specification fails
to agree with the product behavior, it probably means that
the test case has revealed a defect. However, when testing
a BC product, that’s not what happens with the generic test
case just described. Here, the product works fine according
to its configuration. The problem is that the generic test
case does not consider all steps required to perform the task
correctly. The implementation is correct, but the specification
is vague, so that it roughly fit different SPL members. In
this context, when the tester is not familiar with the products
specificities prior to test execution, he might likely interpret
the test inaccuracy as a product defect. This misunderstanding
can be solved if the tester investigates and finds evidence that
the test specification does not apply for that product. He can
do that by talking to a requirements analyst or reading the
products specification. However, if he can’t find this evidence,
he will report an invalid product defect, wasting his and other
people’s time to analyze the inaccuracy.

Besides reporting invalid defects, a different type of issue
might happen. Let us imagine that the product configured
with the BC feature does not present the alert message before
sending the MMS. In this case, the product was not correctly
implemented, and the generic specification is vague. There is
a product defect that the tester needs to report so that the
development team can fix it. However, the tester won’t be
able to notice this defect because the generic test case does
not consider the step that shows the alert message. If the defect
is not reported, the product might be released to the market
without considering the requirement made by the BC. This will
likely lead to anescaped defect, that is, defects that are found
after the product release. This scenario might be worse than
reporting invalid defects because it directly affects products
quality, whereas reporting invalid defects only affects testing
productivity.

B. Test Case: User Checks Icon and Label on Mobile Phone
Main Menu

Our second example considers the test case detailed in
Table III. The tester has to check the icon and the label for
web navigation on the mobile main menu. Again, this scenario
applies for the majority of products except the ones configured
with the BC feature, which exposes the carrier brand logo in a
different way. In practice, in a real test execution environment,
this test case would contain a link leading to a document that
describes the icons that should be displayed, but here, we
simplified this specification by representing the mobile phone
screen in Figure 1. This figure displays the proper behavior of
the product with the BC logo and the label “Blue Web” instead
of “Web”. A specific test case for a product configured with
BC would have the same steps described in Table III except for
the differences on the logo and the label that would expose
the BC brand logo. Again, while executing the generic test
case, testers confronted with this inaccuracy might waste time,
report invalid defects or even let a defect escape.



TABLE III
TEST CASE: CHECK ICON AND LABEL ON MAIN MENU

Step ID User Action System Response
1 Go to Main Menu Main Menu Appears
2 Check the browser naviga-

tion option
World icon appears with
the title “Web”

Fig. 1. Correct behavior for BC products.

TABLE IV
TEST CASE: USER ATTACHES VIDEO TOMMS.

Step ID User Action System Response
1 Go to Main Menu Main Menu appears
2 Open Camera Application Camera App opens
3 Make a 5s video Video is correctly saved to

phone memory
4 Select Options Option Menu appears
5 Select “Send as MMS” Dialog appears: “Video is

too large to attach. Do you
want to resize it?”

6 Hit “Yes” Video is correctly resized
and attached

7 Add recipient Recipient is added
8 Select “Send Message” Message is correctly sent

C. Test Case: User Attaches Video to MMS

Our third and last example contemplates the scenario de-
tailed in Table IV. This time, the user makes a 5 seconds
video and then try to send it with an MMS. This test case
aims to test a feature that limits the MMS size so that, if the
user tries to attach a file that exceeds this limit, a message
appears asking if the user wants to resize the file in order to
send the MMS. The inaccuracy occurs when some products
are configured with a feature that gives the option to make
videos using low resolution. A 5 seconds video taken with low
resolution would not exceed the MMS limit size, so, steps 5
and 6 don’t apply to these products.

In this scenario, the generic test case fails to specify the
interaction between the MMS limit size and the camera low
resolution features. This probably happened because, whenthe
low resolution feature was added to the SPL, the interaction
between these two features was not specified correctly consid-
ering this situation. A specific scenario for products configured
with both features should specify, on step 5 of Table IV,
the following system response “Video is correctly attached”.
Then, the next step would be to attach the message recipient.
Additionally, the specific test case initial conditions should
mention that the low resolution mode is activated.

In summary, generic test cases may differ from specific
test cases in three different ways. First, they might present
less steps than the product requires, like discussed in our

Fig. 2. Possible consequences of generic test cases.

first example. Alternatively, they might present differentdata
values such as icons and labels, as we showed in our second
example. Lastly, they might describe more steps than necessary
for some products, like presented in our third example. Note
that the generic test suites described here have no means of
representing variability to inform which steps apply or not
to each product. They simply describe most commonalities,
abstracting possible variations and are partly not correctde-
pending on the product configuration.

D. Problems With Generic Test Suites

In a black-box manual test execution environment, testers
are not required to have specific knowledge of the application
code structure [5]. Only by reading test scripts, they are
aware of what the system under test is supposed to do. They
follow the user action steps checking if the product behaves
according to the described system responses. Whenever there
is an inconsistency between the test case and the product
behavior, testers must investigate whether this inconsistency
is a defect. In this context, using generic test cases for SPL
products may hamper test execution because when they fail
to specify a certain product behavior, testers are not able to
identify if there is an issue in the test case. Instead, they might
interpret it as a product defect.

The activity diagram described in Figure 2 considers the
scenarios that typically happen when a test case is not accurate.
The activity flow starts when the test case doesn’t correctly
specify the behavior of the system under test, presenting an
issue similar to those described earlier in this section. Then the
fork on the diagram indicates two possible scenarios. In theleft
branch the product matches the test case description, in other
words, there is a defect but the tester won’t be able to notice
because the test case is also wrong. So the tester passes the
test and the consequence is an escaped defect. For instance,in
the example described in Subsection II-B, the mobile company
would release the BC product without the BC brand logo on
the Web Navigation option.

In the right branch, the product works fine, so the incon-



sistency is found and the tester puts the test case on hold
to start investigating whether there’s an issue in the test case
or in the product. He might search throughout requirement
documents or eventually speak to a requirements analyst, to
the development team or to other testers who already executed
that test case. Then, if he finds evidence that the product
works as expected by costumers, he passes the test, writing
an observation about the test inaccuracy, and the consequence
is time lost with the investigation.

Based on our observations in a medium size test organi-
zation, this kind of investigation can take a small amount
of time, 1 or 2 minutes if the tester talks to a technical
leader or a requirement specialist available personally orvia
instant messaging. On the other hand, it can take a lot more
time if, for instance, the tester needs to look throughout
requirements documents to find out about the expected system
behavior. Finally, the tester last resource is to contact the
development team, having to wait for an answer. For instance,
in the organization we mentioned before, the development
team worked in a different time zone, so the questions took
longer than one day to be analyzed. Meanwhile the test case
remained on hold and the tester moved on with the test suite.

Either way, if the tester can’t find evidence about the
expected product behavior, he will assume that there is a
product defect. He will create a change request (CR) and, when
the development team gets to analyze the CR, they will get to
the conclusion that the product works fine, then terminating
the CR. In this case the consequences are time lost and a
terminated CR which is a negative metric indicating that the
tester reported a failure that didn’t exist.

Therefore, the GT might impact SPL development with re-
spect to two aspects, quality and productivity. Quality because
some defects might escape, and productivity because of time
lost during investigations and possible terminated CRs. The
more often these inaccuracies appear on the test cases the
more significant is the impact on the test execution process.
SPLs that contains more variation points are more likely to
present such problems.

E. Product Specific Test Cases for SPL

To derive product specific test cases for a given SPL there
are different possibilities. One alternative is to copy thesame
test document for each product line configuration to be tested
and manually adjust the differences between them. However,
this solution is not really appropriate because the more com-
plex the SPL gets, the harder it is to maintain each product test
documents. The alternative to obtain product specific testsis to
reuse test cases for the different products in a given SPL. This
reuse can be done in, at least, two different ways. First, we
can use an SPL technique that manages test cases variability
and derive product specific test cases. Some of the existent
approaches are PLUTO [1] and ScenTED [6]. The second
alternative is to structure use cases using modularization
mechanisms so that it is possible to generate specific use cases
for SPL products. One existing technique for this matter is
MSVCM [7]. After deriving product specific use cases, these

specifications can be used as input to an automatic test suites
generation tool such as TaRGeT [8].

Either way, we believe that having product specific test cases
might help to solve SPL test execution problems. To evaluate
this statement we propose a study to compare generic and
product specific test suites using the point of view of the
test execution process. Likewise, it is important to compare
these techniques using the point of view of the test design
process since the gain on test execution might not compensate
the effort to design product specific test suites. We believe
that, initially, if we use an SPL test derivation technique,
there would be an increase of effort to design test suites
with variability representation compared to the generic ones.
However, once this initial step is done, not only the test
execution could benefit from it but also the maintenance of
test suites would be easier.

Unfortunately, we can’t evaluate these two processes (design
and execution) in one single study for a number of reasons.
First, the team that designs the test suites is usually different
from the team that executes them. This would essentially
separate this study into two. Second, while the test design
is done once and then maintained, the test execution is done
several times so that it would be difficult to interpret the results
in a realistic way. Finally, different companies focus differently
on these two processes. Some focus more on execution than on
design, whereas others do the contrary or even focus equally
on both. This leads to problems on the generalization of the
results.

Because we can’t evaluate the process of designing and
executing SPL test cases in one single experiment and also
because we have experienced the problems from the test
execution point of view, making it our area of expertise, we
first focus on the test execution process, considering that the
test cases are already specified as generic or specific. For
the future we intend to extend this study to consider the test
design process separately. We consider this first study as the
first step towards a deeper understanding on the benefits and
disadvantages of adopting product specific test suites. Our
results here can be particularly interesting for companiesthat
focus more on test execution like the organization that we have
observed.

III. E VALUATION STUDIES

In this paper we empirically evaluate both the the GT and
the ST techniques from the point of view of the SPL test
execution process. Figure 3 illustrates this comparison. On
the figure left side, the generic technique provides one single
generic suite that testers will use to test two different product:
P1 and P2. Differently, on the right side, the specific approach
provides two different suites: P1 Suite and P2 Suite, each one
specifying its respective product.

In order to compare these two techniques in terms of test ex-
ecution, we conducted a controlled experiment where students
had to test different products from the same SPL using either
the GT and ST techniques while collecting the time taken
to execute the test script. During this activity, students also



Fig. 3. Techniques.

collect reported CRs whenever they identified defects. By the
end of the experiment, we analyzed and discussed the achieved
results. All the experiment material is availableonline.1 The
next subsections describe the experiment definition, planning,
execution, results and, finally, we consider threats to validity.

A. Experiment Definition

We have structured the experiment definition using the goal,
question, metric (GQM) approach in order to collect and
analyze meaningful metrics to measure the proposed process,
described as follows:

Goal: analyze the test execution process, for the purpose
of evaluating two different SPL test case design techniques
(GT vs. ST), with respect to their efficiency regarding time to
execute the test suites as well as the number of terminated CRs
reported during the test execution process. Using the pointof
view of test engineers and software engineering researchers in
the context of controlled experiments done with graduate and
undergraduate students.

Research Question 1 (RQ1): Does the ST reduce the test
execution effort compared with the GT?

Metric: Test execution time
Research Question 2 (RQ2): Does the ST reduce the

number of terminated CRs compared with the GT?
Metric: Number of terminated CRs.
To evaluate the differences between the GT and the ST

we chose to collect test time execution and the number of
terminated CRs metrics because, from what we have observed,
the GT may decrease test execution productivity since testers
might take longer to execute test cases besides report defects
that don’t exist. We will also collect other metrics such as
valid CRs —CRs that report real product defects— because
we need to analyze all reported CRs in order to identify the
terminated ones.

B. Experiment Planning

To evaluate the elements involved in our experiment plan-
ning, first we describe our statistical hypotheses.

1) Hypothesis:To answerRQ1 concerning the average of
time consumed to execute the test suites:

H0 : µTimeST = µTimeGT (1)

H1 : µTimeST 6= µTimeGT (2)

To answerRQ2 concerning the number of terminated CRs
reported during test execution:

1http://goo.gl/Brx3r

TABLE V
LAYOUT OF EXPERIMENT DESIGN.

Feature 1 Feature 2
Subject 1 GT ST
Subject 2 ST GT

H0 : µTerminatedCRsST = µTerminatedCRsGT (3)

H1 : µTerminatedCRsST 6= µTerminatedCRsGT (4)

2) Design, Instrumentation and Subjects:Bringing the ele-
ments evaluated in our context to empirical terms, the metrics
evaluated are execution time and terminated CRs and the
treatments are the GT and the ST. Furthermore, in order to
avoid bias, there are some factors that we need to control
during the experiment execution as discussed next.

The first factor under control is the subjects selected to
execute the experiment, since different background knowledge
and testing skills can influence directly on our metrics. The
second factor under control is the number of variation points
existent in the test cases since test suites with more variation
points might benefit more from the ST than test suites with
fewer variation points. In a test execution environment, like
the one that we have observed, test suites are usually related
to SPL features. They explore flows related to the main
functionality of a feature and its interaction with other features.
Thus, we control the variation points factor by choosing test
suites related to two different features in the same SPL.

Since we have two treatments, two test suites and N
students, we opted to use a Latin Square Design [9] to control
the subject and the test suites (related to features) factors.
To apply this design to our considered factors, we dispose
subjects in the rows and the features in the columns of the
latin square (see Table V). In this way, we systematically
use the three principles of experiment design [9]. Also, in
each given row and column, the treatment, the GT or the ST,
appears only once. Additionally, in each treatment activity,
the subjects execute two test suites in two products. With the
ST, they execute specific suites for each product. With the
GT, they execute the same test suite in the two products as
illustrated in Figure 3. The order of the products executionis
also randomized.

To evaluate the test techniques, we considered products
and test suites from the Research Group Management System
(RGMS) SPL. It’s a Java desktop product line with the purpose
of managing members, publications and research lines from a
research group. The products and the test cases are written in
Portuguese since the differences among subjects English skills
could affect the execution time.

Figure 4 exhibits the RGMS feature model [10].Members,
Publicationsand ResearchLinesfeatures are responsible for
managing these entities insertion, search and deletion from
the system. Meanwhile, theReportsfeature is responsible for
publication reports in two different formats: PDF or Bibtex.
Also RLSearchbyMemberfeature makes it possible to know



Fig. 4. RGMS feature model.

which research lines associates with each member registered
on the system. Similarly,PubSearchbyMemberretrieves the
publications associated with the members of the research
group. Lastly,GlobalSearchretrieves members, publications
and research lines. To execute the experiment we chose two
configurations as described:

P1: RGMS, Members, Publications, ResearchLines, Re-
ports (PDF, Bibtex), ResearchLineSearchbyMember

P2: RGMS, Members, Publications, ResearchLines, Re-
ports (PDF), PublicationSearchbyMember, GlobalSearch

The features chosen to design the test suites werePublica-
tionsandResearchLinesbecause they were rich and contained
different flows to explore and also sufficiently independent
from each other generating test suites with separate flows.
We didn’t choose theMembersfeature because it was really
tangled in both products and each feature should present
different flows of execution, in order to avoid participants
from learning the tool from one feature execution to the other.
In other words, if we choose features with similar flows,
participants might learn how to use the product when executing
the first feature suites and then execute the second feature
suites faster.

We manually wrote the test suites instead of using an SPL
test derivation technique because we don’t focus on studying
the benefits of one test derivation technique, but on the test
design techniques in general. In total, there were 6 test suites.
First, we produced the generic test suites for F1 and F2
(GS-F1 and GS-F2) trying to simulate the issues discussed
over Section II. Some test cases presented steps that didn’t
apply for both products under test to simulate the scenario
where the test case has more steps than necessary. Other
test cases had some missing steps depending on the product
configuration to simulate the scenario when the test case has
less steps than necessary. And finally some test cases presented
wrong/missing data values trying to simulate the scenario
when the test case fails to specify some data value.

Next, GS-F1 and GS-F2 were manually adjusted to attend
P1 and P2 specificities, generating the suites SP1-F1, SP2-F1,
SP1-F2 and SP2-F2. Each test suite comprises 6 test cases. We
chose this quantity because the participants would have two
hours to execute two test suites, one for each product, giving
a total of 12 test cases in two hours. We learned from earlier
experiment executions that this was a reasonable amount of

TABLE VI
GENERIC TEST CASE.

User Action System Response
Verify the options for re-
port generation format

The options (PDF, Bibtex)
are available.

TABLE VII
SPECIFIC TEST CASE.

User Action System Response
Verify the options for re-
port generation format

The option (PDF) is avail-
able.

tests to execute in this interval of time.
To exemplify the test suites differences, Table VI describes

one step of the generic scenario that asks the tester to check
whether the options for generating reports appear correctly.
However, not all products contain these two formats (PDF and
Bibtex) so these values are wrong for one of the configurations.
We adjusted this step to specify the behavior of a product
configured to support only PDF reports generation as described
in Table VII.

In order to measure the effort to execute the different test
suites, we developed an application called TestWatcher to
collect test time execution (in seconds), reported CRs ids,
some possible observation about the execution and the test
case result (passed or failed). TestWatcher recorded all this
information in a spreadsheet.

In total, 20 persons engaged in the experiment. They were
all computer science graduate (PhD or MSc) students with dif-
ferent levels of knowledge in software testing. The participants
were randomly assigned in pairs to form 10 replicas of the
latin square. To form the first latin square replica, the features
(Publications and Research Lines) were randomly assigned to
Feature 1 and Feature 2 and then, finally, the treatments were
randomly assigned inside the first square replica. Then we
replicated the first square configuration to the 9 other replicas.

3) Metrics Collection:Using the TestWatcher, we simulate
a test environment with some simplifications. Remembering
Section II, when the tester puts the test case on hold to
investigate whether there is a defect on the product or just atest
issue, he does different tasks depending on the environment
structure. To consider and simulate all those situations we
worked on the following approach to simulate the investigation
time: whenever the tester had to investigate if there was a
defect on the product, he paused test execution, using the
TestWatcher, and asked the experiment conductor who knew
previously the issues present on the test suites. If there was
a test inaccuracy, the conductor instructed the tester to ignore
the issue continuing with the test execution and writing an
observation on the TestWatcher, explaining what was wrong
with the test, for example, if a step didn’t apply for the product
under test. Otherwise, if there was a product defect, he would
tell the tester to create a CR. After that, the conductor would
take note of the investigation interruption. By the end of the
experiment, the conductor would have a report on how many
times testers interrupted execution because of test inaccuracies.



The purpose of having the number of interruptions is that we
could run a first analysis considering just the execution time,
without the investigation time. If our analysis indicated that
there was a significant difference on the test execution effort
just by measuring the execution time, this means that in a real
scenario, considering all the interruptions for investigation, the
effort to execute generic test cases would be even greater.
On the other hand, if the average execution time for both
techniques didn’t differ significantly for both techniqueswe
could then analyze different scenarios by adding time intervals
for each noted interruption.

As for the reported CRs, every tester received a text doc-
ument with a template to report defects. Whenever the tester
found a defect, he had to pause test execution, since defect
reporting time was not relevant for our purposes, fill out the
template, report the CR id on TestWatcher, and then fail the
test case.

C. Experiment Operation

We executed the experiment in three days, each day with
a two hour session. The experiment took place in a computer
laboratory with one experiment conductor. We divided day
1 session in two phases. The first phase had the purpose of
giving some training about manual black-box testing, giving a
demonstration to explain how subjects should proceed while
executing the test cases using the TestWatcher and filling out
the CR template. Since exploratory testing is not the focus
of this paper, the main concern was to instruct the students
to follow the test script correctly, otherwise they might be
tempted to explore the tool trying different flows from the
ones described in the script.

The second phase of day 1 was a dry run. We asked
the subjects to download and install the test environment
on their computers and execute a test suite with three test
cases, collecting metrics and asking questions. The conductor
monitored the whole process. After finishing these activities,
participants sent their results (the spreadsheet generated by the
TestWatcher and the CRs reported) to the conductor email. We
didn’t use this data to run any analysis because there would
be a lot of interruptions caused by participants doubts on how
to proceed with the tasks. We used this data to analyze if the
metrics were properly collected.

On day 2 and day 3 we ran the latin square first and second
columns, respectively following the layout of Table V. During
this process, the subjects weren’t aware of the differences
between the techniques neither which technique they were
working with. We made this decision because instructing
subjects about the two techniques could causebias since they
could infer that one technique was better than the other impact-
ing on the activity. Like on the dry run activity, participants
sent to the conductor email the results achieved in each round.
Because one student missed day 1 activity we decided to
exclude her results since she didn’t attend the training. So,
in total, we analyzed the results of 18 students, completing9
latin square replicas.

GT, ST,

40
0

60
0

80
0

10
00

12
00

14
00

Technique

T
im

e(
se

co
nd

s)
Fig. 5. Box-Plot graphic comparing techniques

D. Experiment Results

This section describes our data analysis. First we present
the time execution results and then the number of reported
terminated CRs.

1) Time Analysis:In order to interpret data, we first carried
on a descriptive analysis to observe data tendency based on
some characteristics such as dispersion and median. We plotted
the box-plot [11] illustrated in Figure 5 comparing execution
time in both techniques. It shows that the execution time tends
to smaller values on the ST compared to the GT. The average
to fulfill the activities using the GT was 975s while the average
for the ST was 824s. The ST had a average decrease of 15%
in time execution. Also no outliers appeared in the graphic.

In addition to the median values, we wanted to compare the
observations according to each subject results. Looking atthe
subjects individual responses in both techniques we saw that,
no matter the feature used to execute the test cases, almost the
totality (94%) of the students finished the ST in less time than
the GT. From the 18 students analyzed only one took more
time to execute the ST than the GT. We weren’t able to find
out if something went wrong to that particular subject.

Moving on with the statistical analysis, we wanted to see if
the tendency observed in our samples was indeed significant
by running a hypothesis test. To do that, we chose the ANOVA
test [12] to compare the effect of both treatments on the
response variable. But before running the ANOVA, we ran the
Box Cox test to check if our data was normally distributed
and then we used the Tukey Test of Additivity to check
whether our linear model was additive [9]. After ensuring
these properties, we ran the ANOVA test reaching a p-value
for the technique factor of approximately 0.0001 which gives
us significant evidence that the specific test suites can reduce
time for execution activities.

Since we were able to gather evidence showing that the



technique has influence on execution time without considering
the investigation time, we didn’t run the second analysis
adding extra time for pauses in test execution since differences
would only increase but the scenario wouldn’t change. In
total there were 19 interruptions caused by generic test suites
inaccuracies during the experiment execution. Considering 60s
as the shortest amount of time for investigation, we would
have an average on approximately 1038s for the GT execution
which gives an gain of 21% compared to the ST execution.

2) Change Request Analysis:Remembering our second
research question (RQ2), we wanted to investigate if the GT
would increase the number of terminated CRs. This might
happen because the tester would get confused interpreting a
test inaccuracy as a defect and reporting a CR that, in a real test
environment, would be terminated. To evaluate the status of
the CRs that participants reported, we first read all reported CR
descriptions and classified them into the following categories:
valid, invalid, duplicated and irreproducible.

A valid CR describes a real defect on a product. Whenever
the participant described the same issue with more than one
CR, the second one was considered duplicated. An invalid
CR represents the scenario that we’re investigating —the
subject reported a CR that didn’t exist because of test case
inaccuracy. Lastly, we considered three reported CRs to be
irreproducible because the two students who reported them
used their personal MacBooks during the activity and RGMS
product line doesn’t have yet a version with full support to the
OS X operational system. Consequently, for them, the interface
presented some problems such as labels that were too short
for its text or fields that were too bright for reading.

This time we didn’t run a hypothesis test because there
were many observations with values equals to zero, that is,
during the test suite execution, the participant didn’t report any
CR. It is difficult to analyze patterns in a set of observations
containing this considerable amount of zeros, so, we simply
compared the total number of CRs reported in both techniques.

Table VIII describes the results of the CR analysis. As we
can see, there isn’t a significant difference concerning valid
CRs. Almost every CR that participants reported on the ST
were also reported on the GT. The ST detected more faults,
but not in a significant way. On the other hand, there was a
high number of invalid CRs on the GT compared to the ST.
Coincidentally the only invalid CR reported on the ST was
reported by the same student that spent more time on the ST
than on the GT.

TABLE VIII
REPORTEDCRS.

GT ST
Valid 15 18

Invalid 20 1

E. Interpretation of Results

Before the experiment execution, we didn’t expect that on
the first analysis, without considering pauses for investigation,

the technique would have such a significant influence on time.
Perhaps, one of the causes that we have observed is that,
when participants executing the GT met a difference between
the test case and the system behavior, they tried to make
a work around, looking for missing steps and pressing the
return button in order to repeat some steps. When we observed
participants acting like that, we thought that maybe this might
cause an increase on the number of valid CRs found using the
GT because the students who did that would go beyond the
test case scenario in comparison with the ones executing the
specific version of the same test case. Nevertheless this wasn’t
observed in the CR.

We suspect that generic test suites may trigger a more
exploratory behavior on the subjects. In Software Testing there
is an approach called exploratory testing, where testers have
the freedom to explore different flows at the same time testing
more than one feature and performing the steps back and forth.
However, when executing script based test cases, the focus
should be on the steps described.

As we can see, based on this study, SPL test execution can
benefit from product specific test cases. These benefits are
reduction on test execution time and on terminated CR rates.
However, we must make some considerations on the validity
of this experiment, as discussed next.

F. Threats to Validity

This section describes concerns that must be improved for
future replications of this study and other aspects that one
must take into account in order to generalize our results.
To organize this section we classified our threats using the
Internal, External, ConstructandConclusioncategories [12].
However, we could not identify any threats considering the
Constructvalidity.

1) Internal: During the experiment execution, some stu-
dents performed the activity using their personal laptops.This
resulted in a heterogeneous environment during the experiment
operation. However, RGMS doesn’t have yet versions that
support different Operational Systems (OS). So, when two
students used MacBooks to execute the activity, they reported
3 defects, related to RGMS interface that had labels that
were too short for the text in it, that students who worked
with Windows OS could not find. Because we could not
reproduce those defects using Windows, we considered these
3 defects as irreproducible and didn’t consider them in the CR
analysis. Nevertheless, we ran a second time analysis removing
these two students results and the results remained practically
the same. Thus, we believe that this situation didn’t affect
significantly the time metric collection.

2) External: With respect to the external validity, some
conditions limit the generalization of our results. First,the
subjects involved in this experiment weren’t all testers. They
were computer science graduate students with different skills
on software testing. Some of them really worked as testers in
different companies but others didn’t have the same experi-
ence.



Some studies have already addressed the question of the
feasibility of conclusions drawn from results of experiments
performed with students and some suggests that, for some
software engineering areas, using students as subjects in exper-
iments is often perceived as a good surrogate for using indus-
try professionals [13], [14]. Furthermore, Runeson compared
the results achieved in one experiment using three different
groups: ungraduate students, graduate students and industry
people. His results indicated that there was no significant
difference between the three groups results [15].

Besides that, from what we have observed in the executed
experiment, we believe that if we use testers to replicate these
studies perhaps we would notice a decrease on the number
of terminated CRs for the GT. This happens because some
subjects with less experience in software testing, tended to
report more terminated CRs than the more experienced ones,
even if they were all encouraged to investigate the defects with
the conductor. However, it is noteworthy that manual black box
test suites are usually executed by testers with less experience.

Another matter about the experiment subjects is that testers
with more experience testing the same SPL will tend to have
fewer problems while executing generic test suites since they
are already familiar with each product specificities. However,
when the SPL incorporates new features, new configurations
are possible and the tester again has to take some time to get
used to the new features.

The results achieved by this experiment also depend on
the selected SPL. Perhaps SPLs with more variation points
might benefit more in adopting the ST than SPLs with fewer
variation points. The more inaccuracies, the more time is spent
to investigate and execute test cases. In our study, we injected
2 or 3 inaccuracies in each generic test suite.

3) Conclusion: During this study we chose to work with
a non-real SPL, the RGMS. Some might see the use of a
non-real SPL as a potential threat to our results. However,
this system has been evolved for some years in the discipline
of Software Reuse in the Informatics Center of the Federal
University of Pernambuco and it represents situations thatare
commonly seen in real SPLs.

Besides that, some researchers believe that empiric eval-
uations are not limited to real projects. Buse, for example,
claimed in his paper about benefits and barriers in user
evaluations in software engineering [13] that non-real artifacts
can often allow researchers to more easily translate research
questions into successful experiments. It may reduce training
time, simplify recruiting, and allows greater control over
confounding factors. We believe that, by choosing RGMS, we
gained all these benefits.

Because we had a limited amount of time to apply our
experiment, from the 32 possible configurations of the RGMS
product line, we chose the 2 instances containing more features
and that were the most different from each other considering
alternative features so that we could represent all RGMS
features and its different variation points. This reduced set of
products cannot be considered unrealistic using the point of
view of test companies. Ideally, testers would validate allpos-

sible combinations in a product line instance. Unfortunately,
the space of possible combinations in a realistic product line
is likely to be enormous and exhaustive. What happens in
practice is that companies follows some criteria to focus the
test execution on a small subset of the products.

Lastly, as discussed over Section III-B2, to form the latin
square replicas, we randomly assigned the subjects in pairs
to form the rows of each square, then we randomly assigned
Publicationsto Feature 1 andResearchLinesto Feature 2 to
form the columns of the squares. Then, we raffled the tech-
niques arranging them to form the first replica the same way
that Table V describes. Lastly, we replicated the techniques
arrangement to form the other replicas.

A different approach, randomly assigning the treatments for
each replica, could give more solid results because it wouldbe
a full randomized configuration. Nevertheless, we believe that
this consideration didn’t compromise our results because we
had really significant differences in individual results and also
because we ran tests that excluded non-additivity and non-
normality anomalies.

IV. RELATED WORK

SPL Testing has been considered a challenging task [2], [3],
[16], [4], not only due to the huge number of products that
might be generated from reusable assets [2], [17], but also
motivated by the lack of well known recommendations and
best practices for testing product lines— actually, most ofthe
research on SPL testing focuses on proposing new approaches
and techniques [4], [18], instead of empirically assessingtheir
benefits.

For instance, Bertolino and Guinesi proposed a text based
use case extension tailored for product line functional test-
ing [1], whereas other works detail how to derive product
specific test cases from activity and sequence diagrams [19],
[20], [21], [6]. Our investigation complements these works,
since it shows evidences about the benefits of product specific
test cases, which might be generated from any derivation
approach.

Regarding empirical studies on SPL testing, in 2010 Ivan
et al. [18] conducted a systematic mapping study with the
purpose of investigating the state-of-the-art of SPL testing
practices and identifying possible gaps in existing techniques.
This study illustrated a number of areas in which additional
investigation would be useful, specially regarding evaluation
and validation research. This work also served as a basis to
propose a novel process for supporting testing activities in SPL
projects, the RiPLE-TE [22]. In addition, they conducted two
experimental studies to evaluate the proposed process.

Ganesan et al. compared the costs and benefits of two
approaches for SPL quality assurance: one that does not
consider reusable assets (and test each SPL member as an
independent product), and another that considers reusable
assets among different components [23]. Their conclusions,
based onMonte-Carlosimulations, points that it is worth to
test the reusable assets of an SPL during domain engineering
(using code inspection and static analysis), and test just



product specific parts during product engineering (using not
only code inspection and static analysis, but also functional
tests). Our study has only focused on functional testing during
the application engineering level.

Denger and Kolb compared the effectiveness of code in-
spection and functional testing to find SPL defects [24].
Their findings suggest that the two techniques complement
each other, finding different types of defects. Differently, our
assessment concerns about the level of details in which test
designers specify SPL test cases, and its consequences on both
productivity and quality of defect reports.

Empirical studies on software testing is not so common
as well, as discussed by Juristo et al.,“over half of the
existing knowledge is based on impressions and perceptions
and, therefore, devoid of any formal foundation”[25], and the
lack of such an empirical body of evidence is a considerable
challenge of the software testing research [26], [27].

Nevertheless, empirical comparisons between testing
methodologies have been recently reported. For instance, Itko-
nen et al. compare the effectiveness to find defects with tests
based on exploratory tests [28]; while Lima et al., compare
two test prioritization techniques (Manual×Automatic) also
using a latin square design [29].

V. CONCLUSIONS

In this paper we described the differences between two
techniques used to test SPL products (GT and ST) and
discussed some problems observed in a real test execution
environment that aroused from the use of the GT that might
be mitigated with the use of the ST. In order to analyze this
statement, we conducted a controlled experiment with students
simulating a test execution environment. While executing test
suites, they collected time and reported CRs. This data was
later used for analysis and we concluded that the ST can indeed
improve the test execution process productivity by reducing
test execution time and terminated CR rates.

We consider this study as a first step towards understanding
the impact of adopting product specific test suites. For future
works we intend to conduct studies that evaluate these tech-
niques using the point of view of the test design process so
that we can measure the effort of designing and maintaining
generic and product specific test suites.

ACKNOWLEDGMENT

We would like to thank CAPES and INES for partially
supporting this work.

REFERENCES

[1] A. Bertolino and S. Gnesi, “Use case-based testing of product lines,”
in Proceedings of the 9th European software engineering conference ,
Finland. ACM, 2003.

[2] K. Pohl and A. Metzger, “Software product line testing,”Commun. ACM,
vol. 49, 2006.

[3] A. Tevanlinna, J. Taina, and R. Kauppinen, “Product family testing: a
survey,” ACM SIGSOFT Software Engineering Notes, vol. 29, no. 2,
2004.

[4] E. Engström and P. Runeson, “Software product line testing - a sys-
tematic mapping study,”Information and Software Technology, vol. 53,
2011.

[5] B. Beizer, Black-box testing - techniques for functional testing of
software and systems. Wiley, 1995.

[6] A. Reuys et al., “Model-based system testing of software product
families,” in Proceedings of the 17th International Conference Advanced
Information Systems Engineering, Portugal, vol. 3520, 2005.

[7] R. Bonifácio and P. Borba, “Modeling scenario variability as crosscutting
mechanisms,” inProceedings of the 8th International Conference on
Aspect-Oriented Software Development, USA. ACM, 2009.

[8] L. Neves et al., “Investigating the safe evolution of software product
lines,” in Proceedings of the 10th International Conference on Genera-
tive Programming and Component Engineering, USA. ACM, 2011.

[9] G. E. P. Boxet al., Statistics for experimenters : design, innovation, and
discovery. Wiley-Interscience, 2005.

[10] K. C. Kanget al., “Feature-oriented domain analysis feasibility study,”
Software Engineering Institute, USA, 1990.

[11] A. Jedlitschka and D. Pfahl, “Reporting guidelines forcontrolled ex-
periments in software engineering,” inInternational Symposium on
Empirical Software Engineering, Australia, 2005.

[12] C. Wohlin et al., Experimentation in Software Engineering. Kluwer
Academic Publishers, 2000.

[13] R. P. L. Buse, C. Sadowski, and W. Weimer, “Benefits and barriers
of user evaluation in software engineering research,”ACM SIGPLAN
Notices, vol. 46, 2011.

[14] M. Staron, “Using students as subjects in experiments–A quantitative
analysis of the influence of experimentation on students’ learning
proces,” inCSEE&T. IEEE Computer Society, 2007.

[15] P. Runeson, “Using students as experiment subjects - ananalysis on
graduate and freshmen student data,” inProceedings of the 7th Inter-
national Conference on Empirical Assessment in Software Engineering.
Keele University, UK, 2003, pp. 95–102.

[16] T. Käkölä and J. C. Dueñas, Eds.,Software Product Lines - Research
Issues in Engineering and Management. Springer, 2006.

[17] M. Jaring, R. L. Krikhaar, and J. Bosch, “Modeling variability and testa-
bility interaction in software product line engineering,”in Proceedings
of the Seventh International Conference on Composition-Based Software
Systems, Spain. IEEE, 2008.

[18] P. A. da M. S. Netoet al., “A systematic mapping study of software
product lines testing,”Information & Software Technology, vol. 53, no. 5,
2011.

[19] C. Nebut et al., “Automated requirements-based generation of test
cases for product families,” inAutomated Software Engineering, 2003.
Proceedings. 18th IEEE International Conference on, 2003.

[20] E. Kamstieset al., “Testing variabilities in use case models,” in5th
International Workshop on Product Family Engineering, Italy, 2003.

[21] E. M. Olimpiew and H. Gomaa, “Model-based testing for applications
derived from software product lines,” inProceedings of the 1st inter-
national workshop on Advances in model-based testing, USA. ACM,
2005.

[22] I. C. Machadoet al., “RiPLE-TE: A process for testing software product
lines,” in Proceedings of the 23rd International Conference on Software
Engineering Knowledge Engineering, USA, 2010.

[23] D. Ganesanet al., “Comparing costs and benefits of different test strate-
gies for a software product line: A study from testo ag,”International
Software Product Line Conference, 2007.

[24] C. Denger and R. Kolb, “Testing and inspecting reusableproduct
line components: first empirical results,” inProceedings of the 2006
ACM/IEEE international symposium on Empirical software engineering,
Brazil. ACM, 2006.

[25] N. Juristo, A. M. Moreno, and S. Vegas, “Reviewing 25 years of testing
technique experiments,”Empirical Softw. Engg., vol. 9, 2004.

[26] A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” inFuture of Software Engineering. IEEE, 2007.

[27] E. Engström, M. Skoglund, and P. Runeson, “Empirical evaluations of
regression test selection techniques: a systematic review,” in Proceed-
ings of the Second ACM-IEEE international symposium on Empirical
software engineering and measurement, Germany. ACM, 2008.

[28] J. Itkonen, M. V. Mantyla, and C. Lassenius, “Defect detection ef-
ficiency: Test case based vs. exploratory testing,” inProceedings of
First International Symposium on Empirical Software Engineering and
Measurement, Spain, 2007.

[29] L. Lima et al., “Test case prioritization based on data reuse an exper-
imental study,” inProceedings of the 3rd International Symposium on
Empirical Software Engineering and Measurement, USA, 2009.


