Deriving Refactorings for AspectJ

Leonardo Cole’
lcn@cin.ufpe.br

Paulo BorbaT
phmb@cin.ufpe.br

Informatics Center
Federal University of Pernambuco
P.O. Box 7851 - 50.732-970 Recife, PE, Brazil

ABSTRACT

In this paper we present aspect-oriented programming laws
that are useful for deriving refactorings for AspectJ. The
laws help developers to verify if the transformations they
define preserve behavior. We illustrate that by deriving sev-
eral AspectJ refactorings. We also show that our laws are
useful for restructuring two Java applications with the aim
of using aspects to modularize common crosscutting con-
cerns.

Categories and Subject Descriptors

D.1 [Software]: Programming Techniques—Aspect-Oriented
Programming; D.3.2 [Programming Languages]: Lan-
guage Classifications—AspectJ

General Terms

Languages

Keywords

Refactoring, AspectJ, Aspect-Oriented Programming, Sep-
aration of Concerns

1. INTRODUCTION

Refactoring [4} 16, |17] has been quite useful for restructur-
ing object-oriented |15| [1] applications. It can bring similar
benefits to aspect-oriented [3] applications as well. More-
over, refactoring might be a useful technique for introducing
aspects to an existing object-oriented application.

In order to explore the benefits of refactoring, aspect-
oriented developers are identifying common transformations
for aspect-oriented programs, mostly in AspectJ|11], a gen-
eral purpose aspect-oriented extension to Java [6]. However,

*Supported by CAPES.
TPartially supported by CNPq.

Copyright is held by the author/owner.
OOPSLA'040Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

they lack any kind of support for assuring that the transfor-
mations preserve behavior and are indeed refactorings.

This paper focuses on that problem and introduces As-
pectJ programming laws that can be used to derive behav-
ior preserving transformations for this language. Each law
basically consists of two transformations, one applying the
law from left to right and another in the opposite direc-
tion. Our set of laws not only establishes how to introduce
or remove AspectJ constructs, but also how to restructure
AspectJ applications.

By applying and composing those laws, one can show
that an AspectJ transformation is a refactoring. The laws
are suitable for that because they are much simpler than
most refactorings. Contrasting with refactorings, they in-
volve only localized program changes, and focus on a specific
language construct.

2. EVALUATION

We derive large and global refactorings from laws that are
simple and localized. Our solution simplifies to show that
one refactoring preserves behavior because we intuitively
show that each law preserves behavior and thus a compo-
sition of those laws also preserves behavior. Moreover, the
representation of the precondition as syntactic conditions
simplifies the implementation of those refactorings in a tool
providing automation.

We used our laws and the derived refactorings to trans-
form two commercial application separating a crosscutting
concern with aspects. In the first case, we successfully sepa-
rated concurrency control from the core logic of the system.
In the second, we separated distribution concern from the
core. However, distribution could not be completely mod-
ularized, since distribution specific exceptions could not be
removed from the Facade [5|. This remnant part could not
be removed by our Extract Exception Handling refactoring
because we do not have access to the class that implements
the remote Facade interface.

We also used our laws to derive some of the refactorings
proposed in the literature |13} |14} |7} |10]. In most cases, we
were able to show that the proposed refactorings preserve
behaviour. Nevertheless, there are cases where the refactor-
ing, as proposed, do not preserve behaviour. For instance,
the Extract Worker Object |14] makes a generalization of
one worker object which implies a change in behavior on
the resulting code. The example before the refactoring uses
two distinct worker objects, one that completes execution



without raising an exception and one that may raise an ex-
ception. The resulting aspect after the refactoring, has only
one advice that uses the second version of the worker object
in both cases. Hence, the resulting aspect generalizes the
use of the worker object to raise an exception every time,
including it in the method that did not handle this exception
before. This is similar to merging the advices even though
they have a different bodies.

Even though our set of laws is not complete in the sense
that it does not represent every feature of Aspectl, it is
representative enough to derive several complex refactorings
and to completely restructure common implementations of
concurrency and distribution concerns. In future work, we
intend to extend this set of laws to include more AspectJ
constructs. Moreover, we also intend to implement our laws,
providing tool assistance and automation.

Another limitation of our laws is related to their sound-
ness. Although soundness, with respect to a formal seman-
tics, is a required property, it is beyond the scope of this
article. However, we intend to work on this in the feature.
For now, we rely on the simplicity of the laws, which involve
only local changes and deal with one AspectJ construct each.

3. RELATED WORK

The behavior preserving property of refactoring is not
trivially demonstrated. Several authors [16] |17} [12] show
that the use of preconditions would help on this task. We
use the concepts of preconditions to define our laws as be-
havior preserving transformations. Further, our laws are
intended to be composed, generating useful behavior pre-
serving refactorings.

The second part of Hanenberg, Oberschulte and Unland’s
[7] research regards refactorings to AspectJ. In fact, they
propose some new refactorings from Java to AspectJ. How-
ever, they only discuss coarse-grained refactorings and the
conditions to apply them. Our approach focuses instead on
fine-grained refactorings as basic laws of programming in
order to simplify their understanding and proof. We also
derived the proposed refactorings using our laws, showing
that they preserve behavior.

Analogously, Iwamoto and Zhao [10] show examples of
refactorings from Java to AspectJ. However, there is no ar-
gumentation about necessary conditions to apply the refac-
torings to ensure that they preserve behavior. We used the
suggested refactorings and derived them as a composition of
our laws. We were able to state in which conditions we can
apply the refactorings as well.

Another related work [8] is about a tool implemented to
support the task of refactoring an aspect-oriented system.
Their approach consists in developing a tool to be integrated
with the Eclipse IDE. It is designed to involve the developer
in a dialog to build the refactoring based on the concern
description. They have two approaches to achieve that. The
first uses a concern graph to describe and implement the
refactoring. The second, chooses a target design pattern
from the GoF [5] and restructures it using aspects according
to a previous work [9].

Finally, there is a related work [13, |14] that discusses
aspect-oriented refactorings showing problems when apply-
ing object-oriented refactorings in the presence of aspects.
It proposes several complex and interesting refactorings and
shows clear and easy to understand examples. We derived
most of the proposed refactorings.

4. REFERENCES

[1] G. Booch. Object—Oriented Analysis and Design with
Applications. Benjamin/Cummings, second edition,
1994.

[2] M. d’Amorim, C. Nogueira, G. Santos, A. Souza, and
P. Borba. Integrating Code Generation and
Refactoring. In Workshop on Generative
Programming, ECOOP02, Malaga, Spain, June 2002.
Springer Verlag.

[3] T. Elrad, R. E. Filman, and A. Bader.
Aspect—Oriented Programming. Communications of
the ACM, 44(10):29-32, October 2001.

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of
Ezisting Code. Addison—Wesley, 1999.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object—Oriented Software. Addison—Wesley, 1994.

[6] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. Addison—Wesley, second
edition, 2000.

[7] S. Hanenberg, C. Oberschulte, and R. Unland.
Refactoring of aspect-oriented software. In 4th Annual
International Conference on Object-Oriented and
Internet-based Technologies, Concepts, and
Applications for a Networked World (Net.ObjectDays),
pages 19-35, Erfurt, Germany, Sept. 2003.

[8] J. Hannemann, T. Fritz, and G. C. Murphy.
Refactoring to aspects: an interactive approach. In
Proceedings of the 2003 OOPSLA Workshop on
Eclipse Technology eXchange, Anaheim, California,
USA, Oct. 2003.

[9] J. Hannemann and G. Kiczales. Design pattern
implamentation in java and AspectJ. In
OOPSLA’2002, page 161, 2002.

[10] M. Iwamoto and J. Zhao. Refactoring aspect-oriented
programs. In F. Akkawi, O. Aldawud, G. Booch,

S. Clarke, J. Gray, B. Harrison, M. Kandé, D. Stein,
P. Tarr, and A. Zakaria, editors, The 4th AOSD
Modeling With UML Workshop, 2003.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold. Getting Started with
AspectJ. Communications of the ACM, 44(10):59-65,
October 2001.

[12] G. Kniesel and H. Koch. Static composition of
refactorings. In R. Lammel, editor, Science of
Computer Programming, Special issue on ” Program
Transformation”. Elsevier Science, 2004.

[13] R. Laddad. Aspect-Oriented Refactoring Series -
Overview and Process. TheServerSide.com, Dec. 2003.

[14] R. Laddad. Aspect-Oriented Refactoring Series - The
Techniques of the Trade. TheServerSide.com, Dec.
2003.

[15] B. Meyer. Object—Oriented Software Construction.
Prentice-Hall, second edition, 1997.

[16] W. Opdyke. Refactoring Object-Oriented Frameworks.
PhD thesis, Urbana-Champaign, I, USA, 1992.

[17] D. Roberts. Practical Analysis for Refactoring. PhD
thesis, Urbana-Champaign, IL, USA, 1999.



	Introduction
	Evaluation
	Related Work
	REFERENCES -9pt 

