

Programa de Pós-Graduação em Engenharia da Computação

Testware Support: Addressing Test
Elements and Supporting a

Benchmarking Framework in Aspect-
Oriented Software Assessment

Dissertação de Mestrado

Engenharia da Computação

Liana Soares de Oliveira e Silva
Orientador: Prof. Dr. Sérgio Castelo Branco Soares

Recife, 22 de Junho de 2009

ESCOLA POLITÉCNICA
DE PERNAMBUCO

�

��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Esta Dissertação é apresentada como requisito
parcial para obtenção do título de Mestre em
Engenharia da Computação pela Escola
Politécnica de Pernambuco – Universidade de
Pernambuco.

Testware Support: Addressing Test
Elements and Supporting a

Benchmarking Framework in Aspect-
Oriented Software Assessment

Dissertação de Mestrado

Engenharia da Computação

Liana Soares de Oliveira e Silva
Orientador: Prof. Dr. Sérgio Castelo Branco Soares

Recife, 22 de Junho de 2009

ESCOLA POLITÉCNICA
DE PERNAMBUCO

�

��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Liana Soares de Oliveira e Silva

Testware Support: Addressing Test
Elements and Supporting a

Benchmarking Framework in Aspect-
Oriented Software Assessment

�

��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Acknowledgements

First of all, I would like to thank God for giving me strength and sanity to get

this far. To my mother Miriam who has always believed in me and has never measured

efforts to support me in the pursuit of my goals. To my father Frederico who is no

longer among us but has taught me so much, I did not join the Navy but I know I made

him proud. To my sister Daniela and my niece Daphne who cheer up my days and keep

me standing. To my dear grandfather Francisco of whom many gifts I have inherited.

To my dear grandmother Luisa who has showed me that God is always above all things.

To my advisor Sérgio for having always been supportive along these two years,

and since college classes. Has found the balance between work demanding and being

friendly, has been a fundamental piece to assemble this conquer.

Thanks to my friends and family spread out over Natal, Recife, Rio and São

Paulo.

Thanks to my MSc colleagues from “O que vale é a gréia”. I am sure the tracks

in the forest, the events attendance and the nerdy talks have somehow helped me along

the way. To Georgina for being so available to help on administrative issues at the

University.

Thanks to the BSc students who have helped me on the experiments, data

collections and facing issues. To the researchers from Lancaster University, USP and

UFPE. To SPG research group for the discussions and support.

Thanks to the professors from the Department of Computing and Systems at

University of Pernambuco, and the University for funding my research.

�

��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Abstract
The process of developing or evolving a software system involves many

activities and different principles, techniques, methods and tools have been used to help

building a reliable product. New project development ideas and programming principles

have been suggested to support the software development process. Aspect-Oriented

Programming has been proposed as a new technique to develop software achieving

better modularity through separation of crosscutting concerns, that otherwise would be

tangled with other concerns and spread along the modules. Also, the reliance on

services and information requires software to function correctly over many years ahead.

This scenario stands out the need of having qualified software. Software testing plays an

essential role to uncover and correct as many of the potential errors as possible

according to the software project's strategy and policies. Without an adequate technique

to assure quality and reliability, the software system may decrease over its lifetime.

Experiments and studies in software engineering have taken place to provide sufficient

evidence regarding suitability, limits, qualities, costs and associated risks of the subject

under observation within this context. A Benchmarking Framework (BF) has been

proposed in this regard defining criteria and appropriated guidelines to assess the

representativeness of empirical studies and Aspect-Oriented (AO) benchmark candidate

applications characteristics. Therefore, this dissertation presents a Testware Support

with test core elements addressing test elements to purport the capabilities of a software

project against testing issues to conduct the project into the right test direction. Such

initiative extends and helps supporting the BF, providing the minimum testware

information required within a software project or case study in order to provide

effective test measures and support more reasonable decisions regarding its

maintainability and evolution. The effectiveness of the testware support is assessed

through its appliance in two different studies with AO applications and the evaluation of

the BF extension considering the insertion of the testware support.

Keywords: Software Testing, Testware, Software Maintenance, Aspect-Oriented

Software Development, Benchmarking, Testbed.

�

��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Contents

�

Introduction��� ��� �����������������������������������

1.1 Motivation��� ��� �������������������������	�

1.2 Objectives��� ��� ��������������������������
�

1.3 Contributions��� ��� �����������������������

1.4 Organization of Dissertation��� ��

2 State of Art Review��� ��� ��������������������

2.1 Object-Oriented Software Development��� ��������������������������������

2.2 Aspect-Oriented Software Development��� �������������������������������

2.3 Software Testing��� ��� �����������������

2.3.1 Testing within Software Life Cycle��� ��������������������������������

2.3.2 Types of Testing��� ��� �����������

2.3.3 Test Maturity Model��� ��� ���	�

2.4 Object-Oriented and Aspect-Oriented Software Testing��� �����
�

2.5 Software Maintenance��� ��� ���������

2.5.1 Problems in Software Maintenance��� ���������������������������������

2.5.2 Maintenance Testing��� ��� ����

2.6 Software Evolution��� ��� ������������	�

2.7 Final Considerations��� ��� ������������

3 Background��� ��� ��������������������������������

3.1 Empirical Studies on Software Maintenance��� �������������������������

�

��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

3.1.1 Frameworks, Benchmarks and Testbeds��� �������������������������

3.1.2 Aspect-Oriented Software��� ���

3.2 The AO Software Development Testbed��� �������������������������������

3.3 The Benchmarking Framework��� ��

3.4 The Case Study��� ��� �������������������

3.4.1 Goals��� ��� ����������������������������

3.4.2 Target Systems��� ��� �������������

3.4.3 Testing Strategy��� ��� ���������	�

3.4.4 Tooling Support��� ��� �����������

3.4.5 Bug Reporting��� ��� ��������������

3.4.6 Test People��� ��� �������������������

3.5 Final Considerations��� ��� ������������

4 Testware Support��� ��� ���������������������	�

4.1 First Basics��� ��� �����������������������	��

4.2 Test Strategy��� ��� ����������������������
�

4.3 Test Environment��� ��� ����������������

4.4 Test Tools��� ��� ����������������������������

4.5 Test People��� ��� ����������������������
��

4.6 Aspect-Oriented Attributes��� ��
��

4.7 Final Considerations��� ��� ��������
��

5 Benchmarking Framework Extension��� ��

5.1 Original Definitions of the Benchmarking Framework��� ��������

5.1.1 Process��� ��� �������������������������

5.1.2 Attributes of AO Software Products��� ������������������������������

5.1.3 Maintenance Scenarios��� ���

5.2 The Test Attributes��� ��� �������������

�

	�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

5.2.1 First Concerns��� ��� �������������

5.2.2 Test Strategy��� ��� ����������������

5.2.3 Test Environment��� ��� ������
�

5.2.4 Test Tools��� ��� ��������������������

5.2.5 Test People��� ��� ������������������

5.3 Final Considerations��� ��� �����������

6 Evaluation��� ��� ���������������������������������

6.1 Testware Support Evaluation��� ��

6.1.1 MobileMedia��� ��� ���������������

6.1.2 HealthWatcher��� ��� �������������

6.1.3 Discussion over Testware Support Evaluation��� ���������������

6.2 Benchmarking Framework Extension Evaluation��� �����������������

6.3 Final Considerations��� ��� ���������
�

7 Conclusions��� ��� �������������������������������

7.1 Related Work��� ��� ���������������������

7.2 Final Considerations��� ��� �����������

7.3 Future Work��� ��� �����������������������

References��� ��� ����������������������������������	�

Appendix A��� ��� ����������������������������������

Appendix B��� ��� ����������������������������������

Appendix C��� ��� ����������������������������������

�

��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

List of Figures

Figure 2.1 General V-model��� ��� ����������

Figure 2.2 Testing in incremental development��� �������������������������������

Figure 2.3 The 5-level structure of the TMM��� ��������������������������������
�

Figure 3.1 The various elements that compose the testbed��� ��������������

Figure 3.2 The inputs and outputs of the benchmarking framework process�������������������������������������

Figure 3.3 MobileMedia feature model��� ��

Figure 3.4 Interface of MobileMedia Release 2��� �������������������������������

Figure 3.5 JaBUTi screen showing different colors for different weights associated to test
requirements for bytecode of MobileMedia SPL Release 1��� �������������

Figure 4.1 Testware Support��� ��� ������	��

Figure 4.2 Modules of testing first concerns assessment questionnaire���	��

Figure 5.1 Schematic overview of the BF’s product attributes��� �������

Figure 5.2 Schematic overview of the BF’s maintenance scenarios attributes����������������������������������

�

�
�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

List of Tables

Table 2.1 Current Statements of the Laws of Evolution��� ����������������	�

Table 3.1 Summary of changes in MobileMedia SPL��� ���������������������

Table 3.2 MobileMedia SPL OO Releases’ details��� ��������������������������

Table 3.3 Numbers from OO Releases – iBATIS and MobileMedia��

Table 3.4 Test case example��� ��� �������
�

Table 3.5 Number of test cases executed on MobileMedia SPL��� ����
�

Table 4.1 Test items to address in software project��� ����������������������	��

Table 4.2 Items to address initial test directions��� ���������������������������	��

Table 4.3 General items to address test process��� ����������������������������	��

Table 4.4 General items to address test planning��� ��������������������������	��

Table 4.5 Test concerns to address test planning��� ��������������������������	��

Table 4.6 Examples of test activities during the phases of a software project���������������������������������	��

Table 4.7 Standard Test Plan��� ��� ��������

Table 4.8 Requirements for environment��� ���

Table 4.9 List of test tools��� ��� �������������

Table 4.10 Steps to consider when selecting a test tool��� �������������������

Table 4.11 Advantages of using test tools��� ������������������������������������

�

Table 4.12 Items addressing concerns when selecting test tools��
��

Table 4.13 Test Team Roles��� ��� ������
��

Table 4.14 Software testing principles and tasks against competency��
��

Table 4.15 AO attributes to address in software test project��� ��������
��

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Table 5.1 Test attributes��� ��� ���������������

Table 6.1 Details of OO releases of MM and HW��� ������������������������	�

Table 6.2 Details of AO releases of MM and HW��� ��������������������������

Table 6.3 Evaluating test items to address in MobileMedia case study���
�

Table 6.4 Evaluating items to address initial test directions��� ���������
�

Table 6.5 MobileMedia case study Test Plan��� ���������������������������������

Table 6.6 Items addressing issues when selecting test tools��� �����������

Table 6.7 Evaluating software testing principles and tasks against competency in MobileMedia
case study��� ��� �������������������������������������

Table 6.8 Addressing AO attributes in MobileMedia��� ���������������������

Table 6.9 HealthWatcher releases’ scenarios of changes��� ����������������

Table 6.10 Evaluating test items to address in HealthWatcher study��

Table 6.11 Evaluating items to address initial test directions��� ���������

Table 6.12 HealthWatcher study Test Plan��� �����������������������������������	�

Table 6.13 Items addressing issues when selecting test tools��� ���������

Table 6.14 Evaluating software testing principles and tasks against competency in
HealthWatcher study��� ��� ��������������������

Table 6.15 Addressing AO attributes in HealthWatcher��� �����������������

Table 6.16 MobileMedia case study test attributes��� �����������������������	�

Table 6.17 HealthWatcher case study test attributes��� �����������������������

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Chapter 1

Introduction

The evolution of mankind has been a subject of social and anthropological

studies and theories dealing with social and cultural evolution, ever since the

evolutionism paradigm concept was made in Biology. The idea of Charles Darwin [138]

that the living species are capable to transform themselves throughout time and the most

adapted to their environment are naturally prioritized and more able to survive longer

has also fit as a concept to early social sciences. Many sociologists have created social

theories with different perspectives and some of them [139, 140, 141, 142] defend

technological progress as the main factor heading the development of human

civilization. Gerhard Lenski [1] declares that the more information and knowledge a

given society has, the more advanced it is.

Lenski’s approach became more relevant when technological advances followed

and increased through time representing massive progress on different areas, such as in

economic system, agriculture, civil engineering, architecture, communication and

telecommunication systems. In the ancient world, technology meant the invention of

means that would evolve a civilization era, such as fire, bow, pottery, domestication of

animals, agriculture, metalworking, the alphabet, the writing and the like. Thus, the

researchers were able to establish a link between social progress and technological

progress. They argued that different environments and technology required different

adaptations, and that as a resource base or technology changed, so too would a culture.

They point that the determinant factors in the development of a given culture are mostly

related to technology, but noted that there are secondary factors. Lenski has focused on

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

information, its amount and use. Such declaration was of paramount importance

towards the growing importance of information technologies and technology progress

over the decades. The globalization in the 1970s and the upcoming years have been

studied [143, 144] towards the trends that would determine the development of

computers and technological progress. Thus, the importance of software in the modern

world could no longer be underestimated.

Technological improvements have exponentially grown in such a way that

information systems came to a point where daily activities and business decisions

depend on their efficiency. For example, in the modern world, a failure in a transaction

software from a bank, a long time of response in a device management connection or

even just a software engineering experiment which has not been properly tested and

analyzed can cause serious consequences, such as financial damages, loss of customer

trust, waste of time and energy and mistaken pipelined paths, among other

disadvantages.

The process of developing a software system involves many activities and

different principles, techniques, methods and tools have been suggested to help building

a reliable product. In the middle of these advances, new project development ideas and

programming principles have been suggested to support the software development

process [39]. As a result, a more comprehensive and flexible software code became

available. With the evolution of these principles and the programming techniques

gradual upgrades, Object-Oriented programming (OOP) has arisen and became the

dominant programming paradigm in the 90s [40]. Despite OOP has caused a great

revolution on the way how to create software, it still had some issues, such as not being

able to separate all concerns, especially the ones regarding functional interests. Hence,

not even a decade later, many developers found what seemed to be the resolution of

OOP problems: Aspect-Oriented Programming (AOP) [41] has been proposed as a new

technique to develop software achieving better separation of crosscutting concerns,

instead of being spread into the code.

The reliance on services and information requires software to function correctly

over a long time, so that means that possible errors that could occur on the software

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

product are not meant to be there. This scenario stands out the need of having qualified

software, which means the bugs and associated risks are to be reduced. Software quality

entails more than just the elimination of failures. According to ISO/IEC-Standard 9126-

1 [2], some factors belong to software quality: efficiency, reliability, maintainability,

portability, functionality, usability, security, and interoperability.

Among the existing techniques of software verification and validation in order to

increase quality, software testing plays an essential role to uncover and correct as many

of the potential errors as possible before its delivery to final use. Software testing can

provide evidences to measure quality based on requirements and warn the software

engineer of potential errors. The test engineer can determine if the observed system

behavior conforms to its specifications and aiming at finding defects, testing can bring

to light the lack in quality, which may reveal itself in defects. Besides testing, there are

other quality assurance alternatives such as formal verification, inspection, defect

prevention and fault tolerance. All these activities need to be managed during quality

engineering process in order to keep pace with quality assurance strategies early defined

in the product development planning.

Different levels can be distinguished when software is tested throughout its life

cycle [5]. Thus, the focus and test objectives may change and different types of testing

can be more relevant than others. Generally, four main types of testing can be identified:

functional testing, non-functional testing, structural testing and testing related to

changes. These techniques must be seen as complementary one of the other. It is

appropriate to consider all the existing different types of test techniques in a project,

since testing a system’s functionality or component only at a specific level may not be

enough to meet overall test objectives [6]. Based on those types of testing, different

approaches and test criteria have been developed to provide a systematic evaluation of

test activity.

Because exhaustive testing is not possible and because there are so many

different established criteria, a crucial point that has to be faced when dealing with

software development and software testing is the choice of a test strategy to be followed

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

in project or study. The test strategy is part of the test plan and it defines priorities

depending on the risks involved, it specifies test techniques and test exit criteria.

The cost of a failure on a high-tech system increases accordingly to its

importance and when a critical application or study fails, serious damages can be

derived. Considered one of the most expensive tasks in a software development process

[3], software testing can reach up until 50 percent of a project’s total cost. Still, the

information obtained with testing is of paramount importance to other tasks of the

software development process, such as debugging, maintenance and reliability

estimation [4].

Empirical and experimental studies regarding software testing and software

testing techniques are of great importance for they allow the establishment of strategies

of low cost and high efficacy [7]. Empirical studies, such as to verify the effectiveness

of structure-based criteria [8] and evolutionary testing for structural test data generation

[9], have been developed throughout the years evaluating testing criteria, analyzing their

characteristics and performing comparisons among each other in order to provide

reliable examples and models to be taken for future studies.

Regarding the context of this dissertation, testing also plays an important role on

software maintenance. More than 50 percent of a software system’s life cycle costs are

spent on maintenance [10]. As the system is used after it has been released, it is

modified either to correct errors or to improve the original system. After each

modification, the system must be retested in order to verify if the modifications have

impacted overall system’s functionalities. This task is known as regression testing [23,

24, 25, 85, 86, 199], in which the goal is to minimize the cost of system revalidation.

However, changes at any level may lead to all-levels updates and this can lead to an

enormous task force.

Generally, one of the drawbacks towards the progress of software engineering is

associated with the first steps to be taken into a software maintainability empirical study

[13], which include selecting, developing and adapting representative systems that can

be used as benchmark for future studies. In spite of software engineering being part of a

science that aims to fulfill the need of smoothing complex activities, software systems

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

development tasks are still strongly dependable on human creativity and participation;

and this may reduce the accuracy of software engineering studies. Thus, scientific

experiments are required to testify and increase the level of reliability of new methods,

techniques, processes and tools suggested by a theoretical software engineering study.

Literature regarding software maintenance contains few pieces when comparing

to software development activities [11]. Still, it is possible to say that most of the issues

associated with software maintenance are related to the way the software has been

planned and developed. Based on latest studies [12], software maintainers can use

information from test analysis to reveal valuable maintenance information. The

testability of a system, i.e., “the degree to which a system or component facilitates the

establishment of test criteria and the performance of tests to determine whether those

criteria have been met”, according to IEEE Standard Glossary definition, has the power

of reducing testing difficulties, and thereby reducing testing costs and time, and, thus,

increasing effectiveness on software maintenance. The ideas and importance regarding

the attention to testability in the beginning of the software development process have

been studied by different authors [14, 15, 16, 17, 18], but what can certainly be outlined

from all of them is that the higher the testability level in a software system, the easier it

will be to test it and, hence, the lower the testing effort [19].

Test models [20], test procedures [21] and studies [22] regarding programming

languages particularities that need to be taken into account when a software system is

under maintenance have helped testers and software maintainers to understand the way

to handle software evolution and systematically improve their jobs on providing a better

strategy on this task. Different regression test techniques have also been suggested [23,

24, 25, 88, 89] for the test engineers to find the best strategy that would fit their project,

considering test environment and test automation. Nevertheless, regression testing is not

always well seen and followed in a project or is inadequately performed: either the

testing of new features or the revalidation of old ones, or both, is sacrificed [24, 26]. In

a survey of 118 software development organizations, only 12 percent of these

organizations were found to have mechanisms for assuring some level of adequacy in

their regression testing [27].

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Without an adequate technique to assure quality and reliability to software

development or maintenance, the system will decrease over its lifetime. Software

systems require continuous change and enhancement to satisfy new and changed user

needs and preferences, business requirements and other reasons.

Empirical studies in software engineering aim to provide sufficient evidence

regarding suitability, limits, qualities, costs and associated risks of the subject under

observation. However, software development’s organizations face the heterogeneity of

study reporting, which hinders the integration of information into a common body of

knowledge and, hence, incomprehensive decision support when selecting a software

engineering technology, method, technique or tool [28]. It is possible to cite some

reasons for this lack of solidity in software engineering empirical studies:

· There is no pattern of where to find required information: it is difficult to find

relevant basic information for the study because the same type of information

is located in different sections of different study reports;

· The difficulty to handle and control every artifact involved in the study: there

may be variables, such as different technologies, methodologies, process,

personnel, partial results, environment, that may turn the experimental job

into an ad-hoc confused procedure;

· The portability of the results: what has been derived from a study may not

always fit in another study, if a minor variable is altered. Empirical evidences

and conclusions cannot always be generalized and applied to a different

project;

· The general costs to allocate people, tools and energy: during the process of

software development, experiments may be required but may be declined due

to the high probability of costs that may be required from different fields.

However, not to drive attention (and money) to empirical study in the beginning

of software development or in software maintenance can lead to even higher costs later

on when the software is already being finally used and not studied as it should. With

this principle in mind, different researchers [28, 29, 30, 31, 32, 33] have reported the

need of a standardized system to conduct empirical studies that could improve the way

�

�	�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

new technologies are emerged, especially from academia to industry. The transference

of a technology from academic field to industry usually takes an average of 18 years to

be effectively disseminated [34]. Thus, the need of results and scientific evidences

become an obstacle when organizations’ and institutions’ decision makers are required

to evaluate the risks and benefits of technologies.

Several guidelines [34, 35, 36, 37, 38, 115, 116] have been proposed aiming to

reduce the gap of scientific substantiation address and assessment. However, the

particularities of the area have increased the level of difficulty in finding the best path to

follow.

AOP, for instance, is a relatively new approach and there is little evidence about

the advantages and disadvantages regarding its maintainability [42]. Testing and

analyzing Aspect-Oriented (AO) software must deal with new problems introduced by

AO language characteristics and the ones inherited from OOP as well. Encapsulation,

inheritance, polymorphism, aspects; they all provide benefits to a project and to coding,

but they also offer new challenges to testing and maintenance [43].

1.1 Motivation

One of the creators of AOP, Gregor Kiczales, has suggested that “for a

programming paradigm to reach a broad acceptance, it needs to be sufficient expressive,

efficient, intuitive, compatible and provide a good supportive tool” [44]. In spite of still

being considered a new concept, AOP is already surfacing these characteristics. Several

studies [45, 46, 47, 82, 100] have been conducted to show that AOP can indeed work

and, furthermore, it is even being adopted on the implementation of applications from

different domains like web systems [48, 99], operational systems [47], software product

lines [50, 51, 96] and middleware [49]. However, there is a lack of contributions to the

community when advantages and disadvantages regarding AOP maintainability are

under discussion [51, 52].

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Benchmarks have been used in software engineering to compare different

techniques dealing with software evolution. Few examples [53, 54] have been proposed

listing the characteristic attributes of software systems, representative cases and

attributes to classify the merits of the techniques and tools themselves. Still to create

such benchmark model within the context of OA software maintenance required dealing

with empirical studies general difficulties and overcoming AOP related challenges.

Hence, such benchmarking may not be considered an easy task. On top of that, a

Benchmarking Framework (BF) [42] has been proposed to assist on preparing and

standardizing empirical evaluations regarding AO software maintenance techniques. It

defines criteria, standards and appropriated guidelines to assess the AO software

maintenance characteristics, across benchmark applications.

The development and maintenance of software systems involve complex

relations among a high number of artifacts. Different versions and configurations evolve

in such a way that the update of requirements can mean adaptations in associated

testware1. While it is clear that testing intends to detect failure, test activities are

strongly related to software evolution, for when a bug is corrected, a new functionality

may become available. When testing different software features and components in a

larger perspective, the number of new available functionalities that could have been

bugged and, thus, properly detected and fixed, can understandably be increased and

significant. Besides, a piece of software that evolves without any endorsement that it

indeed functions as expected and there is a minimum quality assured with it, is mostly

vulnerable to address inappropriate maintenance or evolution scenarios concerning

inadequate software elements, and not even knowing it.

The strong interconnection between the test process and the development and

maintenance processes means that appropriate adjustments must be made to achieve

optimum collaboration [55]. Different studies have aimed to provide a characterization

schema for software testing techniques [56, 57], tools [58] and/or framework [59, 60],

where test engineers could define data models or be assisted when selecting a test

1 Testware: Artifacts produced during the test process required to plan, design and execute tests, such as
documentation, scripts, inputs, expected results, set-up and clear-up procedures, files, databases,
environment, and any additional software or utilities used in testing [6].

�

�
�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

technique. However, the studies were not general enough to be used as a whole element

within a software evolutionary benchmarking; let alone adequate to fit and support an

AO software maintenance benchmarking framework, as the one [42] mentioned above.

With proper testware in a software maintenance benchmarking, the quality

improvement engineers in a software project define the related necessary information

about how the test data can be useful during a software maintenance or evolution

process in order to downsize the dimensions of studies to a more specific scenario to be

handled, such as AO software evolution scenario. Thus, this dissertation has developed

a testware support to extend such BF structure to consider the test context in it.

As it is explained in details in Chapter 5, this work has been motivated from a

case study that has taken place within the context of the BF and was provided with poor

test strategy and no test planning. As it was a complex case study, it happened not to be

able to provide the expected successful outcome in the end of it, and the reasons mostly

lie upon the lack of testing process flow knowledge. Based on such experience, the

context and what the testing literature offers nowadays, this dissertation has proposed to

create the testware support with test core elements to be addressed in a case study or

software project, so that testing flows smoothly and in the right direction.

1.2 Objectives

The subject explored in this dissertation is related to the definitions of the AO

software maintenance Benchmarking Framework [42], which is already a consistent

contribution in which the context this work is inserted and makes use of. The main

purpose of it is to define a testware support with testing core element to be introduced to

the existing BF.

The testware support provides what it takes from the testware context to allow a

higher confidence and positive effect on the scientific assessment of AO software

maintenance and evolution. While the BF defines criteria and guidelines to evaluate

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

maintainability characteristics of AO software, the core testing element embraces the

minimum test information to enable a proper strategy, according to the software project

particularities. Such information comprises the first basic concerns to consider, testing

strategy, test environment, test tools, and the test people. To support maintenance and /

or evolution decisions, questionnaires are presented to purport and surface the existing

test information there is in the study and what can be done with it.

The issues observed in the case study that motivated the start of this work are

described in details along Chapter 3, 4 and 5 and they served as lessons learned of what

needed to have been addressed so that it could have been a successful study.

The testing core element aims to help design, verify and validate a software

system under maintenance or through evolution using appropriate testing process flow

to address adequate approaches to assess aspects for the software to evolve. With the

introduction of the testing core element into the BF, researchers and professionals will

have more resources to spread their visions and scope to reach a more critical and safe

evaluation when selecting an application or effectively performing its evolution or

maintenance than if they did not consider testware in the context.

This study will also help upcoming studies that rely on the BF for evaluation of

scenarios to represent a proper AO software maintenance. It differs from a software

process because it addresses the core test elements directly, initially assessing the first

concerns in testing through a first set of questions in a questionnaire, as it shows ahead,

and, after, assessing and addressing specific test elements, and not only the process. The

test process can be handled along together with the useful information provided by the

tesware support study assessment, according to the best approach that fits the project so

that it flows properly.

This study aims reducing the likelihood of wrongly addressing maintenance

assertions and decisions for a system to flow on its process. It also aims to improve the

accuracy of planning and evolving future projects. This work is relevant and important

for the reasons here introduced and because it is the first initiative to address test

elements within the context of this kind of framework.

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

This initiative intends to reduce the lack of scientific results in AO studies, for

its purpose is to smooth over the evaluation process and enable to spread their

replications involving AO software maintenance. Hence, it will also become easier to

evaluate the pros and cons when adopting AO techniques and understand the benefits of

different AO testing approaches in different circumstances.

1.3 Contributions

The contributions of this dissertation can be summarized as:

· Definition of testware support:

o Definition of test elements (first testing ideas, strategy,

environment, tools, test factors, risks, test people) to assess test

characteristics and test process flow in a software project or case

study;

· Use of the testware support to guide researchers interested in testing

perspectives:

o Guide selection of applications and their maintenance scenarios,

based on their testware and testing needs;

o Guide evaluation of what test direction in a process flow to

follow, based on test process, environment, tools, personnel, test

factors and risks;

o Guide test characteristics assessment in a software project within

different contexts in its life cycle (development, maintenance,

evolution);

o Possibility of criteria extension considering further test elements

to be addressed to comply with software project or case study

goals.

· The extension of the AO software maintainability benchmarking

framework:

o More detailed assessment of characteristics in AO software;

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

o More confidence in spreading the scope and considering

information from another process that flows along software

development or maintenance;

o More controlled and assisted decision making from researchers

and practitioners using the BF.

· Evaluation of using testware support:

o Use of the testware support to address testing elements in

software development or test projects, software maintenance

projects, case study, experiments;

o Use of testware support to surface existing test elements in a

software project or case study;

o Use of testware support to assess the state of existing test

elements and detect lack of test direction in a project.

· Evaluation of using the extension of the BF considering testware support:

o To plan more detailed new experiments;

o To identify applications and benchmarking scenarios.

1.4 Organization of Dissertation

This dissertation is organized in further 6 chapters, in which the context and

evaluation are described in details to provide more consistencies to the contributions.

Chapter 2 describes the state of art, where it introduces the main concepts of OO and

AO paradigms, software testing and a brief description of software maintenance, its

importance and problems. In Chapter 3, background information is introduced, such as a

discussion regarding the empirical studies on software maintenance and evolution, the

existing structures to support such works and the case study inserted in this context that

has motivated this work, for it was provided with a poor test strategy and testware,

which led to unsuccessful results. In Chapter 4, the testware support is presented

addressing the test core elements to be considered in a case study, such as the one which

motivated this dissertation. The testware support provides such test elements, and its

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

benefits and advantages are discussed. The proposed extension of the BF now

considering test issues with the insertion of the testware support in it is presented in

Chapter 5. Chapter 6 presents the evaluations of both testware support analyzed alone

and its insertion within the BF with two different applications in different case studies.

The conclusions of this work are presented in Chapter 7. Finally, the References are

found next and the Appendixes afterwards.

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Chapter 2

State of Art Review

 This chapter presents some of the concepts and perspectives related to software

development, testing, maintenance and evolution, as well as it characterizes the scenario

for the associated perspectives regarding AO software. Most attention is paid to testing

views, concepts and challenges, as it is the main focus of this dissertation. Initially, in

Section 2.1 and Section 2.2, there is a brief description of the main characteristics and

concepts of Object-Oriented and Aspect-Oriented software development. Next, in

Section 2.3, some of the main directions in software testing are described. The

definitions of testing during software development life cycle, test levels, types of

testing, Test Maturity Model concepts and main test techniques are emphasized because

of the context of this dissertation. In Section 2.4, the main criteria defined for OO and

AO software testing are described. The importance of software maintenance, drawbacks

and testing process flow within maintenance are discussed in Section 2.5. Following

this line, software evolution and testing process flow when evolving software are

described in Section 2.6. Finally, Section 2.7 presents final considerations about this

chapter.

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

2.1 Object-Oriented Software Development

 The programming language Smalltalk can be seen as the result of the full

concept of Object-Oriented Programming (OOP) developed in the 80s [61]. Born as the

solution for the search of quality software improvement that would keep up with

hardware increasing complexity back then, OOP addressed common problems focusing

on data rather than processes. Reuse, modularization, simplification and maintenance

costs reduction were some of the benefits of using OOP.

The OO programming language must provide support for some key language

concepts, such as objects, classes and subclasses, inheritance and inclusion

polymorphism, which are briefly described as follows. In OOP, data and procedures are

part of a single basic element, the object. Objects provide a natural way to model real

and cyber-world entities, such as files, databases, web pages and user interface

components. A family of objects with similar variable components and methods

(functions) is known as a class. An extension of a class with additional components or

methods is known as a subclass, which can extend itself to its own subclasses, building

a hierarchy of classes. The subclass usually inherits all methods of its superclass. This

inheritance concept helps programmers on reuse, which impacts his productivity. The

concept of inclusion polymorphism represents the possibility of an object to have

different forms, i.e., an object of a subclass may be treated as an object of its superclass.

This concept enabled adding new methods to existing classes without the need

of recompiling the application by dynamic binding. Also objects can send and receive

messages. A message is an object’s request to execute one of its methods. It can change

the state of an object or send messages to other objects.

Because of the enormous progress from procedure-oriented and imperative

programming that dominated the industry before OOP arose, OOP became the master

programming paradigm in 1990s. OOP enabled a higher abstraction level than other

methodologies, allowing a better representation of the elements that would compose a

problem’s solution and this would be good for reuse. However, the advantages would

also be a challenge for a developer to face and be loyal to. The implementation of

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

concerns (also known as some functionality, requirement or interest in a program)

should follow the methodology’s rules and design patterns principles. The goal was to

design a program so that functions could be optimized independently on other functions,

making it easier to understand, design and maintain complex systems; but some

concerns defy these forms of implementation and crosscut multiple abstractions in a

program, making a class handle more than its own concern.

The incapability of OOP to modularize systemic concerns causes the

decentralization of the code and its implications [62]:

· Code replication: a same treatment may be necessary in different classes

that do not belong to the same inheritance tree;

· Maintenance hindrance: every change on existing concerns implies a

complete scan throughout the code to locate a possible implementation

modification;

· Less code reuse: a change in a specific orthogonal concern in a generic

class may hinder the generic method use by another class;

· Understanding: the code becomes less comprehensible with systemic

concerns implemented (scattering code and tangled code).

These problems break the essential principles of OOP, impoverish software

design quality and restrict the tasks of projecting, implementing and maintaining

software artifacts. Thus, it is possible to observe that although OOP may simplify some

issues from older programming languages and provide benefits to software systems

projects, it may also generate new issues and concerns to software quality.

2.2 Aspect-Oriented Software Development

Aspect-Oriented Programming (AOP) [44] has been proposed as a way to

improve the separation of concerns in software development aiming to support better

reuse and software evolution.

�

�	�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Concerns are relevant characteristics of an application, which can be divided

into aspects, and thus, representing the requirements of the application. Crosscutting

concerns are transversal aspects of an application (concerns) which affect (crosscut)

other concerns, i.e., that can interfere in a system implementation. These concerns

usually could not be cleanly separated from the whole implementation, so they

remained scattered and tangled along with the code; AOP supports these crosscutting

concerns modularization through the abstractions, which enables their separation and

composition when building a software system. AOP enables a higher abstraction level

in software development, enabling a well defined separation of the system components.

And because the components can be well separated and organized, they can be better

reused and maintained and their readability becomes friendlier.

Using AOP, it is possible to organize a software implementation based on

functional and non-functional requirements. From functional requirements, a set of

components can be expressed in a contemporaneous programming language, such as

Java [63]. From non-functional requirements, a set of aspects (crosscutting concerns)

can be derived, which are related to the properties that affect the system’s behavior.

With this technique, the non-functional requirements can be easily manipulated without

causing major impact on general code (functional requirements), since they are not

tangled and scattered throughout system’s units. Thus, AOP enables software

development using such aspects, which implies on isolation, composition and reuse of

aspect implementation code [64].

AspectJ [65] is the most widely used AO programming language, created as of

Java [63]. It uses Java-like syntax and has included IDE2 integrations for displaying

crosscutting structure since its initial public release in 2001. The main language

constructors are described as follows. The concept of aspect is introduced as a new

abstraction that encapsulates a crosscutting functionality. Similar to a class, an aspect

contains methods and attributes and it can introduce methods, attributes, interface

implementation declaration and class extension declaration using a construction known

as inter-type declaration. Introduced members may be visible to every class and aspect

2 Integrated Development Environment.

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

(public inter-type declaration) or be only internal to the aspect (private inter-type

declaration). Join points are essential to the composition process between aspects and

classes. They represent a well defined location in a program execution, such as a

method call or an attribute access, where an aspect may alter the behavior of the base

code. Pointcuts are the execution points in an application at which crosscutting concern

need to be applied. An aspect may specify advices to define some code that should be

executed when a pointcut is reached. They can be executed before, after or instead

(around) of the pointcut.

The improved software modularization with the separation of code of similar

concerns that affects different parts of the system, provided by AO paradigm, is an

essential factor to ease the development, maintenance and evolution of software

systems, because it reduces dependencies and system modules coupling [42]. Since

AOP is a relatively new technique, but there are already many implemented

programming languages of it [65, 100], further specific features and advantages may

vary according to the adopted language.

2.3 Software Testing

 Many books and papers have already been published and presented regarding

software testing. The first edition of the Myers’ book [3] from 1979 introduced the

software testing principles that are still applicable even today. Despite it had become

both easier and more difficult than ever, according to Myers – more difficult due to the

vast technology progress and complexity and easier because of the sophistication

evolvement making the testing tasks smoother and more reusable – software testing is

still a process followed in software development projects to make sure an application

does what it has been designed to do. In order to reach the specified software behavior,

the existing bugs in it should be found and fixed, and a better software quality should

be, therefore, achieved.

�

�
�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

 As mentioned in Chapter 1, testing activities are important to support quality

assurance. Its basic idea involves the execution of software and the observation of its

behavior or outcome. If a failure is observed, the execution record is analyzed to locate

and fix the fault(s) that caused the failure. Otherwise, confidence is obtained only by

when the software under testing is more likely to fulfill its designated functions [68].

 Although it is possible to see that executing tests is important, it is also

necessary to have a plan of actions and reports on the outcome of the testing activities.

The idea of a fundamental test process for all levels of testing has developed over the

years. Whatever the level of testing in a project, the same type of main activities was

always observed, although there may be a different amount of formality at different

levels. Still, it is possible to state the following division of major activities within the

fundamental test process [5, 6, 68]:

· Test planning and preparation;

· Test analysis and design;

· Test implementation and execution;

· Test exit criteria evaluation and reporting;

· Test closure activities.

Although logically sequential, these activities may overlap or take place

concurrently.

It is important to differentiate the existing nomenclature in software testing

literature, as it will be used many times on this dissertation:

· Defect is a bug, a fault, a flaw in a component or software system that can cause

the component or software system to fail to perform its required function. If a

defect is found during execution, it may cause a failure of the component or

software system.

· Error is a mistake, a human action that produces an incorrect result.

· Failure is a deviation of the component or software system from its expected

delivery, service or result [5, 6].

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

The definitions of the test levels and how testing is inserted in a software project

is described in the following sections.

2.3.1 Testing within Software Life Cycle

To understand the relation between software development and software test

activities, it is important to know that the test levels (as it has been mentioned in Section

2.3) are related to the software development life cycle. There are many software

development life cycle models [69, 70, 71] that have been created in order to achieve

different aims and goals in a software project. Since software testing is not a stand-alone

task – it is inserted in software development life cycle – the chosen model in a project

directly impacts software testing activities. The existing models specify the various

stages of the process and they influence the determination of test techniques to use.

In general V-model [70], testing is handled as an activity that is performed

throughout development, being as important as such. Starting test design early based on

business requirements and development artifacts enables test engineers to find defects

on specifications and documentations. As it can be observed in Figure 2.1 [5], the two

branches of the letter “V” symbolizes development and testing processes, showing that

the software system is gradually created as the program elements are inserted at each

level. In practice, the V-model may have more, less or different levels depending on the

project. At each test level, the development outcomes must be checked whether they

fulfill original requirements (validation), whereas the outcome of a particular

development phase is verified whether satisfies the imposed conditions at the start of

that phase (verification).

The V-model divides the development into constructive activities in which, at

each level, new testing characteristics are added. On the left branch, in the initial phase

of defining and gathering requirements, which is made by the customer or user, the

system needs are specified and, therefore, the features and purpose of the software

system can be defined. Then, in functional system design, the requirements are mapped

onto functions of the new system being developed and the requirements documentation

is used to create functional system test cases. Next, the implementation of the system is

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

designed: interfaces are defined and the system is decomposed into manageable smaller

components, enabling independent development but still considering interaction with

each other. During components specification, the behavior and inner structure within a

component are defined for each subsystem. Finally, each specified component (module,

unit, class) is implemented in a program language during programming phase.

Figure 2.1 General V-model

Having levels of software development helps detailing it and finding mistakes’

root cause. It also helps defining test levels along the process; thus, the right branch of

the V-model represents correspondent test levels to every development level previously

explained:

· Component test: the software unit is tested for the first time. Modules, units,

programs, classes, objects are independently tested to make sure external

attributes do not influence if a defect is detected. Typically, this level of

testing considers the code behavior being tested with support of developers

and development support, such as a unit test framework or debugging tool;

���� ������	
�
��
���	����

����	������

�
	�����
����

�����������

�
	�����
����

��������	�

����
���	����

����������� �

�����	��������
	�
	�

��
	���������������
	�
	�

��	����	����������������
	�
	�

��������	�������������
	�
	�

���������������
���	����
�����������������	����

���������������	�	�� ����������������
��	����	����

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

· Integration test: at this level, software components are supposed to have

already been individually tested and eventual defects are supposed to have

already been corrected, so that the components can be tested in groups. The

goal of integration testing is that eventual faults derived from integrated

components interaction and interfaces can be exposed, in a manner that such

conflicts could not occur during component testing, but could only be

manifested by integrating the system parts and detected by such further

interoperability tests;

· System test: checks whether the integrated system meets specified

requirements. It concerns the system’s behavior from the customer and

future user’s point of view, investigating both functional and non-functional

requirements of the system. Typical non-functional tests would include

performance and reliability. Failures from wrong, incomplete or inconsistent

implementation of requirements are the ones that should be detected by

system testing, and requirements that are not documented should be

identified;

· Acceptance test: most often focused on a validation type of testing that aim

to establish confidence in the system; for instance, by verifying its usability.

The user or customer are usually responsible for this testing and their main

focus should not be to find defects in the system, but to determine whether

the software system fits its purpose, before being deployed.

After the software system has experienced the constructive phases and test levels

throughout its development, it should be ready to be deployed, whether in customer

field or for other purposes, and used for a period of time. For non-experienced software

engineers and testers, it can be easy to imagine that all the work has been accomplished

by then. However, what happens in the real world, and experienced software engineers

and testers are well aware of, is that, afterwards, changes in requirements are common

requests to update the system to keep up with technology evolution for instance, such as

adding new functionalities, correcting or improving existing ones, improving data base

capacity, inserting new mechanisms and techniques of programming to enable a better,

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

faster and more user-friendly system and so on. Thus, software life cycle maintenance is

a forward-focused activity used to prolong the productive lifespan of a software system

[72]. Such incremental modifications of software systems are often referred to

collectively as software evolution.

Maintenance Testing within Software Life Cycle

In Chapter 1, the testability concept of a system has been briefly introduced and

it is possible to understand that the higher the testability level in a software system is,

the easier it is to test it. This subsection introduces the concept of testing that is handled

during this life cycle phase, which is called maintenance testing, and it usually consists

of two parts [6]:

1. Testing the change;

2. Regression testing to show that the rest of the system has not been

affected by the maintenance work.

A deep care is necessary when analyzing what parts of the code may be

unintentionally affected by the maintenance. The regression testing is usually planned

based on risk and impact analysis.

From the point of view of testing, there are two types of modifications than are

part of maintenance: the ones in which testing may be planned, and the ones ad-hoc

corrective modifications which cannot be planned [6]. The following types of planned

modification may be identified:

· Perfective: to adapt software to what the user wants and needs;

· Adaptive: to adapt software to environmental changes;

· Corrective: deferrable correction of defects.

Overall, the corrective planned modifications represent over 90% of all

maintenance work on software systems [73], i.e., the standard structured test existing

approach is almost fully applicable to planned modifications only, while ad-hoc

corrective modifications need to immediately be found a solution, and the risk analysis

and the choice of best test approach may be compromised.

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Moreover, regression testing is crucial for large organizations with critical

software systems. Therefore, a software system being inadequately regression tested in

a software project without a proper technique applied during its maintenance, its quality

and reliability will languish over its lifetime [24, 26].

Testing in Incremental Development

Incremental development is usually related to pieces of development that are

gradually delivered. The initial version of software contains basic functionalities and the

requirements are grown over time to upcoming versions. Throughout its development,

software receives increments with new features and each version contains more and

improved functionalities than the previous ones. Some models [74, 75, 76] following

this principle have been created, and testing must be adapted to be continuous, having

reusable test cases that can be reused for every increment.

Figure 2.2 Testing in incremental development

The practical way for testing to follow such model is to run several V-models

one after the other, in which every phase reuses the existing testware and adds what is

needed for what is new. Figure 2.2, adapted from Spillner et. al [5], pictures how the

testing is handled in incremental development.

2.3.2 Types of Testing

���	����	�
	���
��� �

���	����	�
	� ��� �

	�
	���
��� � 	�
	� ��� �

����	������
	�
	���
�
 �

�����

����
������	������

	�
	
�

	�
	���
��� �

����	������
	�
	���
�
 �

	�
	� ��� �

�����

����
������	������

	�
	
�

�����
����	�
	 �

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

As stated on Section 2.3.1, there are different levels of testing. The objective of

testing in each level changes distinguishing different types of testing that are classified

in software testing literature as follows:

· Functional testing (or black box testing);

· Non-functional testing (or white box testing);

· Experience-based testing.

Functional Testing

 Also known as black box testing because the test object is seen as a black box,

functional testing is mostly used for high levels of testing, where the inner structure of

the test object is not considered. Instead, it concerns the compliance of the system or

component with specified functional requirements. Its primary goal is to assess whether

the software does what is supposed to do. It can be performed at different levels but, for

different levels, there are different requirements and objectives.

Functional testing approach can be used as a technique to elaborate test cases.

Whether formal or informal, the requirements are the basis from which the test cases

will be designed to exercise the software system in order to find defects, not considering

its implementation structure. Test design is supposed to make a reasonable selection of

all possible test cases, thus, there are some specification-based techniques that assess

the test object in different ways, the two most important are briefly described below:

· Equivalence partitioning: test only one condition from each partition. The

equivalence partition (or equivalence class) contains a division of a test

conditions set, in a way that they are sufficiently representative to be

tested as one, avoiding unnecessary test cases;

· Boundary value analysis: test the boundaries between partitions,

addressing test efficiency, for the number of need test cases is reduced in

order to obtain a certain level of confidence in the software under test;

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Non-Functional Testing

Known as white box testing because the test object is seen a white box, since the

software code is known and used for test design. Non-functional testing is also known

as structural testing, because the structure of the test object (component hierarchy, flow

control, data flow) is considered. It can be applied to lower levels of testing, i.e.

component and integration test.

The generic idea behind this code-based testing is that every part of the code of

the test object is to be executed at least once. The usual primary goal of such technique

is to reach a previously defined coverage percentage of code statements while testing;

thus, there are some basic white box test criteria, such as:

· Statement coverage: test a predefined number of statements of the test

object’s code, which can be better understood with the use of a control

flow graph, where control elements, connections and sequences can be

represented;

· Branch coverage: test every decision (true or false) that can

determine the next move of the program; in other words, all possible

transitions from a decision node are to be tested. It also can be better

understood with the use of a control flow graph, in which, for this

technique, the focus is on edges in the graph;

· Multiple-condition coverage: test of decisions based on several

conditions. It must be considered which input data lead to which result of

the condition or condition part and which parts of the software system

will be executed after the decision;

· Path coverage: test all different paths through the test object, combining

nodes and edges from a control flow graph. There may be a huge number

of existing paths in a software system; hence, it may not be a practical

approach to require execution of all paths from the code.

�

�	�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Experience-based Testing

Besides the methodical criteria described above, there are non-systematic test

techniques that can be used as complementary to uncover still remaining faults in the

software system. This type of testing is based on a person’s knowledge, experience,

imagination, creativity and testing skills, so that she can act as a “bug hunter”. The most

common techniques are:

· Error guessing: with the experience of a tester in previous similar test

objects from previous studies, she is able to know where the defects are

most likely to lurk;

· Exploratory testing: when there is no test planning. Based on intuition

and experience of the tester, this approach is mostly adopted when the

specifications are poor and time is limited, however it can also be used as

complementary to systematic testing.

2.3.3 Test Maturity Model

A software process can be defined as a set of activities, methods, practices and

transformations that people use to develop and maintain software and the associated

products [108]. The capability of a software process describes the range of expected

results that can be achieved by following a software process, and the software process

capability of an organization provides one means of predicting the most likely outcomes

to be expected from the next software project the organization undertakes. Based on this

idea, software process maturity can be defined as the extent to which a specific process

is explicitly defined, managed, measured, controlled and effective. It implies a potential

growth in capability and indicates both the richness of an organization’s process and the

consistency with which is applied in its projects.

It is easy to cite some of the benefits for an organization to reach maturity in its

projects: long-term success of a project increase, reduction of software development

risks, manageability, etc. As testing is applied in its broadest sense to encompass all

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

software quality-related activities, a Test Maturity Model (TMM) [109] has been

created to improve the testing process thorough application of the TMM maturity

criteria, with the goal of having a highly positive impact on software quality, software

engineering productivity, and cycle time reduction efforts.

The development of the initial version of the TMM was guided by the work

done on the Software Capability Maturity Model (CMM), a process improvement

model that has received widespread support from the software industry [110]. Figure

2.3 [109] illustrates the five levels of such model that are self explained. The

characteristics of each level are described in terms of organizational goals and testing

capability. Such model works as a reference to help organizations assess and improve

their testing processes, for it is based on a set of principles in which software engineers

practitioners can assess and evaluate their software testing processes.

A TMM Assessment Model (TMM-AM) can help organizations assess and

improve their testing processes by:

· determining its level of testing maturity;

· identifying its test process strengths and weaknesses;

· developing action plans for test process improvement;

· identifying mature testing subprocesses that are candidates for reuse.

For such, the TMM-AM is composed by a set of three components: a

questionnaire, the assessment procedure and team training and selection criteria. A set

of inputs and outputs is also prescribed for the TMM-AM that guide an assessment team

in carrying out a testing process self-assessment. Whereas some models for test process

improvement focus only on high-level testing or address only one aspect of structured

testing, e.g. test organization, the TMM addresses static and dynamic testing. With

respect to dynamic testing both low-level and high-level testing are within the TMM

scope. Studying the model more in detail one will learn that the model addresses all four

cornerstones for structured testing (life cycle, techniques, infrastructure and

organization).

�

�
�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Figure 2.3 The 5-level structure of the TMM

2.4 Object-Oriented and Aspect-Oriented Software
Testing

Despite AO and OO features mentioned in Sections 2.1 and 2.2 represented

great advances for software development activities, they also stress out new technical

challenges to software testing. Testing and analyzing OO and AO software systems

must deal with the new challenges introduced by the paradigm’s characteristics

�� ���!"����	��� �

�� ��� #"����
��$�
���	��� �
· Institutionalize basic testing techniques and methods
· Initiate test planning process
· Develop testing and debugging goals

�� ��� %"���	����	��� �
· Control and monitor the test process
· Integrate testing into software life cycle
· Establish a technical training program
· Establish a software test organization

�� ��� &"�'��������	�����'��
������	 �
· Software quality evaluation
· Establish a test measurement program
· Establish an organization-wide review program

�� ���("�)�	���*�	���+�$�
��	���� ��	��������
,����	�����	����

· Test process optimization
· Quality control
· Application of process data for defect prevention

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Encapsulation may create obstacles that limit the visibility of the implementation

state but it may also prevent defects from global variables stored data access and few

lines methods may turn control flow defects less likely to occur – the many ways a

system can be composed due to different context that can derive from distinct hierarchy

levels and run-time defined system behavior may lead to occurrence of errors, once an

incorrect association of the language resources is taken place. According to Binder [66],

some essential features of OOP languages pose new fault hazards:

· Dynamic binding and complex inheritance structures create many

opportunities for faults due to unanticipated bindings or misinterpretation

of correct usage;

· Interface programming errors are a leading cause of faults in procedural

languages. OOP typically have many small components and therefore

more interfaces. Interfaces errors are more likely;

· Objects preserve state, but state control (the acceptable sequence of

events) is typically distributed over an entire program. State control

errors are likely.

Towards OO software testing specifically, there are some researches in the

community combining testing strategies and the paradigm’s particularities. For instance,

Lima and Travassos [106] have presented a new strategy for integration testing of

Object-Oriented software systems by creating a set of heuristics and a process for its use

allowing establishing an integration priority order for the classes to be tested. Harrold

and Rothermel have considered a class as the smallest unit of an OO code [107] and

proposed the test of a class dataflow that considers the interactions between the public

methods when being called in different sequences. They have also considered the

dataflow test on classes’ integration.

Based on the previous studies mentioned above, it is possible to conclude that

conventional testing techniques can be adapted to test Object-Oriented software

systems, since OO code matters a lot and an usual data-flow approach may not fit

properly.

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

As previously mentioned, AspectJ [65] has been created to address some of the

OOP issues and it is currently the most used AOP language to develop software. This

Java extension adds new constructors, as presented in Section 2.2, to allow the

modularization of crosscutting concerns implementation. However, with AOP, the

aspectized code affects the implementation of multiple classes and methods; the

software development process is changed. Classes and methods are still developed as

before, but instead of embedding the crosscutting code into method bodies, separated

aspects are defined containing this kind of code. Later, the aspects are woven into the

classes that represent the core concerns of the software system. Once complete, the

woven targets should be the behavior union between core and crosscutting concerns. On

top of that, AOP raises new issues, such as [67]:

· Aspects do not have independent identity or existence. They depend upon

the context of some other class for their identity and execution context;

· Aspect implementations can be tightly coupled to their woven context.

Aspects depend on the internal representation and implementation of

classes into which they are woven. Changes to these classes will likely

propagate to the aspects;

· Control and data dependencies are not readily apparent from the source

code of aspects or classes. Due to the nature of the weaving process, the

developer of classes or aspects knows neither the resulting control flow

nor data flow structure of the resulting woven artifact. Thus, relating

failures to the corresponding faults may be difficult;

· Emergent behavior. The root cause of a fault may lie in the

implementation of a class or an aspect, or it may be a side effect of a

particular weave order of multiple classes.

These challenges should not and cannot be addressed by traditional unit or

integration test techniques applied in OO software systems, for they are not feasible to

aspects. Zhao was the very first researcher to propose a structural testing approach for

AOP. He has suggested [101] that the basic testing unit is an aspect, in Aspect-Oriented

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

programming. On his approach, he suggests to test the aspects together with the

methods which the behavior might be affected by advices and to test the classes together

with the advices that might affect their behavior. The research conducted by Xu et al.

[102] deals with combining state models (class and aspect) and flow graphs (method

and advice) as an aspect scope coverage model for producing test suites. Essentially, the

result is a hybrid testing model which is a combination of a responsibility-based testing

model and an implementation-based testing model. The approach consists of merging

the class state model and the aspect state model into an aspect scope state model

(ASSM). The ASSM allows tracing the behavior of aspect-oriented programs by

identifying sequence results of the states transitions of the AOP.

 On some other researched works, it is discussed the problematic of testing AO

programs. A defect in an aspect-oriented program may not be found in components, nor

in aspects, but on the weaving process, for example. Alexander and others [67] propose

a fault model for AO programs. The model explores the types of defects that may

happen due to the paradigm’s particularities and group them according to its nature.

They suggest that criteria and testing strategies for AOP should be developed in terms

of the fault model. A discussion about the proposed fault model [103] states that the

only two fault types that seem to be not adequately tested by means of extensions of

traditional techniques are types 2 and 5, as detailed below. They demand AOP exclusive

testing techniques.

· Type 2 – Incorrect aspect precedence: When the same code portion is

affected by more than one aspect, depending on the order in which

aspects are woven to the base code, differences can occur. When no

composition precedence is defined, all the possible compositions are

potential instances to be considered.

· Type 5 - Incorrect focus of control flow: Pointcut designators that contain

conditions on the execution stack define a join point set that cannot be

evaluated statically. Therefore, errors can be hidden in them which are

difficult to expose, in that they require very specific execution conditions

to hold.

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Some works [90] suggest techniques for incremental testing of programs that use

aspects. On this approach, the base classes should first be implemented and tested for,

afterwards, have the aspects added and tested one by one, so that integration testing

tasks can be performed. Zhou [104] proposes an approach for unit testing, integration

testing and system testing for AOP. Another incremental testing approach [103]

suggests that the base classes should be tested initially not considering the aspects,

intending to reveal errors that are not related to aspects. Smoothly, the aspects are added

to software testing. One of the issues pointed out is the need of creating stubs and

drivers to simulate the aspect’s behavior.

Another thing that may be issued from incremental AOP testing is the creation

of cycles that would cause a dependency inside the code between aspects and classes.

Elsewhere [105], different types of dependencies are studied and two alternatives for

sorting classes on AOPs are applied.

2.5 Software Maintenance

Canning [77] has described software maintenance as an “iceberg”, where there

are many further problems and potential costs hidden under the surface than what comes

up during software development. More than 50 percent of the costs from the life cycle

of a software system are spent on maintenance [10]. Even adopting the best

development criteria, a software system is created concerning deployment details

constraints. When a system is deployed and has been running for quite some time,

eventual changes, such as platform changes, operational system changes and other

technology update changes, may require an update from the system so it is able to

attend user’s needs. Such update range from simple code edit to meaningful

improvements and new requirements adjustments.

 It is not reasonable to presume that testing software throughout development will

uncover every existing bug. When using the system, different bugs that have not been

detected on testing activities may be manifested, whether because a combination of

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

features in use was necessary to arouse such bug or because testing activities were not

vast enough or due to many other possible reasons. The diagnosis and correction of one

or more bugs on this phase is known as corrective maintenance.

 When a new hardware generation is launched, new operational systems or

updates from old ones are on the market and gadgets and other system’s elements are

constantly being modified, the adaptive maintenance is responsible to modify the

software system so it has the adequate interface to the environment.

 When the system is being used, the users usually have recommendations to the

developers for some kind of improvement on it. New functionalities, changes on

existing ones and expansions are the general requests that the perfective maintenance

is determined to attend. This activity is responsible for the most part of all applied effort

in software maintenance [11]. These three terms defining the three types and activities

on software maintenance described above have been determined in 1976 [78] when it

was already possible to visualize such trend.

Finally, when the software system is modified to improve its reliability or its

future maintenance, or to offer a better framework for future expansions and updates,

the preventive maintenance takes place. Such term, on the other hand, is commonly

used on hardware maintenance, although software and hardware development and

maintenance processes strongly differ from one another.

2.5.1 Problems in Software Maintenance

 Most of the issues regarding software maintenance can be connected to software

planning and development. Based on Pressman’s list [11], below are the main reasons

of the problems associated to software maintenance:

· Lack of documentation of software requirements

Sometimes the developers are part of the software project planning and

responsible to capture the system’s requirements; they start developing right

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

away without specifying well with the project managers and stakeholders3

the main functionalities of it. When the system is ready, it is deployed and

the developers are usually the focal point for when the users need help. This

may be familiar to small projects, but in projects of any size, when the

documentation is not adequate or sufficient and / or the developers who

initially built the system are no longer reachable, the system will certainly be

hard to evolve, since it will be difficult for the current developers to

understand the exact requirements just on looking at the code or at the

system functioning;

· Undefined software process

If a software system is developed in a project without an accurate software

development process, it will be hard to track actions and milestones that

would help software maintenance activities identifying the best actions and

techniques to follow on its evolution.

· Many different versions

When a software system is developed and evolved in different branches, it is

difficult or impossible to track all the changes applied to such application.

This is very common within academic works, when there are not many

suitable available applications to an experiment, and the existing ones are

used by so many different institutions and organizations that sometimes the

people working on it do not even known about the update releases from other

studies.

· Most of the software systems are not designed to evolve

It is not common, except when it is pre-determined, to find software

developers coding systems concerning future possible changes on each class

being created. The developers need to make extra effort to visualize future

3 Stakeholders: Group who shares interests, as in an enterprise, which affects and can be affected by an
organization’s actions.

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

changes and to separate eventual dependencies, for instance, so this is not

usually the case.

· Motivation

It is not usually a fun task having to modify or adapt a software system.

Psychologically, the individuals are mostly satisfied when creating things,

but modifying them tells them that they have done their jobs perfectly, since

they need a modification. It is rather hard for an individual to admit and hear

the critic that the application he developed is not good enough and requires

improvement; even if it is just an adaptive maintenance due to new

technology arising that could not have been predicted by the time the system

was being developed. For those reasons, it is not easy to deal with motivation

skills from developers having to work on a software system maintenance.

 After these problems’ considerations, it can be understood how hard it may be to

guarantee a well planned and integrate system when it has to be modified. Those

problems cited above are general to any kind of software system. When effectively

maintaining one, low-level aspects, such as particularities of the code and programming

language used to code, need to be taken into consideration.

2.5.2 Maintenance Testing

The testing activities for maintenance basically resumes on regression testing

[23, 24], which aims to provide confidence that the changes were made correctly and

other portions of the software are not affected by them. Researchers on this subject

performed studies analyzing the best regression technique selection [24, 25, 85] and the

cost-effective metric from them [86], among other matters. Regression testing is

important but expensive. Regression test selection technique could reduce the cost of

regression testing by selecting a subset of an existing test suite to use in retesting a

modified program. Such strategy is very suitable to software projects, since not every

existing test case is required to be run. The prioritization of test selection usually helps

on software projects cope with deadlines and costs. A test suite is a set of several test

�

�	�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

cases for a component or system under test, where the post condition of one test case is

often used as the precondition for the next one

2.6 Software Evolution

The approach of Lenski stating that the development of human civilization is

dictated by technological progresses reflects the importance of keeping software up to

date. The identification and observation of relevant software behaviors has been

established as the Laws of Evolution [92], firstly set in the early seventies, in which

rules to software system evolution planning and management have enabled a gradual

understanding of software process over the years. The eight laws of software evolution

are listed in Table 2.1 below.

A full analysis of the the meaning and implications of this classification requires

more discussion than cannot be provided here, but it is possible to observe that

continuing changes and growth are necessary to keep the system’s functionalities up to

date to user’s requirements over its lifetime. The system usually implements new

features on its evolution and this usually implies increasing complexity, which makes it

a strong proposition in this scene. The feedback from the results of the behavior under

software system execution, observed by stakeholders, client and users reflects

experience that changes perception, understanding, desires and ambition towards system

evolution; hence it plays an important role on consistently concluding the refined

version of the eight laws of software evolution.

Table 2.1 Current Statements of the Laws of Evolution

Law Description

1 Continuing Change A system must be continually adapted, else they become
progressively less satisfactory in use

2 Increasing
Complexity

As a system is evolved, its complexity increases unless
work is done to maintain or reduce it

3 Self Regulation Global system evolution processes are self regulating

4
Conservation of
Organizational

Unless feedback mechanisms are appropriately
adjusted, average effective global activity rate in an

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Stability evolving system tends to remain constant over product
lifetime

5
Conservation of

Familiarity
In general, the incremental growth and long term

growth of systems tend to decline

6 Continuing Growth
The functional capability of systems must be

continually increased to maintain user satisfaction over
the system lifetime

7 Declining Quality
Unless rigorously adapted to take into account for

changes in the operational environment, the quality of a
system will appear to be declining

8 Feedback System Evolution processes are multi-level, multi-loop, multi-
agent feedback systems

 Evolution in large software systems can lead to serious challenges when dealing

with increasing complexity. Empirical studies [28, 29, 32] are a useful mechanism for

highlighting areas that need maintenance attention [78, 83], providing information to be

taken into account when evolving systems [30, 31, 35, 36, 37, 38, 47] and creating

frameworks [42, 53, 54] with models that may forecast effects and special conditions

for specific types of system evolution.

2.7 Final Considerations

 This chapter described the state of art on what regards to the context of this

dissertation’s subject. It has discussed the main directions regarding software testing,

the importance of testing software throughout software development and maintenance,

the testing levels, phases and types, TMM and it has stressed the associated knowledge

for testing AO software.

 The main testing studies and criteria related to AO software testing have been

characterized, as a result from OO software evolution and its concepts, also presented in

this chapter. It has been possible to verify that there are many issues when maintaining

or evolving a software system and the main reasons can be related to software planning

and development. Following this line, there is not much research considering testing

activities during software maintenance or evolution that is not related to regression

testing or regression test selection criteria. Testing may be, therefore, limited to

�

�
�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

regression testing and regression test selection techniques during software maintenance

or evolution, which does not consider test tasks in a broader view, when evolution takes

place in large software projects, arising higher possible test changes and challenges. The

existing research is valid for specific scenarios, not always possible to become general

enough to adapt to higher leveled views or fit different processes. There is a lack of

contributions when the testware elements need update during a software system

evolution or maintenance.

 The TMM concept is also introduced and presented as a model to assess testing

process and determine its maturity in a software project in an organization. Still, such

model has proven to be of a great validity for evaluating testing process, but apart from

or not considering the maintenance scenario and evolution details of a software system.

 Therefore, the revision here presented motivates the development of this

dissertation that aims to provide testware support, with test core elements to be taken

into consideration and applied when maintaining or evolving an AO software system, as

well as to define the extension of an existing Benchmarking Framework for AO

software maintenance to consider such testware, as introduced in Chapter 1 and further

detailed in this dissertation.

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Chapter 3

Background

This chapter presents essential information regarding the context in which this

dissertation is inserted. A general view on the empirical studies on software

maintenance, introducing concepts of frameworks, benchmarks and testbeds are

described as well as the perspective for Aspect-Oriented (AO) software in the software

engineering community. Such information is fundamental to introduce the testbed

(Section 3.2) and the benchmarking framework (Section 3.3) to which the case study

introduced in the next section (Section 3.4) is associated. Such case study was the

starting point of the work of this dissertation to identify testing issues and needs and,

therefore, provide the solution for such problems (Chapter 4).

3.1 Empirical Studies on Software Maintenance

 Section 2.5 has introduced the basic concepts of software maintenance,

presenting the types of possible maintenance changes; it has discussed its importance

and drawbacks, as well as it has introduced the testing process flow within such context.

It has been possible to comprehend that such activity is long and expensive [11] and

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

such issues can be explained by a bad, incomplete software project planning, which lead

to bad projected software, hence, difficult to maintain and evolve. Thus, it becomes

essential to stimulate the development and creation of new techniques, methods,

processes, technologies and paradigms in order to ease and reduce costs of maintenance

tasks and, therefore, enable to identify the most adequate approaches to comply with the

changing scenarios.

 To improve software evolution it is necessary to identify what are the

characteristics of the software system, environment and personnel that may affect such

process. This need has motivated several empirical studies to search for the perfect

answers. Although many issues have been detected as harmful to software maintenance

(Section 2.5.1), there are still other factors from other perspectives related to the

invested effort in maintenance tasks. Hence, it is important to identify them to enable

better and more effective software maintenance. In some studies [111, 112], these

factors include software system’s characteristics, such as structure, size, age, input and

output data, type of application and programming language. Large software systems

tend to more maintenance effort when compared to smaller and simpler systems. This

happens because the larger the software system is, more time is necessary to understand

it, and also because of the number of diverse functionalities that complex applications

usually posses [113].

 With the objective of extending the discussion regarding the factors that may

cause problems in maintenance, other researches [114, 115] have investigated the

relation between types of changes and generated effects. The characteristics repeat each

other many times, generating cause and consequence patterns that can be associated to

the factors previously mentioned. Both studies mentioned on this paragraph indicate the

need of following a process and specific models during software maintenance phase,

which help controlling environmental variables. However, such studies are not general

enough when generating empirical evidence, nor when analyzing methods and

techniques to best fit software maintenance.

 There is still further research [116] that has evaluated a broader view of software

maintenance, which contribute to software engineering empirical data. However, such

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

investigation during software maintenance remains challenging; the existence of studies

analyzing software systems maintenance that have characteristics which can be

categorized to be used in various experiments, especially using new approaches like

AO, is very limited.

 Hence, the experience from related areas is important to define guides, models

and methodologies for software experiment evaluations, in order to accelerate the

generation of empirical evidence within software maintenance research. In the next

sections, it is introduced the use of frameworks, benchmarks and testbeds focused on

software maintenance activities.

3.1.1 Frameworks, Benchmarks and Testbeds

 The term framework introduced in Chapter 1 in the context of this dissertation

can be defined as a set of rules and attributes that are responsible to assist the execution

and evaluation of process, techniques or methods of a specific field. It is not easy to

define a generic framework to be used within software maintenance that simultaneously

attend different specific domains, therefore researches [59, 60, 117] have been

conducted in order to build it in a more limited scope, restricting its use to determined

domains, but with an increased level of details. The frameworks, however, have the

deficiency of not paying much attention to the technologies and techniques used during

software maintenance process.

 Thus, with the aim of covering such lack and analyze maintenance in a broader

view, some studies [42, 53, 54, 58] have been conducted with the use of benchmarks to

evolve and maintain software systems. Differently from frameworks that only provide

criteria but do not allow the comparison between representative cases, benchmarks have

the goal to enable the comparison among different techniques used in software

maintenance. Researches [42, 53] have been conducted to establish a trustworthy

method to evaluate such techniques, since the experiment environment is adequately

configured by standards and the applications and studies are selected representatively

and according to criteria. A specific benchmark study [42] has been used as background

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

source for the development of this dissertation, as mentioned in Section 3.1.1 and is

described in details in Section 3.3.

 Finally, some other researches [97, 105, 118] have evaluated systematically the

maintainability and performance of different methodologies in a specific matter. The

difference here is that they regard a testbed and an evaluation process with specific

metrics in order to evaluate the maintainability and performance of techniques. A

testbed can be understood as a platform for experimentation in large development

projects [145]. Testbeds allow for rigorous, transparent and replicable testing of

scientific theories, computational tools, and other new technologies. In spite of

restricting the studies to a specific domain, such research can serve as a base to further

general maintenance studies and experiments. The testbed in which the context of this

dissertation is inserted is introduced in Section 3.2.

 The research regarding frameworks, benchmarks and testbeds definitions are

innovative and provide a valid approach to advance software engineering on what

regards to controlled empirical studies, which enable the production of significant

scientific results. Such research should be exhaustively tested, extended and evaluated

before being broadcasted to vast used in the community. The process of evaluating and

validation is important to identify existing limitations and possible extensions, since the

techniques, methods and technologies in this field are constantly evolving. Therefore, it

is nearly impossible to define a structure, set of attributes or process that are static and

complete. Technology evolves quickly and it demands concepts to be defined in a way

that improvement and extensions to it are possible and allowed, such as considering a

new domain in it or just a simple removal of bugs.

3.1.2 Aspect-Oriented Software

This subsection presents an introduction of relevant information regarding

Aspect-Oriented (AO) software maintenance, evolution and testing, which is the context

in which this dissertation is inserted.

Maintenance and Evolution

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

 Aspect-Oriented Programming (AOP) modularizes crosscutting concerns that

otherwise would be implemented spread over other modules and tangled with other

requirements implemented in the software system. Thus, AOP improves software

modularity with separation of the code implementing similar concerns, as explained in

Section 2.2. Such characteristic is very important when developing, maintaining and

evolving software systems, for it reduces the dependency and coupling of software

modules with the introduction of a new implementation unit: the aspect. The aspect

changes a software system behavior, since it encapsulates the code that is spread

throughout software modules and it becomes the unique transversal implementation unit

in the system. Such change may occur in well defined execution points (join points), as

explained in Section 2.2, and some other points (pointcuts) may be affected by their

execution as well.

AOP can be used in a software project as an approach to support and ease

software evolution through the representation of new features development using

aspects as patches in separated units composing the original software for evolving it to

the next generation, in a planned evolution process. Using aspects within incremental

modifications to a system’s base classes increases the state space of the software model,

after the evolution, it provides higher code readability and visibility which makes the

code friendlier and easy to manipulate.

AOP is relatively a new software development paradigm and most of the studies

[45, 46, 47, 49, 52] taken on this regard mostly evaluate advantages and disadvantages

of whether using it or not. There is not much evidence [51, 52] of studies analyzing its

maintainability, nor testing directions, values and issues. Some studies [51, 79] have

presented case studies reporting several limitations on modularizing features when

using AspectJ, such as the increase of coupling between aspects and classes due to the

strong dependency of pointcuts on implementation details of the base code. This stands

out the importance of performing studies evaluating crosscutting concerns

implementation so that it is possible and easier to understand how they may behave

when they become vulnerable to changes and updates associated to software

maintenance and evolution. Aware of such information, the developers handling AO

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

software maintenance or evolution have more tools to deal with necessary code changes

and, thus, carry out a more reliable and reasonable approach for this task.

On top of that, some studies [46, 48, 51, 52] have discussed how crosscutting

concerns could affect future implementation by comparing modularity characteristics

and software stability; and have also analyzed the impacts of changing scenarios

towards software evolution. Despite having few contributions on this regard, it is

possible to cite some of the difficulties when dealing with AO software maintenance or

evolution:

· Knowing which parts of the code are affected by the aspects;

· The need of understanding other modules to understand the behavior of one

module;

· Identifying the behavior that may be affected by the aspect;

· Identifying parts of the programs affected by a defect that needs correction.

Some researchers [80, 81] have tried to solve some of these problems creating

models to define modules and aspects’ dependencies. However, there is little evidence

of studies [51, 52] and guides [37, 42, 47] that help developers identifying general

elements to consider when evolving or maintaining AO software. Some studies [31, 32,

33, 34] sometimes are handled and applied so specifically in a special context or case

study that cannot be reused to other scenarios.

 As briefly mentioned on Chapter 1, a Benchmarking Framework [42] has been

proposed to assist on the evaluation of AO software techniques, within the context of

software maintenance. Such guide is of fundamental background information towards

the contributions of this dissertation. Therefore, it is presented and discussed in more

details in Section 3.3.

Software Testing

Although few but still helpful and useful empirical studies and analysis on

regression testing, the contributions are limited when the scope is focused to AO

software maintenance.

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Crosscutting concerns degrade software quality of an OO software system. They

negatively impact internal quality metrics, such as program size, coupling and

separation of concerns. Such proposition served as a starting point to many researchers

[46, 49, 51, 52, 80, 81, 82, 83] study different aspects of the paradigm that would

provide more confidence towards quality in AO software maintenance and AO software

evolution. Identifying the crosscutting concerns in order to manage them [80, 81]

throughout software evolution has served as a motivation to studies focusing to keeping

up the modularity [46, 82] or relative to design patters [49, 83]. Identifying control and

data dependencies [84] could also help on determining when the semantics of one

statement can affect the behavior of another statement and this would contribute to

anticipating effects on the program’s behavior.

Although the above mentioned studies have helped improving quality in AO

software development and maintenance and may have eased the costs and issues,

generally speaking, after the modifications for the evolution, the system still needed to

face testing activities. The issues of crosscutting concerns affecting code quality has

inspired researchers [83, 87] on studying the connections and relations between

crosscutting concerns and defects in a software system. The researchers have studied the

impact code quality is vulnerable to suffer. Some of them [52, 82, 87] focused on

developing new metrics or adapting existing ones for quantifying crosscutting and

assessing the impact of modularization crosscutting concerns using AOP techniques,

improving separation of concerns. The theory [87] that a crosscutting concern is

harmful for maintenance is acceptable for multiple (and sometimes unrelated) locations

in the code have to be found and update simultaneously. Such complexity is still even

higher when the concerns are required to untangle the code to attend update or

maintenance requirements.

The existing approaches [106, 107] for OO software regression testing

unfortunately are not effective for aspectized code. Specific testing techniques for AO

software have been derived and developed [88, 89, 90, 91, 101, 102, 103, 104], in which

structure-based methodology is unanimously the followed approach to develop

regression test selection strategies. Xu [91] and Zhao et. Al [89] both have proposed a

control flow graph (CFG) to model the control flow of AO programs. Xu [91] defines a

�

�	�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

new test selection criterion and implements the technique in a regression test selection

for AO programs framework. In the technique proposed by Zhao et. Al [89], it is not

included any complex situations, such as multiple advices or dynamic advices and there

is no evaluation of this model. Xu and Xu [90] have presented an incremental approach

to testing whether or not AO programs. With regard to aspect-orientation, they analyze

the impact of aspects on the state transitions of base class objects and generate tests for

base class and AO programs based on their state models. According to the authors,

model-based testing is appealing because of several benefits:

· The modeling activity helps clarifying the requirements and enhance

communication between developers and testers;

· Design models, if available, can be reused for testing purposes;

· Model-based testing process can also be automated;

· Model-based testing can improve error detection capability and reduce

testing cost by automatically generating and executing many test cases.

Modeling is a broad concept that can be involved different perspectives of

software development, such as design, specification, code generation, testing and

reverse engineering. Taking aspects as incremental modifications to their base classes,

the authors [90] identify how to reuse the concrete base class tests for testing AO

programs according to AO state models. The incremental approach can be seen as

similar to regression testing.

Xu and Rountev [88] propose a regression test selection technique based on

AspectJ language features also building a CFG, which represents the interactions among

multiple advices and captures the semantic intricacies of aspect-related interactions in

order to be able to compare the algorithm for test selection.

In every approach here mentioned the aim is to reduce the cost of regression

testing by selecting the criterion that best fits the object under test and software

project’s constraints. The regression test technique is the most adequate way to validate

the system after modifications have been applied. However, when the system needs

change for upgrades, regression test approach may not be the only requested test

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

direction to head up. Also regression testing may not be good for radically modified

software, coverage-based testing, GUI testing, or complex simulation of software or

hardware [119]. Specialized tools and support regarding necessary test elements

(testware) may be required for such cases to address the existing variables and,

therefore, the most adequate test criteria to fit them, so that the testing activities can

provide the expected confidence that testing is intended to provide: that a software

system has been safely and properly tested, in order to increase software system quality.

This is the context in which this dissertation is inserted; it addresses a testware support

(Chapter 4) provided with test core elements to be considered within an existing

benchmarking framework, the BF [42], described in more details in Section 3.3.

3.2 The AO Software Development Testbed

 In order to promote a smooth adoption of AO software development (AOSD)

techniques, an AOSD testbed [105] has been idealized to provide end-to-end systematic

comparison between such techniques, enabling the proponents of AO and non-AO

techniques to compare their approach in a consistent manner. A testbed is a platform for

experimentation, an environment to allocate and address experiments and tests, in which

different aspects and elements are considered to compose such structure to become

useful for its purposes. Therefore, the AOSD testbed here presented is not yet

concluded. Research is currently taking place to address further items, problems and / or

elements to provide higher effectiveness and consistence in its use and purposes.

 The testbed is composed of:

i. A benchmarking application;

ii. An initial set of metrics suite to assess certain internal and external software

attributes; and

iii. A repository of artifacts derived from AOSD approaches that are assessed based

on the application of (i) and (ii).

�

�
�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

The purpose of the testbed is to help answer questions regarding the

effectiveness of AOSD throughout the development life cycle by:

i. Providing a set of core applications from different domains in which a variety of

software engineering approaches can be applied;

ii. Defining metrics suites to facilitate end-to-end software life cycle assessment

under different quality perspectives; and

iii. Providing a set of artifacts that have been created from applying a variety of AO

and non-AO approaches to the applications provided by (i).

From providing such artifacts and case studies, the testbed has the goal to

provide proponents of software engineering approaches with the ability to easily

compare their approach to others. Such study is essential to stimulate the application of

AO approaches in order to enable results to reach a wider audience.

Such testbed consists of four core elements (Figure 3.1 [105]):

i. Applications that contain a variety of crosscutting concerns;

ii. AO and non-AO approaches that are applied to a common application to

generate artifacts;

iii. A suite of metrics associated with a variety of internal and external software

attributes; and

iv. A set of metric results that have been gathered from applying the metrics suite

mentioned in (iii) to the artifacts produced.

Each of these elements is extendable to include new instances of applications,

approaches and metric suites. As it has been described on its definition and study [97,

105], for such testbed to be successful it requires contributions from software

engineering community. Hence, in order to expand the testbed into a valuable resource,

the benchmarking framework – mentioned many times throughout Chapter 1 and

previous sections from this chapter – complements this initiative, as it is explained in

details in the next section.

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Figure 3.1 The various elements that compose the testbed

3.3 The Benchmarking Framework

This section introduces the Benchmarking Framework (BF) [42], which supports

maintainability assessment of AOSD techniques by a definition of an idealized scheme

for benchmark applications to assess maintainability attributes of AO techniques. The

framework guides researchers and practitioners in selecting or adapting applications and

their releases that best fit for specific experimental maintainability goals. The BF can

also be used to support the design replication and evaluation of empirical studies. The

users or framework stakeholders have been classified into two categories: the designer

of empirical studies on AO software maintainability, and the benchmark designer. The

goals and interests of each category and further details on this matter are described in

Chapter 5 (Section 5.1).

 The BF is the result of a research [42] extending the proposed AOSD Testbed

described in Section 3.2 that aimed to provide a solid structure to fill the gap in

scientific evidence associated to AO software maintenance in order to enable reduction

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

of difficulties and challenges when generating such evidence. The BF provides the

appropriate structure for applications to be evaluated and compared with regard to

maintainability attributes of the applied techniques. Therefore, as mentioned, it is able

to guide researchers and practitioners when selecting, elaborating or adapting

applications in their process and in their respective maintenance scenarios, helping them

become more adequate to attend specific goals of specific experiments or software

system project on what regards to AO software maintenance. Besides, its systematic use

when evaluating and comparing applications and change scenarios allows it to be used

as a tool to verify benchmarks examples. Hence, it eases the identification of

applications and change scenarios that are representative enough to be considered

benchmarks of specific domains, which can be placed in a repository and used in future

case studies and experiments. Thus, the main benefits of the BF can be summarized in:

· Assisting the evaluation of software development techniques;

· Supporting the elaboration, replication and evaluation of empirical

studies;

· Easing the identification of applications and change scenarios to consider

as benchmarks;

· Possible extension of the criteria to comply with different context of

studies and applications.

The framework is composed by three main components:

i. The process;

ii. The product;

iii. The maintenance scenarios.

Further details on each of these components are explained in Chapter 5 (Section

5.1).

Figure 3.2 [42] illustrates the composition of the BF. The BF defines a process

that consists in different stakeholder categories and some input/output transformations.

For instance, a set of experimental requirements can serve as an input to generate the

first version of an experiment plan. The output can also work as framework feedback in

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

order to improve it. Besides the output generated by different kinds of stakeholders,

there is a possible output that is common to all kinds: the cookbook, in which the

actions experienced by the users, related to the use of evaluated techniques and

methods, and the use of the framework itself are described. The cookbook is consisted

by: (i) lessons learned and (ii) best practices. Such practice is important to gather and

disseminate technical knowledge, issues and experiences from software engineers that

can be used and learned from by other users. The BF also defines a list of criteria that

classify the characteristics related to the product, i.e., applications or software systems.

The criteria can be used in different approaches that go according to the goals of users,

stakeholders and/or software project. The criteria include general attributes, common

properties to any applications, such as system identification, packaging, life cycle

documentation and development techniques; and AO attributes, the ones specific to the

main characteristics related to the applications developed using AO techniques, such as

classification of crosscutting concerns, composition of concerns, scope and AO

language constructors. The BF also embraces the criteria that describe the main

characteristics regarding change scenarios, which can help, for example, software

engineers identify and map the impacts generated in an application during the

implementation of different scenarios. Such criteria include the scenario description and

the identification of the type of change, goals, levels, etc.

Nevertheless, there is no support on what regards to software testing within the

BF, nor the testbed (Section 3.2). As the BF is a piece within the testbed universe, it has

been considered as the base to insert the testware support (Chapter 4), which is the

subject of this dissertation. The proposed insertion and the BF extension is presented in

Chapter 5 and the evaluation of the testware support within the BF is presented in

Chapter 6.

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

 Figure 3.2 The inputs and outputs of the benchmarking framework process

3.4 The Case Study

 This section introduces the case study that served as the starting point of this

dissertation. The case study aimed to be an exploratory study on the error-proneness of

the AOP mechanisms. It involved four OO releases of two medium-sized systems from

different domains, each with an AO counterpart. The goal was to obtain high-test

coverage and reveal results not yet found regarding the collected AOP faults. Such

experiment was part of the research related to testbed here presented (Section 3.2); the

two applications involved are already part of the testbed and the results to be obtained

were supposed to provide the testbed with more artifacts and useful information

regarding AOP related faults to be used in future studies. That was the first experiment

within the testbed context considering testing elements, therefore, there were many

different test factors to address. As this section explains, the test factors became risks

and, therefore, issues, which motivated the creation of the testware support (Chapter 4)

addressing testing process flow to address when considering testing as part of a software

experiment or project. The case study involved different variables that are presented in

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

this section. However, the details of the issues faced throughout this case study are

described in Chapter 4, in which the different test elements can be identified and the

respective associated issues in the case study are, then, detailed.

3.4.1 Goals

 As briefly mentioned above, the goal of such case study was to identify error-

prone AOP mechanisms when they are applied to evolving programs. The analysis if

the nature of specific concerns exerts some influence on fault location embraces a wide

range of heterogeneous concerns implemented as aspects. In addition, each AOP

mechanism naturally introduces different forms of dependencies between the base

classes and the aspectual modules; therefore, the goal was to evaluate how the degree of

base-aspect coupling could help developers identify error-prone modules in evolving

software systems.

3.4.2 Target Systems

 Two medium-sized applications were the target systems in this exploratory

study. The first one, iBATIS [120] is a Java-based open source framework for data

mapping. It was developed in 2002 and over 60 releases are available at

SourceForge.net4 and Apache.org5 repositories. The second is a Java Mobile application

– MobileMedia – that manipulates music, photo and video for mobile devices. As

different research groups have handled the applications in order to test them, this

dissertation only regards the manipulation with MobileMedia testing.

 MobileMedia (MM) is a J2ME (Java To Platform Micro Edition) application

that has been developed based on a previous software product line (SPL) called

MobilePhoto [96], which is a photo album (image viewer) appropriate for cellular

phones and personal digital organizers (PDAs). The requirements for this application

4 http://sourceforge.net/project/showfiles.php?group_id=61326
5 http://archive.apache.org/dist/ibatis/binaries/ibatis.java/�

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

included several different features. MobileMedia has been developed by including new

mandatory, optional and alternative features, as it is illustrated by the application feature

model in Figure 3.3.

Figure 3.3 MobileMedia feature model

Software product lines (SPLs) [123] represent an important technology to

support software variations. Assets reuse and cycle time reduction are some of the

benefits SPLs can provide to a project. The products from a product line are very

similar but differ from each other [124]. The baseline contains mandatory feature(s) and

every evolution or update of it introducing optional/alternative features results in a new

product. The evolution of product lines imposes changes from diverse nature, such as

the transformation of mandatory features into optional or alternative ones and vice-versa

[51]. These changes imply new test definitions to check whether or not they impacted

other existing features or general software expected behavior.

The core features of MobileMedia are: create/delete media (music, photo,

video), label media and view/play media. The alternative features relate to types of

media supported: music, photo and/or video. The optional features are: count and sort

media, copy media, edit photo label and set favorite media. For the case study, it has

been used four Object-Oriented releases of MobileMedia SPL, and in each release there

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

was an incorporated changed scenario by the introduction of a new feature. Table 3.1

summarizes the main changes for each product.

Table 3.1 Summary of changes in MobileMedia SPL

Release Description
01 MobilePhoto core with mandatory features.

02
Mandatory features plus Sorting and Edit Photo Label feature
implementation.

03 Mandatory features, Sorting and Edit Photo Label feature plus Set and
View Favorite feature implementation.

04 Mandatory features, Sorting and Edit Photo Label features, Set and View
Favorite feature plus Copy Photo feature implementation.

As MobileMedia is an application for academic studies, the releases used for this

experiment can be found at http://mobilemedia.wiki.sourceforge.net/. The number

details regarding Total Lines of Code (TLOC), Total Lines of Bytecode (TLOB), total

number of methods and classes from the tested releases are illustrated on Table 3.2 and

can be observed as they reflect how large the application is. The complexity and

inclusion analysis of the SPL and criteria have not been considered for this scope.

Table 3.2 MobileMedia SPL OO Releases’ details

 TLOC TLOB Classes Methods
Release 01 1159 3058 24 122
Release 02 1316 3527 25 139
Release 03 1364 3728 25 142
Release 04 1559 4180 30 159

There was not much information regarding the AO releases of MM, nor how

they were implemented, aside the information that the optional and alternative features

and the exception handling code were what have been aspectized from the OO releases.

Further details from the implications of such lack of information are described in

Chapter 4 along with the definitions of the test core elements from the testware support,

and in Section 3.4.4, where the tool support and the issues with AO releases are

described.

�

�	�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

3.4.3 Testing Strategy

 Since the goals were all related to code-based metrics – such as fault location,

relation between fault and aspects, etc. – the strategy adopted was structure-based

testing, focusing on code coverage. However, such decision was not supported by a test

process, plan or previous studies, as this was the first one regarding testing within the

context of the AOSD testbed (Section 3.2). There was no testware support at all, besides

the experience of the software engineers with JUnit testing [121] and the little

documentation of the applications to be tested.

To achieve the determined goals, coverage-based testing was then determined to

be applied, which relied on the claim that one cannot trust a piece of code if it still

contains elements that have never been executed during testing [122]; structural-based

testing has been discussed in Section 2.3.2. It was also taken into consideration that

there is a larger currently available tooling support for code-based testing, once the

software engineers involved were more experience with software development rather

than software testing skilled. No other test techniques were discussed, nor was it ever

considered. Therefore, the testing strategy resumed to write unit tests that would execute

the pieces of code in order to cover it.

The only major decision regarding testing that was truly analyzed in this case

study was the test exit criteria. To decide which coverage should be considered enough

to stop testing, the most experienced software engineers researched about other

experimental studies and had considered studies that used similar applications to the

target systems in this case study based on the size, i.e., the executable lines of code.

However, the degree of coverage should be one of the several criteria for deciding when

testing is complete [55]. The target systems were from different domains and contained

very different numbers of lines of code and classes, as, for example, can be observed

from Table 3.3. For instance, the first OO release of iBATIS had 10,270 lines of code

while MobileMedia first release had only 1,159. With such a large difference expressed

in numbers, the same test exit criteria should not be appropriate to fit both applications.

The purpose of exit criteria is to prevent a task from being considered completed when

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

there are still outstanding parts of the task, which have not been finished [6]. Still, to

consider structure-based testing for two so different software systems had also to

consider how the concerns were implemented in AO releases and to apply a different

strategy accordingly and that has not been done. The strategy to fulfill AO releases

testing for both applications were established as the same from OO releases testing as

explained in this section, not considering the details and risks of testing AO releases.

Table 3.3 Numbers from OO Releases – iBATIS and MobileMedia

 iBATIS MobileMedia
 OO Release 01 02 03 04 01 02 03 04

Lines of Code 10,270 10,210 10,316 11,269 1,159 1,316 1,364 1,159
Classes 216 215 216 229 24 25 25 30

As it is further explained in the next section, MobileMedia had to follow a

different test strategy than iBATIS, since JUnit framework did not support the micro

edition (ME) extension for Java in which the application had been developed. The

required documentation of the application had to be collected in order to prepare test

cases with steps to execute in a mobile simulator. A test case (TC) includes not only

input data, but also any condition and relevant procedure for the execution, and a way to

determine whether the program has failed or passed the test [131]. A TC specification is

a requirement that must be satisfied by a TC. Traditionally, software testing validates

that specification was implemented as specified, but previous discussions on testing

scope expand that definition to whether user needs are met as well [10].

The definition of the TCs for this case study has been set based on analysis of

existing documentation about MobileMedia, features’ behavior and talks to developers.

All that was put on a template containing: description, pre-condition, steps and expected

results, as shows model in Table 3.4 an example of Test Case description for the

Favorites feature.

It has been stated an each expected result for every step to be followed on the

test case. This would help finding where a defect would be coming from; for example,

this test case may be blocked when step 2 cannot be executed. Hence, the test is not

�

�
�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

even allowed to push further and check whether it fails or not, since step 3 is not even

reached. A test case would only fail when all the steps were executed and the results

were not the same as the ones expressed on the expected results. When a test case

needed to be stopped in the middle of its execution, i.e., step 2 blocks the rest of the

execution, then it was not a failure; it was blocked until it was possible to go further.

Table 3.4 Test case example

Description Set a photo as favorite.

Pre-conditions
1. Application must be launched;
2.There must a photo available and stored on

phone's images folder.

Steps

1. The user creates a new album and inserts photo
in it with correct label and path;

2. Set an item as favorite;
3. View Favorites.

Expected Results

1. Items must be inserted properly;
2. Item should be set flag Favorite as true;
3. The item just added as Favorite should be

shown.

This case study has considered the testing of four releases of Object-Oriented

MobileMedia software product line (R1, R2, R3 and R4). Due to optimization of test

execution, the test cases have been executed in a manner combining one test case to the

other, in a way that test cases from related features have been executed at once, (not

restarting the emulator, not restarting the application). For example, a test case to add a

photo and a test case to delete a photo were ran as one together. Thus, the number of

TCs executed for each release of the SPL has been optimized and reduced, compared to

if they were ran separately, as shown in Table 3.5.

Table 3.5 Number of test cases executed on MobileMedia SPL

R1 R2 R3 R4
04 07 11 17

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

3.4.4 Tooling Support

 As the case study was performed within academic field by MSc and PhD

researchers, open source tools were the target tools to be considered for such. In case of

iBATIS application, the common JUnit framework fit the desired actions to write unit

tests, however for MM, the same framework did not support the micro edition (ME)

extension for Java in which the application had been developed. Thus, a different tool

needed to be used to execute the code from MobileMedia releases. Plus, when the unit

tests had been written, a coverage tool support would also be necessary in order to

evaluate which parts of the code the tests were or were not covering and finally assess

the code coverage percentage.

As this dissertation is focused on MobileMedia testing, this subsection describes

the strategy taken regarding the tool used for this application’s testing. There are not

many tools available for testing J2ME application, especially when it comes to open

source tools. Nevertheless, there was a tool that seemed to support the desired testing

tasks. JaBUTi (Java Bytecode Understanding and Testing) [127] is a tool developed in

academic field that provides different structure-based testing criteria to analyze

coverage and other static metrics for further verifications on Java applications. The tool

considers the analysis of exception dependent and exception independent point of view

for each criteria, so that makes a total of eight different techniques derived from

structure-based criteria are implemented by JaBUTi and can be applied to software

testing; in which four are data flow and four are control flow criteria: all-nodes-

exception-independent, all-nodes-exception-dependent, all-edges-exception-

independent, all-edges-exception-dependent, all-uses-exception-independent, all-uses-

exception-dependent, all-potential-uses-exception-dependent and all-potential-uses-

exception-independent. The difference of JaBUTi from other testing tools is that it

performs the static analysis directly on Java bytecode, not on Java source code. This

allows the application of supported criteria to non-conventional software, such as

mobile agents [128] and software components [129].

The main task executed by JaBUTi tool comprehends: class files (bytecode)

instrumentation and coverage data collection during execution trace. However, to test a

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

J2ME application using a device or an emulator is not a trivial task due to storage space,

memory and processing constraints. Thus, JaBUTi uses a client-server solution for this.

The testing server runs in a desktop machine and is responsible to receive tracing

information of client programs execution under an emulator or mobile device. This is

possible due to a commands combination via DOS prompt. More details on how this is

implemented can be obtained on tool’s user’s manual [127].

To enter a test case for this case study, one simply executed the midlet using

instrumented classes by the tool. The interface of the application was, then, opened and

ready to receive test data input, as observed on Figure 3.4. By the end of each test case

execution, the execution trace was sent to the testing server and analyzed by JaBUTi. A

new test case is considered every time the application is restarted, that is, closed and

opened again. The execution of the application was possible due to the emulator from

WTK (Sun Java Wireless Toolkit) [130].

The functionalities implemented by JaBUTi provide very useful information for

empirical studies, which allow enabling different requirements and test case

combinations, making feasible the use of incremental test strategies. In this case study,

there were test cases created based on functional requirements that served as start point

to evaluate coverage of MobileMedia Software Product Line testing. It was possible to

evaluate critical parts of the code that needed to be covered more urgently in order to

increase coverage. This is very valuable information in a test project, when time and

resource restrictions are severe and what is more critical usually is required to be tested

first. The tool also displays different colors representing weights that are associated to

test requirements, indicating which test requirement, if covered, would increase

coverage as much as possible. According to the considered criterion, the tester can work

on testing code that has higher weights and consistently increase coverage. The stronger

the color is, the heavier its weight represent, which corresponds to an important

requirement to be covered. For better visualization of it, Figure 3.5 shows a print screen

from JaBUTi tool showing a part of the bytecode for ImageUtil class from

MobileMedia Object-Oriented Release 1. It shows the difference of the colors (weights)

that are applied to the code, indicating how critical a specific part of the code may be for

testing coverage purposes. Testing critical parts of the code, based on the indications

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

provided by the tool, increases the coverage faster. The tool, however, does not consider

complexity metrics or how critical a determined part of the code can be to the project,

outside code perspective. The test engineer, based on his/her experience, may decide to

cover other test requirements that have been set as highly complex and do not have high

weight, though. The test engineer may use the information provided by the tool to help

improving the testing activity and, sometimes, to find source to increase code coverage

of a set of test cases in a faster way. For example, the test engineer is able to notice that

a test case that exercises the part of the code marked with red will increase the coverage,

regarding the test criteria set on the tool. On the other hand, test cases that cover the

code marked with white or blue will not increase the code coverage very much.

Therefore, based on the information provided by JaBUTi, it was possible to see the

difference of coverage results regarding the applied criteria.

Figure 3.4 Interface of MobileMedia Release 2

Although JaBUTi supported all the functionalities introduced by the different

OO versions of the product line, and seemed to fit the case study’s needs for

MobileMedia testing, it did not support the AO releases of MM. The criteria developed

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

by the tool did not support the increased complexity combined from AspectJ language

particularities and J2ME. JaBUTi developers have been contacted to try to solve such

issue, which has been identified as a setup issue; however even using an AspectJ

compiler, as it has been suggested, and properly setting libraries and necessary setup,

the tool kept showing different kinds of errors. Due to the bad (or lack of) test planning

that should have identified that such tool was / was not ready to support all the

constraints the case study implicated, the testing activities were blocked. The tool

developers and the case study managers were contacted to help finding a solution for

such bottleneck. The days went by while the developers tried to find time in their

planned activities to solve an issue from an unplanned activity. Therefore, by the end of

the case study, the AO releases from MobileMedia were indeed not tested. Further

details from such bottleneck and the implications of it are all described in Chapter 4

along with the definitions of the test core elements from the testware support.

Figure 3.5 JaBUTi screen showing different colors for different weights associated to
test requirements for bytecode of MobileMedia SPL Release 1

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

3.4.5 Bug Reporting

 MobileMedia case study has taken place as a joint study along with iBATIS case

study, being handled by different test people (Subsection 3.4.6). A spreadsheet template

for reporting bugs found have been created and suggested to be used in both studies

(Appendix B).

 Although the template had important fields to be filled in case a bug was found,

it has been designed mostly to specify code based testing bugs, i.e., bugs from the unit

testing or component level. For example, if a robustness bug had been observed in a

MobileMedia release test through the emulator (interface testing), it is possible that the

tester could be unable to identify the root cause in the code for such robustness issue.

And as MobileMedia testing activities were determined to be handled by the use of the

emulator, even with the support of JaBUTi, it was common for the tester to be unable to

locate the bugs’ root cause. And since there were no developers available to support

testers, the root cause analysis has, therefore, been left aside. While for iBATIS, the bug

reporting template seemed to fit very properly, for the only required testing in that case

was unit testing and there were developers supporting testers with bugs’ root cause

analysis.

3.4.6 Test People

 MobileMedia case study was handled in academic field between two universities

at two different sites. The two different sites were very distant, i.e., different time zone

and thousands of kilometers from one to the other. Nevertheless, the communication

was handled over the web and through e-mails and the roles have not been assigned

formally. But it was possible to identify that there was one researcher managing the

activities and the testers executing test tasks, while other performed support tasks, so the

roles could have been formally assigned as:

� Test Manager – A (Site 1)

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

� iBATIS Tester / Test Manager – B (Site 1)

� Wild card role – C (Site 1)

� MobileMedia Tester – D (Site 2)

The names of the ones involved have been preserved, that is why letters are then

here addressed in the case study roles.

Even still not addressing the roles and responsibilities specifically here just yet

(it will be detailed in Section 4.6), it is possible to see that the responsible person, the

test manager to administrate planning, process and issues was located at the same site as

the tester from the other application from the case study, as well as the wild card role.

The wild card role is non-specific role, undefined role of a person who was not a

developer, not a tester, but has used and handled MobileMedia application within other

contexts, so he was pointed out as a resource to contact in case of need, but he was not

directly assigned to the case study. This role has been helpful throughout the study, but,

as expected, he was not available every needed time, nor could support with every

request of help. The MobileMedia tester was located at the other (far) site and did not

participate on meetings or discussions regarding the planning of the activities of the

case study. Even though it was poor, they have run some meetings to decide what to do.

D has never joined any of these meetings and just received the duties without space to

question. Such situation did not help when the activities started to take place and there

was no role to report bugs to. Therefore, the bugs have been reported to the wild card

role, who informed the test managers of them, but could not and did not have the time to

look into them in order to fix them.

3.5 Final Considerations

This Chapter has as main purpose to introduce the case study that served as a

base to create the testing problems that motivated the development of this dissertation.

The case study was part of an experiment that had as one of the tasks to test a J2ME

software product line (Java an AspectJ releases). The objective was evaluating and

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

comparing AOP related faults and assess the error-proneness of AOP mechanisms.

Therefore, the chapter has firstly introduced the context of the case study, providing

information on the empirical studies regarding software maintenance, and within such

context, it introduces the state of art of AO software maintenance, evolution and testing

that is important to understand in which context the case study is applied.

The case study was inserted within a much broader context involving an AOSD

testbed (Section 3.2), which is why details of how the testbed is composed are given in

this chapter. Furthermore, a piece of the testbed composition, the benchmarking

framework, is also detailed in Section 3.3, so one can better understand how the case

study became a cause of a problem that the testware support in this dissertation suggests

to solve. Details on how the case study has been set and developed have been explained

in Section 3.4 and in its subsections; but, still, further explanations of the issues are also

described in Chapter 4, in which the test elements composing the testware are cited and

examples of the issues experienced in this case study are described along to give clear

examples of the need of the testware support elements and provide confidence of the

effectiveness of the testware support, within the context here described.

To conclude this chapter it is important to yet mention that, in a general way,

testing tasks become even more critical when software varies more than usual.

Considering complexity increase for software testing from the case study perspective

described in Section 3.4, J2ME application shall be taken a closer look, since it has

memory restrictions and capability particularities. The wide variety of Java technology-

enabled devices implies in each device running a different implementation of CLDC

(Connected Limited Device Configuration) and MIDP (Mobile Information Device

Profile) [125]. Many developers who work in Java for micro edition products have been

initially trained to develop desktop software. This stresses the little existing experience

regarding mobile software, hence, mobile software testing [126].

�

�	�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Chapter 4

Testware Support

Lehman [92] affirmed that a software system must evolve in order to become

more satisfactory. Evolving a software system is not only about adapting the source

code. Software is multidimensional and the process behind the development and

maintenance of it involves different relations among other artifacts, such as [93]:

specifications, constraints, documentation, tests.

Some authors and studies defend the idea that regression testing [12, 20, 114,

119] and software testability analysis [14, 19] are enough to address the test directions

to look up to when evolving or maintaining a software system. Others have aimed to

provide a characterization schema for software testing techniques [56, 57], tools [58]

and/or framework [59, 60, 136], where test engineers could define data models or be

assisted when selecting a test technique. However, these studies are not general enough

to be used as a whole test element within a software evolution benchmarking, nor are

adequate to specifically support an AO software maintenance benchmarking framework,

as the one described in Section 3.3. In Chapter 1, it has been mentioned that the idea of

benchmarking has been used to support decisions in which software engineering

techniques to use when dealing with its evolution. The proposed Benchmarking

Framework (BF) presented in Section 3.3 intends to assist AO software engineering

empirical studies by defining appropriate guidelines to assess the AO software

characteristics.

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

In order to support maintenance decisions, a satisfactory testware support

available eases software evolution by offering a safety net against unwanted change.

Therefore, this chapter presents an important contribution of this dissertation: it

introduces the testware support with test core elements to be taken into consideration

and applied when maintaining or evolving a software system, within the context of AO

software maintenance presented in Chapter 3. The test core elements address topics in

test process flow in each subsection where they are listed as questions and/or items to

purport the capabilities of a software project against testing process flow to conduct the

project into the right test process flow. Such elements help supporting aspect-oriented

software maintenance, providing the minimum testware information required within a

software project or case study in order to make more reasonable decisions regarding its

maintainability and evolution.

The testware support can be defined as follows:

Set of test elements and attributes that are able to identify specific test

characteristics of different applications or software test projects, so that it

is feasible to evaluate them under software maintainers’ perspective and,

therefore, address the most adequate test process flow to fit.

This dissertation defends the idea that the existence of the testware support in the

BF is able to express an adequate test structure for the applications to be evaluated and

compared with regard to the test attributes related to the used software development

techniques, under the maintenance and evolution point of view. The extension of the BF

considering the testware support and the evaluation of such insertion are presented in

the next chapters.

The testware support provides:

· Quality assessment of the current state of the software system;

· Identification of test factors and/or risks in a software project;

· Decision making support on what regards to testing within the context of

software maintenance or evolution process.

�

	
�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Thus, the testware elements will be able to guide researchers and professionals

interested in testing perspectives when selecting, preparing or adapting a software

system and its maintenance scenarios making them more adequate to reach specific

objectives and determined goals of experiments or case studies related to AO software

maintainability. The testware support can be used to identify test factors and guide the

testing activities planning according to the identified test attributes.

The definition of the criteria and elements that compose the testware support is

not an easy task, for they have to be general and specific at the same time. They should

be general enough to identify test characteristics that are mostly common to be

considered in every software project or case study addressing testing, within the context

of AO software maintenance; and they should also be specific to comply with the test

elements that may/may not be feasible in each different software project being

evaluated. Yet another factor that makes this definition not an easy task is the quick

appearance of new techniques, which hinders the criteria list to be statically defined;

therefore, it should be dynamic to adapt imposed needed changes. The list of test

criteria, known as the testware support provided with testware elements, has been

structured to enable its extension in further studies in which it can be addressed and

applied.

Provided with an appropriate testware support, a software project or case study

is more likely to:

· Identify and address potential risks, so that they do not become a

bottleneck;

· Prioritize tasks according to its importance and associated risk;

· Plan the necessary resource in advance, so that the tests are executed

smoothly;

· Address the required test tasks and allocate enough resources to them;

· Define the minimum test criteria required for its goals and objectives.

The whole testware element is composed by different parts: the first topics

presented in Section 4.1, in which the most general attributes are addressed in questions

�

	��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

and tables; a test strategy described in Section 4.2 introducing the main topics to

consider when planning a test strategy; Section 4.3 presents the test environment

element addressing topics on this subject; relevant information regarding test tools to be

taken into consideration in a software project is described in Section 4.4; the test people

composing a test team and the roles’ definitions are described in Section 4.5; Section

4.6 introduces Aspect-Oriented topics to be addressed within such context and, finally,

in Section 4.7, the final considerations about the chapter are presented. Every section

represents an element of the testware support. Figure 4.1 illustrates the testware support

and its elements and represents a general view of how this structure is composed and

organized, so that it is easier to understand the process of the test elements address; the

figure also shows the benefits as a result of gathering and making use of the elements

that can be achieved in a software project or case study.

Figure 4.1 Testware Support

The elements are shown in boxes and the reason why they are not connected is

because they do not compose a process, but they may support a process flow in which

they are not dependable one on another. A case study can make use of some of the

elements, but not all, according to its goals. However, the reason why the “First Basics”

First
Basics

Test
Strategy

Test
Environment

Test
Tools

Test
People

AO
Attributes

� Quality increase

� Proper Planning

� Proper Process

� Proper decisions

� Better supported

� Proper

assessment

� Proper test flow

in a process

�

	��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

box is on top and not in line together with the others on purpose is because the first

basics are quite indispensable to projects concerned in addressing or assessing test

attributes, for they represent the very first test issues to filter and surface the basics of

testing that may not be identified and / or identify the test needs. The other three

elements below it are usually the most common topics to address in a software test

project, so they behave smoothly at the same state one from the other inside the testware

support, with no definitive priorities among them, but it is important to stress that they

are equally relevant. The other two from the next column are test elements that usually

come in second plan, despite addressing fundamental topics in software testing.

Together, all these elements in a common and proper use have the power to provide

successful outcome to a software project or case study as it is described in the box on

the right.

4.1 First Basics

There are infinite possible ways to be used to test a piece of software. As

mentioned earlier on this dissertation, testing activities are important to support

software quality assurance, but when there are no test process flow definition in a

software project, there are no defined strategies to systematically evaluate a target

system. A definition of quality can change accordingly to user and project goals, so

unless it has been previously set, the test engineers would be unable to reach it without

knowing it.

Before the software system is being developed or before its maintenance or

evolution, it needs to be defined the purpose of testing. Since there are different forms

to test an application, it is required to know what is important to test, what is relevant,

what may cause issues to the project if it fails, what may bring impact to the system.

When these questions are answered properly, then it is possible to define the required

test system – testware, test environment, and test process – to a specific project and

determine test efforts.

�

	��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

This section lists an assessment questionnaire with questions to first indicate the

capabilities of a software project against testing topics to conduct the project into the

right test process flow. The questions are based in previous contributions [2, 3, 4, 5, 6,

7, 10, 55, 68, 70, 95, 108, 124, 131, 132, 146, 147] that have determined the

specifications and concepts for test activities and test elements, have recommended

requirements and specifications for identifying and resolving software problems in its

life cycle and have had a well acceptance in the community to address test topics. The

questions are categorized in different modules, as illustrated in Figure 4.2, and have the

goal to address general test items to strict test topics in different scenes from the

software project, such as: initial basics, general topics, items in test planning and test

process.

Figure 4.2 Modules of testing first basics assessment questionnaire

The questions are gathered in groups of five; for each one, a ‘yes’ or ‘no’

response can be applied. For a successful outcome of the testware support, the meanings

of the answers have been defined as follows:

· Yes – There has been a smooth understanding of the item and the answer

complies with definition and skill support, and any necessary measure,

such as training, skills, experience or self-study supporting the test item

in a positive sense.

· No – There have not been definitions, understanding or skill support to

address such item, nor its concept or definition within a software project,

case study or organization; or the definitions are incomplete in a negative

sense that such item cannot be formally verified.

Assess
general

test items
within

software
project

Assess

testware
towards

initial test
process

flow

Assess
general
items

towards
test

process

Assess
general
items

towards
test

planning

Assess
test

concerns
towards

test
planning

�

	��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

On Table 4.1, the questions address the test items or topics to consider when

preparing for a software testing project or case study involving tests. In many questions,

test people, i.e., the people composing the test team, such as tester and test manager are

mentioned. The definitions of the test people and roles are detailed in Section 4.6.

Table 4.1 Test items to address in software project

1 Are the objectives and requirements defined?
2 Are the requirements testable?
3 Are there time and resources available allotted for development and testing?
4 Has the test process been defined?

5
Are the testers familiar with the development methodologies and the
required testware to test them?

These five questions from Table 4.1 consider the first items to look ahead when

starting a software project and testing is a demand. To identify the testing competencies

into more details, different items need to be assessed as state the questions on Table 4.2.

Knowing the answer to these five questions enables the software project

managers, stakeholders and testers to know how far the testing project can be on what

regards to software testing initial planning, and how much further it has to go in order to

have a satisfactory answer. For instance, if the answer to all these five questions is “no”,

then there are many actions to take place and this project certainly will need a lot more

time to reach a satisfactory testing process than one that has answered “yes” to at least

half of them.

Table 4.2 Items to address initial test topics

1 Is there a policy regarding software testing?
2 Is there a software testing strategy?
3 Are there trained resources to allocate on software testing?
4 Are there available tools to support a testing strategy?
5 Has the test object been under a testing process before?

If the organization in which the software project is inserted already has a defined

policy regarding software testing and has a testing strategy, then it is important to

known whether such existing strategy embraces the necessary items to satisfy the use of

�

	��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

a testing process. Hence, the questions on Table 4.3 have been created as general

considerations to help identify and address the items of the software test process.

It is no use for an organization to have a test policy and for a test project to have

a test strategy when there is no one following it or it does not provide enough

information for a desired outcome because it is outdated or it does not fit the

circumstances or many other possible reasons. The test process should be able to clearly

identify what are the steps to take in order to make effective testing since the very

beginning of the software project. From the definitions to plan test activities and

available testware for test case execution and bug and results reporting: all regarding

testing tasks must be stated within a feasible test process. When a project is able to

positively answer the questions from Table 4.3, it means that there is a safe test

procedure taking place; it may be time to evaluate details of them. On the other hand, if

the testing process fails to provide knowledge of whether it is enough to surface

satisfactory test results, then it needs to go through a whole new evaluation and

restructuring process.

Table 4.3 General items to address test process

1
Do testers follow the test process to plan the testing phase, prepare test
environment, design and execute test cases and report test results?

2
Does the test process cover all the necessary activities to perform effective
testing?

3 Is the test process sufficient to adapt to different test strategies?

4
Are there risks defined and prioritized and potential dependencies able to be
identified?

5
Are the project and test roles defined as well as schedule, resources and
budget?

The first things to look at, in a software project, in order to know if the basic

testware and test process flow are available are defined on Tables 4.1, 4.2 and 4.3. After

answering these fifteen questions, a project manager is able to know what actions to

take next. The following actions, of course, depend on the needs of the project and

depend on how developed and suitable its test strategy is at the moment, therefore

�

	��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

adaptations may be necessary. Still, it is possible to drive attention to the items

addressed on Table 4.4 towards test planning, regardless the type of software under test.

Table 4.4 expresses the questions regarding general topics when test planning,

i.e., more in a test management level rather than in a (lower) tester level. The answers

from Table 4.4 will be of paramount importance to proceed to further details when

planning software testing in a project. If, for instance, the test activities are scheduled

out of synchronization with the development schedule, it may be difficult for testers to

contact developers in case a bug needs deep investigation and repair. The test objectives

are fundamental to know what is the purpose of testing a piece of software, what are the

goals aimed to be achieved. To identify the constraints and risks that may impact the

activities at some point of the project is also important for they have the power of

putting the schedule behind or block test activities.

Table 4.4 General items to address test planning

1 Have the risks associated with the software under test been identified?
2 Have the test objectives been defined?
3 Have the test activities been scheduled according to development schedule?
4 Have the test constraints been identified?
5 Have the test metrics been defined?

In the case study presented in Section 3.4, for example, if the questionnaire

presented above had been applied, many test issues that occurred in the MobileMedia

testing activities could have been avoided, such as the planning in accordance with

development schedule, for example. If the questions from Table 4.4 had been addressed

during test planning, the risk of the tool not support every release from the software

product line and the AO releases could have been detected and mitigated accordingly so

that it would not become a bottleneck and block further testing in the project.

More detailed items on what regards testing topics when test planning can be

found on what has been defined on Table 4.5.

�

	��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Table 4.5 Test topics to address test planning

1 Have the entry/exit criteria been defined?
2 Have the test techniques to be used been defined?
3 Are the testers familiar with the test techniques to be used?

4
Has the number of necessary test cycles been defined? Has the test schedule
considered all cycles?

5 Has the bug report and analysis system been defined?

Table 4.5 assesses capabilities of the test activities that need to be satisfied in

order to proceed with a satisfactory test planning. The entry and exit criteria define

when to start and stop testing. Such decisions rely on software project goals and test

objectives. If the chosen techniques to be used in a software project are related to

structure based techniques, then code coverage decisions are usually the best metric

used to define when testing has reached a specific percentage that indicates sufficient

coverage of branches, statements, etc.

In the case study presented in Section 3.4, the same test exit criterion was

defined for both applications under test. Such decision turned out to be unsuccessful

since the applications were different from each other in many aspects (such as size,

domain) and the test techniques applied could not proceed. The test techniques needed

to have been evaluated considering the variables and the risks that could affect the tests’

performance, as it indeed happened, not only because the technique was not suitable for

both applications under analysis but because it was not evaluated the constraints in such

project nor if the test process covered a plan that had (not) identified such constraints.

Yet the test planning does not succeed if the testers are not familiar with the

techniques to be used. Testers must be willing and prepared to familiarize themselves

with the respective application domain and to acquire the necessary knowledge [55],

however time may be a constraint and there might not be enough time to train testers.

Therefore, an experienced tester plays a very important role, for he/she is responsible

for the creation and maintenance of test specifications, must know appropriate test

methods and executes the test cases according to the test schedule and test specification.

�

		�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Yet not even the most expert would succeed in a project where many test cycles are

necessary and the test schedule is insufficient for them.

In the case study from Section 3.4, MobileMedia was a software product line

that was already developed when it was introduced to the case study. On the other hand,

iBATIS had some releases but in the case study, some new extensions were developed

as the tests had been performed, plus iBATIS team was all located at one site, while

MobileMedia team had the tester located at a different far site from where the case

study was being managed and there were no developers working at the same time as the

tester, so that was a constraint that has not been considered either and has affected the

performance of the activities, as it has been explained in Section 3.4 and will be

mentioned in the next sections.

Bugs found must be reported to developers over a report system, whether a

database with forms or a controlled system of spreadsheets and their versions. This

system should be able to register bug’s location, behavior, steps for reproduction and

the most of available information so that the developers can reproduce it and quickly

identify its root cause and provide fix. Such factor (addressed in Question number 5

from Table 4.5) has also not been well addressed in the case study, i.e., there was bug

report template (Appendix B), but the bugs found in MobileMedia were reported to the

project managers at a different site, but there was no developer taking care of such bugs,

because there was no developer working for MobileMedia at that moment, as described

in Subsection 3.4.6. Hence, there was no one responsible to receive, address and fix the

bugs and work along with the tester on it.

When the test items addressed on Table 4.5 are understood and properly

addressed in a software project, it means that the project is ready to proceed to start its

testing tasks, such as test case design, execution, report and analysis. As of this point, a

test manager (test people is discussed in Section 4.6) may be required to handle further

details on the test strategy, as they get more complex, such as test environment, test

tools, test case design. Test management is responsible for the administration of the test

process, the test infrastructure, and testware [55]. Regular control is necessary to verify

�

	��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

if planning and project progress are in line. This may result in the need for updates and

adjustments to plans to keep the test process under control.

In the case study, as there had been no test planning, the manager did not do

follow such responsibilities and was unable to help or solve the test issues that came

along the way for he was not experienced in test process or projects, so the decisions

and actions to take relied on the tester herself.

As illustrated in Figure 2.1, testing can and should occur throughout the phases

of a project. The tables presented in this section address the test basics that should be

considered in a project scope so that further details can be identified. Table 4.6 has

gathered examples of test activities to be performed during a project’s phases.

Table 4.6 Examples of test activities during the phases of a software project

Requirements phase activities
· Determine test strategy
· Determine adequacy of requirements
· Generate functional test conditions

Design phase activities
· Determine consistency of design with requirements
· Determine adequacy of design
· Generate structural and functional test conditions

Program phase activities
· Determine consistency with design
· Determine adequacy of implementation
· Generate structural and functional test conditions for programs/units

Test phase activities
· Determine adequacy of the test plan
· Test application system

Operations phase activities
· Place tested system into production

Maintenance phase activities
· Modify and retest

�

�
�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

This dissertation addresses further test topics, as explained in the next sections:

test strategy, test environment, tools, test factors and risks, test people and the AO

attributes.

4.2 Test Strategy

Since exhaustive testing is impossible [55], priorities must be set. Depending on

the risks involved, different test techniques and test exit criteria must be specified when

establishing a test strategy. Prioritizing tests leads the most critical software components

to be tested first, when there are time or resource constraints, which is very common in

software test projects.

The test strategy defines the test design techniques to be used. The test basis

needs to be checked to see if all required documents are detailed and accurate enough to

be able to derive the test techniques in agreement with the test strategy. In some cases,

this check is done during test analysis only, but if it is the case that the documentation is

already available before starting such phase, it can be done while developing the test

strategy. In any case, the specification of the test object determines its expected

behavior, and the tester (or test designer) uses it to derive the prerequisites and

requirements of the test cases.

In a global view, the test strategy drives the definition and elaboration of the test

plan addressing concerns such as the estimation of the test effort, organization and

coordination of the different test levels. The quality attributes of the software under test

and the sequence of activities that need to be performed are also all responsibilities

associated to the test strategy. It should also be able to correlate each different software

feature to be tested with methods for adequate testing to that specific feature.

In our case study, there was no priority set regarding which features should have

been tested first in MobileMedia, nor it has been detected and identified that the AO

releases from it needed to be prioritized. The test planning was informal and poor,

without many important factors that should have been discussed before even starting

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

test activities. There was no control of the test activities from the management side. The

test manager was located in a different site and was much more focused on iBATIS

tests, rather than in MobileMedia. MobileMedia tester needed to plan his/her own test

tasks as the project was already happening along with no sequence definition of test

execution, aside of the software product line statements and the features introduced in

each release. The schedule was prepared week by week as the week as coming to an end

and the next one coming needed to be planned, so it was an ad hoc schedule. Since it

was a project within academia, the people involved were not 100% focused on this case

study, this was also not taken into consideration and it has affected the schedule when,

for example, there was a week coming and the tester had to be away for a conference or

something else. When something like that occurred, the test tasks were simply on hold,

regardless the impacts and dependencies from them.

Based on the experience from the case study and based on software testing

literature, it is possible to define a Test Plan addressing the necessary aspects to be

taken into consideration in more details. Such Test Plan is part of the test strategy,

addressed as an element from the testware support. The Test Plan is described in Table

4.7

Table 4.7 Standard Test Plan

1. General Information
1.1 Summary – Summarize the functions of the software and the tests to be

performed.
1.2 Environment and Pretest Background – Summarize the history of the project.

Identify the user organization where the testing will be performed. Describe any
prior testing and note results that may affect this testing.

1.3 Test Objectives – State the objectives to be accomplished by testing.
1.4 Expected Behavior – State the expected behavior for this kind of software.
1.5 References – List applicable references, such as previously published

documents on the project, documentation concerning related projects.
2. Plan

2.1 Software Description – Provide a chart and briefly describe the inputs, outputs
and functions of the software being tested as a frame of reference for test
descriptions.

2.2 Test Team – State who is on the test team and their test assignment(s).
2.3 Milestones – List the locations, milestones events and dates for testing.

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

2.4 Budgets – List the funds allocated to test by task and checkpoint.
2.5 Testing

2.5.1 Schedule – Show the detailed schedule of dates and events for the testing
at this location. Such events may include familiarization, training, data,
as well as the volume and frequency of the input. Resources allocated for
tests should be shown.

2.5.2 Requirements – State the resource requirement, including: equipment,
software, personnel.

2.5.3 Testing Materials – List the materials needed for the test, such as system
documentation, software to be tested, test inputs, test documentation, test
tools.

2.5.4 Test Training – Describe the plan for providing training in the use of the
software being tested. Specify the types of training, personnel to be
trained, and the training staff.

3. Specifications
3.1 Business Functions – List the business functional requirement established by

earlier documentation.
3.2 Structural Functions – List the detailed structured functions to be exercised

during the overall test.
3.3 Test/Function Relationships – List the tests to be performed on the software

and relate them to the functions in items 3.2.
3.4 Test Progression – Describe the manner in which progression is made from one

test to another so that the entire test cycle is completed.
4. Methods and Constraints

4.1 Methodology – Describe the general method or strategy of the testing.
4.2 Test Tools – Specify the type of test tools to be used.
4.3 Extent – Indicate the extent of the testing, such as total or partial.
4.4 Data Recording – Discuss the method to be used for recording the test results

and other information about the testing.
4.5 Constraints – Indicate anticipated limitations on the test due to test conditions,

such as interfaces, equipment, personnel, data-bases.
5. Evaluation

5.1 Criteria – Describe the rules to be used to evaluate test results, such as range of
data values used, combinations of input types used, maximum number of
allowable interrupts or halts.

5.2 Data Reduction – Describe the techniques to be used for manipulating the test
data into a form suitable for evaluation, such as manual or automated methods,
to allow comparison of the results that should be produced to those that are
produced.

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

 The standard Test Plan presented in Table 4.7 can and should be extended and

adapted to specific concerns from software projects or be generalized. In the case of the

case study presented in Section 3.4, such planning would have enabled the early

identification of constraints and would have forced the identification and analysis of

important test factors such as methodology and tools. In case of AO specifications, item

3.2 should identify the structural functions and item 3.3 should be able to relate them

with testing.

4.3 Test Environment

Project managers are responsible to help the test manager in creating an

environment in which testing a piece of software is effective and efficient. The

management controls all the attributes of the environment and approves the tools to use.

Tooling support is further discussed in Section 4.4. This section addresses the

importance of having an efficient test environment based on the experience learned

from the case study presented in 3.4 and based on what can be learned from software

testing literature.

Sometimes during testing in different levels (component, integration system), a

test driver6 is required when the testing deals with low level test objects that need

developers’ support, because to write test drivers, programming skills and knowledge of

the component under test is necessary. This is why mostly the developers themselves do

the component testing [5]. Also the same test drivers may be used in different testing

levels. However a unit test, for instance, requires different configuration of the test

environment than a production acceptance test.

Other times it is necessary to install software or hardware components in order

to test the test objects and it can very complex to install and configure the test

6 Test driver: a software component or test tool that replaces a program that takes care of the
control and/or the calling of a component or system [5].

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

environment for a tester to handle. In such instances, there are two alternatives [94]:

either having the necessary level of system administration support available, or having

the expertise available on call from the project team, information systems, technical

support, or another appropriate group.

Every test environment has different needs, depending on the software under

test. A suitable test environment is required for testing a test object. Every program that

should be present on the available hardware in order to run the software under test needs

setup and it all represents a critical success factor for the software project.

In the case study presented in Section 3.4, which is where it was able to learn

from, the environment became a bottleneck. First of all, there had been no definitions of

it and the test team was spread out, i.e., as explained in Section 3.4, the team had been

divided according to the assignment: the ones supposed to work with iBATIS and the

ones supposed to work with MobileMedia. But the testing in MobileMedia was assigned

to a person in a different site from the most of the rest of the team, besides the

application had already been developed, the developers were not available to work with

the testing team along a suitable test process. Still the test manager (from the different

site) did not support the MobileMedia tester on test definitions and the necessary

environment was not previously identified or settled. Second of all, the tool support

(which is further discussed in Section 4.4) resulted in a serious bottleneck due to

incompatibilities with the application, especially with the AO releases. It was not

identified in advance that the application embraced two different paradigms to be

considered when test planning – especially because there has been no planning, but

there has been no discussion about it at all. When it was time to test AO releases, then it

was detected that the test environment set for testing OO releases was insufficient. To

stop a test project at this point and start looking for another alternative breaks all the

rules of the project regarding people assignments, schedules, deadlines, deliveries, etc.

Finally, if the test environment had been previously looked upon, analyzed and

discussed, the chances of happening such a bottleneck would decrease and if it still did

happen, it would be properly addressed and the risks (Section 4.5) would have been

identified. Therefore, this dissertation provides Table 4.8 gathering the most important

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

requirements with which a test environment must comply to guarantee reliable test

execution.

Table 4.8 Requirements for environment

1 Manageable
A manageable environment is required to test the test object under
the same conditions every time.

2 Flexible

A test environment must be easy to adapt. This may conflict with
the previous requirement, but deciding which one takes
precedence depends on the aim of the test and the phase of the test
process.

3 Continuous
The test environment must be able to keep its availability even if
there are disturbing situations in it.

4 Safe
The testing activities may deal with privileged data or private
tools. Therefore, the test environment must be safe enough to
protect its testware.

5 Centralized
The test environment should be, as much as possible, centralized
in one test team and in a single physical space, preferably not far
from developers.

The first and second requirements stated in Table 4.8 may conflict, but, as

mentioned, to decide which one takes place will depend on test goals. For instance,

adjustments may be necessary when analyzing defects or implementing a new version

of the software system; hence, if this is done in a test environment of one project in

which the impacts have been considered, flexibility should be the requirement to adopt.

On the other hand, if this happens on a shared environment, manageability is preferred.

The consequences of a failure of a test environment should be limited in a

software test project. The continuous requirement addresses the importance of making

regular backups so that they can be restored, if required. The environment should be

able to support different releases of the software under test.

In the case study from Section 3.4, the environment required different tools and

specific configurations. Such needs should have been addressed as requirements in test

environment configuration. To help identify what kind of test environment is the best fit

in a software project, it needs to be identified first the test objectives (as previously

discussed), the context and the type of the software system under test. In case of the

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

case study, the context was software maintenance, so it should have been possible to

analyze previous test activities applied in the software systems, but unfortunately that

was not the case.

4.4 Test Tools

A tool can be defined as “anything that serves as a means to get something

done.” [10]. It is important to recognize that it must be determined first what that

something is before acquiring a tool. There are many supporting tools in use for

software testing. It is possible to distinguish between different tool classes depending on

their intended use, such as, for instance, tools for test management and control, tools for

test specification, tools for static, dynamic and nonfunctional testing [5].

 Testware often involves one or more test tools. There is a vast list of kinds of

tools and intended use but not all available tools are applied in a single project. The test

manager should know available tool types in order to be able to decide if and when to

use a tool efficiently in a project. It is important that tools are integrated into software

tester’s work processes. The use of tools should always be mandatory.

 In this section a generic categorization of the tools used by testers is presented,

but it does not discuss specific vendor tools. There are too many operating platforms

and too many vendor tools to effectively identify and describe the availability of tools in

this dissertation. Therefore, Table 4.9 presents a list with kinds of tools that should

cover a wide range of test activities. Some techniques are manual, some are automated;

some perform static tests, other dynamic; some evaluate the system structure, and

others, the system function.

Table 4.9 List of test tools

1
Boundary

value analysis

A method of dividing the software system into pieces (segments)
so that testing can occur within the boundaries of those segments.

2 Capture / A technique that enables the capture of data and results of testing,

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

playback and then play it back for future tests.

3 Cause-effect
graphing

Attempts to show the effect of each test event processed. The
purpose is to categorize tests by the effect that will occur as a
result of testing.

4 Checklist
A series of probing questions designed to review a predetermined
area or function.

5 Code
comparison

Identifies differences between two versions of the same program.

6
Compiler-

based analysis

Utilizes the diagnostics produced by a compiler or diagnostic
routines added to a compiler to identify program defects during
the compilation of the program.

7
Confirmation /
examination

Verifies the correctness of many aspects of the system by
contacting third parties, such as users, or examining a document to
verify that it exists.

8
Control flow

analysis

Requires the development of a graphic representation of a
program to analyze the branch logic within the program to identify
logic problems.

9
Correctness

proof

Involves developing a set of statements or hypotheses that define
the correctness of processing. These hypotheses are then tested to
determine whether the application system performs processing in
accordance with these statements.

10 Data
dictionary

The documentation tool for recording data elements and the
attributes of the data elements that can produce test data to
validate the system’s data edits.

11
Data flow
analysis

A method of ensuring that the data used by the program has been
properly defined, and that the defined data is properly used.

12
Defect

management
Captures, administrates and evaluates incident reports.

13
Design-based

functional
testing

Recognizes that functions within a software system are necessary
to support the requirements.

14 Design
reviews

Ensures compliance to the design methodology of reviews
conducted during the software development process.

15 Disaster test A procedure that predetermines a disaster as a basis for testing the
recovery process.

16 Error guessing
Uses the experience or judgment of people to predict what the
most probable errors will be and then test to ensure that the
software system can handle those conditions.

17 Flowchart
Graphically represents the software system and/or software flow
in order to evaluate the completeness of the requirements, design,
or program specifications.

18 Inspections
A highly structured step-by-step review of the deliverables
produced by each phase of the software development life cycle in
order to identify potential defects.

19
Instrumentatio

n
The use of monitors and/or counters to determine the frequency
with which predetermined events occur.

20 Mapping A process that analyzes which parts of a software system are

�

�	�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

exercised during the test and how frequently each statement or
routine in a piece of software is executed.

21 Modeling
A method of simulating the functioning of the software system
and/or its environment to determine if the design specifications
will achieve system objectives.

22 Peer review
A review process that uses peers to review that aspect of the
software development life cycle with which they are most
familiar.

23 Ratios /
relationships

Quantitative analysis that enables testers to draw conclusions
about some aspect of the software to validate the reasonableness
of the software.

24 Risk matrix
Test the adequacy of controls through the identification of risks
and the controls implemented in each part of the software system
to reduce those risks to a level acceptable to the user.

25 Snapshot

A method of printing the status of computer memory at
predetermined points during processing. Computer memory can
be printed when specific instructions are executed or when data
with specific attributes are processed.

26
Symbolic
execution

Permits the testing of programs without test data. The symbolic
execution of a program results in an expression that can be used to
evaluate the completeness of the programming logic.

27 System logs
Uses information collected during the operation of a computer
system to analyze how well the system performed.

28 Test data
System transactions that are created for the purpose of testing the
software system.

29
Test data
generator

Software systems that can be used to automatically generate test
data for test purposes. Frequently, these generators require only
parameters of the data element values in order to generate large
amount of test transactions.

30 Test scripts
A sequential series of actions that a user of an automated system
would enter to validate the correctness of software processing.

31 Tracing

A representation of the paths followed by computer programs as
they process data or the paths followed in a database to locate one
or more pieces of data used to produce a logical record for
processing.

32 Use cases Test transactions that focus on how users will use the software in
an operational environment.

33 Walkthroughs

A process that asks the programmer or analyst to explain the
software system to a test team, typically by using a simulation of
the execution of the software system. The objective of the
walkthrough is to provide a basis for questioning by the test team
to identify defects.

 Many of these tools have not been widely used [10] due to high cost of their use

and required specialized use. Many represent the state of the art and are in areas where

research is continuing. As better tools are developed for testing during the requirements

�

���

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

and design phases of software testing, an increase in automatic analysis is possible. In

addition, more sophisticated analysis tools are being applied to the code during

construction. More complete control and automation of the actual execution of tests,

both in assistance in generating the test cases and in the management of the testing

process and result, are also taking place.

 An integral part of this process is the selection of the appropriate testing tool.

Table 4.10 lists the steps involved in selecting the proper testing tool.

Table 4.10 Steps to consider when selecting a test tool

1 Match the tool to its use
2 Select a tool appropriate to its life cycle phase
3 Match the tool to the tester’s skill level
4 Select an affordable tool

 The better a tool is suited to accomplish its task, the more efficient the test

process will be. The wrong tool not only decreases the efficiency of testing, but it may

not permit testers to achieve their objectives. The objective for using a tool should be

integrated into the process in which the tool is to be incorporated.

 A test tool introduces an automated instrument that provides support to one or

more test activities. The introduction of test tools can have various advantages. Table

4.11 presents some of the advantages described in previous research [96] which do not

apply to the entire list of tool types presented in Table 4.9.

In one of the advantages, the ‘higher testing quality’, the human factor is

mentioned. It is certain that a test task that can be automated and run faster with the use

of a tool will certainly decrease the risk of errors that may be inserted by humans.

However, it is important to point out that test automation using a test tool is once

programmed by a human and if an error is inserted then, the following activities will be

impacted. The point here is the automation of the tasks that can be repetitive and the

tool can increase the quality of these tasks by doing it much faster while the tester can

do something else, increasing the quality of the tasks and the productivity of the testers.

�

�

�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Table 4.11 Advantages of using test tools

Increase of
productivity

By using a test tool for routine test work, the tester has much more time
for other tasks. In particular, with tools for automated test execution, a
sizeable quantity of tests can be executed ‘unmonitored’, which means
that much more thorough testing can be done in different fields and the
test environment can be used more efficiently.

Higher
testing
quality

The use of test tools to support a structured test approach is an emphatic
step towards a higher testing quality and quality software. The reason is
the consistent execution of an activity that is supported by the tool. A
tool imposes a standard work method, eliminating the human factor.

Work

satisfaction

The execution of routine tasks can be boring. When repetitive tasks can
be automated, it increases the work enjoyment of the test team in
addition to increasing reliability.

Extension of
test options

Some tests cannot be simulated fully when done manually. One
example is the execution of stress tests. The deployment of test tools is
virtually indispensible here.

The test tools can trace defects that are very difficult to detect manually. In the

case study, it was practically impossible to go through the tests without a tool. Since the

application was already full developed and there would be no support from

development side, unit testing was discarded since the tester was not familiar with the

application and since it was complex and large, it would take a very long time for the

familiarization process. Plus, to unit test such application in such conditions by a single

tester does not sound like a successful test task. Therefore, the tests with the use of an

emulator provided by the use of JaBUTi tool were possible to get started. They did not

finish, but they did indeed start. One of the reasons of not finishing and not being able

to go further, was when the project needed to start testing the AO releases of

MobileMedia. The tool did not support AspectJ implementations, although the tool

developers affirmed it was just a matter of configuration, they themselves were also not

able to make such configuration, therefore the testing could not proceed due to the tool

support. In what regards to AOP, the number of available tools is strongly reduced,

especially when it comes to open source tools. Thus, the scope became very limited.

Such limitation should have been identified during test planning when analyzing tooling

support for such application and its particularities.

�

�
��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

The activities in the test process supported by a test tool and how this will be set

up depend on the tool policy pursued in the organization. In the case study, as it was an

academic study, there was no budget to buy licensed tools available on the market that

could help with our issues; hence it was necessary to pursue an open source tool that

would handle the different variables managed in the application, such as support to

J2ME, AO software and the configuration to set up JaBUTi with the test server and

other requirements as described in Section 3.4.

Typically, software testing must be achieved within a budget or time span. The

choice for the test tool to be used in a software project relies on different reasons, but

some general questions should not be left aside. Based on this, Table 4.12 presents

questions addressing aspects to consider when selecting the best tool according to the

software project’s conditions and needs. Such questioning would have helped in the

case study from Section 3.4 identify points of concerns that should have been detected

in advance before becoming an issue later on.

With the steps listed in Table 4.10 and the questions addressed in Table 4.12, the

test manager should be able to clarify issues that could not be visible at that point of the

project, if the questioning would not have been made. Therefore, he/she is able to be

more prepared if the questions are addressed and answered properly according to his/her

software project conditions and needs to face what could become a difficult issue to

solve or a bottleneck later on when the test activities are in a tight schedule.

In the case study, if it has been early detected that the tool needed adjustments to

handle the AO MobileMedia releases, a lot of time would certainly have been saved, for

when the issue had been observed, many researchers and tool supporters needed to be

contacted to help solving the problem and providing the necessary tool updates, but as

previously explained, that was not possible to finish with a successful outcome.

Table 4.12 Items addressing concerns when selecting test tools

1 Are test tools selected in a logical manner?
2 Can testers use test tools only after they have received adequate training in

how to use them?
3 Is the tool usage specified in the test plan? Is there a tool manual?

�

�
��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

4 Has a process for obtaining assistance in using test tools been established,
and does it provide testers with the needed instructional information?

5 Have the dependencies to use the tool been identified and mitigated in order
not to become a bottleneck?

Test tools, by nature, cannot solve process-related problems and they do not

work by themselves. Thus, it is important to address the tool expertise levels of the ones

involved to use them. Based on the definitions of previous study [55] and previous

discussions about it [5, 6, 10, 95, 132], the range of tool expertise used in this

dissertation in this matter is explained below:

· High: The tool master. He has cutting-edge expertise regarding the tool

usage and is able to provide support.

· Medium: The tool integrator. His method is methodical and deliberate.

He can plan, organize, and document the tool’s introduction into more

details.

· Low: The tool beginner. He is convinced of the tool and is able to

recognize potential problems and positive aspects of the tool’s

operational use.

4.5 Test People

To build software tester competency it is necessary to gather different aspects

and characteristics that represent in the end test skills. In most environments, the more

experience a tester has, the less a degree matters; in others, the degree is critical

regardless of experience [132]. The “perfect” member of a test team has excellent

knowledge and comprehensive experience in several domains, but only very rarely

people like that are found. In the context of this dissertation, regardless the degree of the

people involved in testing activities, it is important that the test team member possess

excellent organizational skills and extraordinary attention to detail, among other things.

Below are some important character traits for a tester [55]:

�

�
��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

· The ability to familiarize himself quickly with complex domains and

applications;

· The ability to detect defects;

· The ability to cope with and voice criticism adequately;

· The ability to distinguish essentials from nonessentials and the courage to

leave out what is less important;

· Discipline, exactitude, patience, perseverance, frustration tolerance,

determination;

· The ability to work in a team and ability to communicate.

Although the ability to work in a team and to communicate are listed last, both

qualities are highly important. Because testing is a teamwork, only those who are able

to work in a team and communicate with colleagues and customers alike will have

lasting success in their work as testers [55]. Based on what the author from the previous

sentence has stated, the case study from Section 3.4 had low chances to be successful

then, for testing did not mean teamwork, and the testers available were not experienced

enough to be assigned to the responsibility of testing such complex software product

line, especially without the support of developers or a test process. The team roles from

the project have not been assigned and the “test manager” was not well experienced to

exercise such role. Table 4.14 lists the roles and responsibilities that should be exercised

within a software project involving test tasks.

Table 4.13 Test Team Roles

Test manager

The test manager leads the test team. He is responsible for the creation
of the test schedule and its technical and on-time implementation. He
reports test status and test results to the project manager or leader. The
test manager is experienced in test planning, test control, and test
process. He has knowledge and practical experience in general methods
of software testing.

Test designer

The test designer is responsible for the creation and maintenance of test
specifications. His role involves identifying the appropriate test methods
and the definition of a suitable test environment. He supports the test
manager in the creation of the test plan and test schedule. He requires
know-how in the areas of software testing, test specification techniques,
and general software engineering. He must be able to familiarize

�

�
��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

himself quickly with complex application domains, requirements
documents, functional specifications and system prototypes.
Furthermore, he must be able to comprehend the function and expected
behavior of the system under test. Using this information, he derives
appropriate test cases and documents them in such a way that they are
fully traceable.

Test
administrator

The test administrator is responsible for the installation, operation and
maintenance of the test environment. Among other responsibilities, this
involves installing and setting up the system software (operating
systems, database systems, application server), installing and
configuring the test object, installing and setting up the test tools, and
creating, managing and restoring system configurations.

Tester

The tester is responsible for the execution of the tests and the
documentation of the test results. He executes the test cases according to
the test schedule and test specification. If he notices a deviation from the
expected system behavior, he writes an incident report. The necessary
qualifications for this job are test fundamentals, IT basics, ability to
operate applied test tools, and a basic understanding of the test objects.

Experts
Their duty is to support the “core” roles mentioned above in technically
sophisticated matters or in problem solving.

Ideally, a specially trained member of the team exercises each of these roles. If

in smaller teams several roles must be combined into one, the following combinations

are best suited: test manager/test designer, test designer/tester, tester/test administrator

[55].

The term “tester” is also used as a generic term for all of the roles listed in Table

4.14, as it has been mentioned in the context of this dissertation.

In the case study presented in Section 3.4, no test team roles have been

identified. The terms used in this dissertation regarding “test manager” and “tester” are

related to the experienced researcher responsible for manage the case study on what

regards to goals and decisions, in spite of the lack of effectiveness regarding software

testing, and the tester is related to the person who was responsible to perform designer

and administrator tasks. Thus, it is easy no notice that the case study was not well

structured with the proper test roles to reach a successful test result.

�

�
��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

The test roles need to be well identified in order to address the responsibilities

according to the knowledge of the ones involved. Table 4.15 provides the basics of

software testing principles and tasks to be matched as competencies from the test team.

Such practice may help identify how capable and competent the test team is and,

therefore, provide the expected results from activities it is able to perform.

Table 4.14 Software testing principles and tasks against competency

 Fully
competent

Partially
competent

Not
competent

1

Testing techniques
Understanding of the various approaches used
in testing and the methods for designing and
conducting tests.

2
Levels of testing
Identifying testing levels.

3
Testing different types of software
The changes in the approach to testing when
testing different development approaches.

4

Vocabulary
The technical terms to describe various test
techniques, tools, principles, concepts and
activities.

5

Test process
An overview of the processes that testers use
to perform a specific test activity, policies,
standards, procedures, tools.

6

Test planning
Assessing requirements, design, execution,
reports, risks, test methods, environment,
schedule, objectives, criteria, test scope, test
team.

4.6 Aspect-Oriented Attributes

The previous sections have identified the concerns with regard to software

testing to build the testware support addressing different test items that together help

�

�
��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

defining what is relevant and may cause issues to a software maintenance project. The

testware support has also received inputs and contributions from the case study

presented in Section 3.4 and its lessons learned explained throughout every aspect from

the previous sections. The case study serves as a basis and starting point to verify and

compare the current situation of the existing testware and test direction (or lack of it) in

and the desired assessment that should have taken place before the case study start, as

discussed in Chapter 6.

This section lists attributes that are characterized to be specific and directly

related to the main characteristics of software systems developed using AO techniques.

These attributes have been addressed in the definitions of the BF [42] to assess specific

AO characteristics related to code concerns. It has been added to the structure of the

testware support, in case the testware support is used separately from the BF and the use

of such attributes is necessary. As it is presented in Chapter 5, the testware support

proposes to be an extension to the BF to consider test direction in such context, and the

evaluation of it is presented in Chapter 6, but Chapter 6 also shows the evaluation of the

single use of the testware support. Thus, it also addresses the AO attributes as Table

4.16 presents the characteristics derived from the definitions of the AO attributes

defined in the BF [42] that need to be taken a closer look when the test object in a

software test project regards an Aspect-Oriented software system.

As it has been explained in the definitions of these attributes [42], the

Crosscutting Concern (CC) Classification attribute provides a classification of CC types

according to different dimensions based on a representative subset of the

aforementioned existing classifications. The first dimension of the BF classification

categorizes the concern as being Functional or Non-functional. A functional concern

relates to business functionality, whereas a non-functional concern relates to the quality

of the services provided by the system (e.g. security, reliability, distribution, etc.). Both

functional and non-functional concerns can further be classified as either being

Homogeneous or Heterogeneous. A homogeneous concern extends program at multiple

join points by adding the same code at each join point. A heterogeneous concern

extends multiple join points but with different pieces of code at each join point. The

final dimension of the classification identifies if a concern affects a single component or

�

�
��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

multiple components, by either being an Intra-Component or Inter- Component concern.

In this case, the meaning of the term “component” depends on how one examines the

system. It might pertain to a class, an aspect, a distributed object, a package or even an

architecture-level component.

Table 4.16 AO attributes to address in software test project

Classification of

crosscutting concerns

Functional / Non-functional
Homogeneous / Heterogeneous
Intra-component / Inter-component

Interaction and
composition of

crosscutting concerns

Invocation based

Tangled code in component level
Tangled code in operational level

Overlapping
Crosscutting concerns scope
AO languages constructions

Concerns in a system may be composed in a variety of ways. These

compositions cause interactions between concerns that may affect system

maintainability. Therefore, it has been important to understand and classify these

different types of composition. The Concern Composition attribute specifies the ways in

which concerns can be combined, according to a classification employed in some well-

known empirical studies [49, 148]. The simplest form of composition is Invocation-

Based Composition. This arises if two concerns, C1 and C2, have no classes or aspects

in common, i.e., they only communicate via method calls. Component-Level Interlacing

occurs if multiple concerns have one or more components (classes or aspects) but no

operation (i.e. method, advice, etc.) in common. As a result, the concerns are interlaced

and tangled at the component level only. In contrast, Operation-Level Interlacing occurs

if multiple concerns have one or more operations in common. In this case, concerns are

interlaced at the operation level. Finally, Overlapping identifies points where multiple

concerns share one or more statements, operations or components. In contrast to

interlacing interactions, which have disjoint common parts, overlapping concerns share

elements (i.e. an entire component operation or statement contributes to multiple

concerns).

�

�
	�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

The Aspect Scope attribute identifies the stage at which a particular concern

emerges in an application. For example, the exception handling concern has been

observed to emerge at a number of different development stages (e.g. requirements,

architecture, detailed design and implementation). Finally, it is important to identify the

various language features used to implement a particular concern. The AO Language

Constructs attribute identifies the language elements used to implement a crosscutting

concern, such as intertype declarations, different kinds of pointcuts and advice, bindings

[100], etc. This information may be crucial when deciding if an application should be

considered or not because an application that leverages a large number of language

constructs is likely to be a benchmark. Furthermore, these language constructs can also

be classified into static (e.g. intertype declarations) or dynamic (e.e. cflow pointcut

designator), according to the time when they are handled by the compiler (compile-time,

load-time, run-time). This is useful, for instance, to evaluate the influence that certain

language constructs have on specific application characteristics, such as product line

variabilities.

The other general attributes addressed in the BF [42] (Subsection 5.1.2) are also

important to consider when the software project or case study is inserted in the context

of software maintenance and assessment of such characteristics, but the testware support

can also be of help and use outside such context. It can be used, for instance, in general

software development as well.

The criteria presented in Table 4.16 are discussed and evaluated into more

details on the definition of the BF [42] and have been based on previous works and

researches that had a good level of acceptance in software engineering, as previously

explained. Every attribute represents the respective work that guided its definition.

Thus, it is possible to summarize here that the classification of crosscutting concerns

into different aspects is a much discussed subject in previous studies [42]. In order to

exercise different resources from the AO languages it is necessary for the software

system to have a broad and diverse set of crosscutting concerns and to analyze them

under different perspectives. Thus, the classification is achieved in an orthogonal form,

i.e., a single concern may be classified in each one of the categories defined on Table

4.16.

�

�
��

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Chapter 5 presents the extension of such benchmarking framework addressing

the AO software system’s concerns to consider the insertion of the testware support.

More details of the BF are there presented as well. The evaluation of such insertion is

then presented in Chapter 6.

4.7 Final Considerations

 The previous sections have presented the elements that compose the testware

support, which is the main contribution of this dissertation. A satisfactory testware

support eases software evolution by offering a safety net against unwanted change. As

the test elements composing the testware are cited, examples of the issues experienced

in the case study introduced in Section 3.4 are described along to give clear examples of

the need of the testware support elements and provide confidence of the effectiveness of

the testware support, within the context here described. The test core elements address

test issues to assess the capabilities of a software project towards a proper testing

direction to be conducted in it. Such elements have the aim to support software

maintenance, providing the minimum testware information required within a software

project or case study in order to make more reasonable decisions regarding its

maintainability and evolution.

 The testware support does not intend to substitute a test maturity analysis,

supported by the TMM, explained in Section 2.3.3. It is important to understand and

consider the difference between them in the context of this dissertation. The test

maturity analysis verifies the test process in an organization and evaluates it in order to

provide the required information so that the test process can evolve to a more mature

model, provided with more test knowledge and efficient test process. The testware

support, on the other hand, has the goal to analyze the testware elements in a software

test project – including its process, but not evaluating its maturity – and provide the

necessary testware information, i.e., test elements to be addressed in such project, as

described in this chapter. Both initiatives can and should be used as complementary of

�

��
�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

each other in order to reach even more effective test knowledge and test procedures in a

software project.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Chapter 5

Benchmarking Framework Extension

Chapter 3 has introduced the background of this dissertation’s context. Section

3.3 has presented the Benchmarking Framework (BF) [42] provided with criteria and

attributes to evaluate AO software maintainability. There is no driven test issues within

the BF though. Therefore, this dissertation has been developed starting from the issues

that a case study (Section 3.4) originated and motivated the research in order to build a

testware support that would fit and help situations such as this case study and other

studies or software project to address test issues within the context here presented. The

context involves a testbed, as presented in Section 3.2, which has the goal of facilitating

proponents of AO and non-AO approaches to compare and contrast their approaches

with others in a more effective fashion. As part of the testbed composition, the BF is

introduced to support AOSD techniques assessment. In fact, the performed studies had

given more attention to maintainability assessment, but the BF can also be used in a

wider sense.

As suggested on the definitions of the BF [42], such framework is the starting

point to other studies making use of such structure or its criteria validation. Besides,

further and more ambitious works can and should be extended from such framework,

continuing its potential benefits. Therefore, this chapter introduces an extension derived

from the creation of the testware support (Chapter 4) to be inserted in such structure in

Section 5.2, but before, in Section 5.1, more details about the BF.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

5.1 Original Definitions of the Benchmarking

Framework

As it has been explained in Section 3.3, the Benchmarking Framework has been

proposed in order to guide researchers and practitioners in selecting or adapting

applications and their releases that best fit specific experimental maintainability goals. It

can also be used to support the design, replication and evaluation of empirical studies.

The effectiveness of the framework has been evaluated [42] from two different

perspectives: (i) as a guide to determine whether an application is an appropriate

benchmark; and (ii) as an aid to designers of studies on AO software maintainability.

The set of characteristics and attributes present in the BF have been chosen

based on the existing experience in conducting AO software maintenance studies from

the BF creator and related researchers. They have identified a recurring set of relevant

attributes that were useful to assess the maintainability of AO techniques. As it has been

explained in Section 3.3, the BF is structured according to two major components:

product attributes and maintenance scenarios, which address complementary assessment

issues relevant to AO software maintenance. And the usage process (Figure 3.2)

presents the framework components and its workflow.

5.1.1 Process

The framework has a group of potential stakeholders and encompasses a process

that transforms inputs into outputs; the latter may also serve as feedback to improve the

set of framework attributes. Figure 3.2 shows a schematic representation of the

framework workflow. The users or framework stakeholders have been classified into

two categories: the designer of empirical studies on AO software maintainability, and

the benchmark designer. The first group is interested in conducting a maintainability

study involving one or more AO techniques. In this case, the input is the set of

experimental requirements and the output is the initial configuration of the experiment.

In contrast, the second group includes people who change or add new artifacts to the

benchmark application. This group needs to analyze applications and maintenance

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

scenarios to determine if they are suitable to conduct a variety of studies. The output of

this process is one or more applications and change scenarios that are appropriate to

benchmark AO techniques.

5.1.2 Attributes of AO Software Products

The several characteristics identified in the BF definitions study [42] regarding

the AO software product (target system) are here presented. The attributes guide the

various decisions on the design or assessment of candidate benchmark application for

maintainability studies. It has been considered a wide range of possible characteristics

that a candidate application might exhibit, such as its domain, the development

techniques that were employed in its construction, and the types of the crosscutting

concerns (CC) that appear in its implementation. It is important to stress that it is

impossible to define a set of characteristics that applies to every possible empirical

study or application domain. Therefore, the proposed list of application characteristics

can and should be constantly evolved and extended to more closely meet the

stakeholder’s goals, according to the BF author. Nevertheless, the attributes described in

this section were found to be relevant in many different empirical studies [42, 49, 51,

148] with different goals and targeting different systems.

In general, it has been stated that the stakeholders do not need to consider all the

framework attributes. Instead, they should focus on a representative subset that covers

their experimental objectives. To ease this identification process and improve the

organization of the different framework attributes, the Product Attributes have been

divided into two groups: General Attributes, which encompass common application

characteristics, and AO Attributes (Section 4.7), which consist of specific characteristics

of AO applications. Figure 5.1 [149] provides an overview of the product attributes

discussed in the rest of this section.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Figure 5.1 Schematic overview of the BF’s product attributes

� General Attributes. A variety of general application attributes must be

considered by framework users, such as System Name, System Domain

and Packaging. The domain of a system is often an important aspect to

consider, so as to ensure that the system exhibits some expected

properties (e.g. embedded systems are often of a resource-constrained

nature). Related to the System Domain, the Packaging attribute specifies

the technologies and programming languages used in an application, in

addition to development frameworks and target platforms. When

considering an AO application for use in an empirical study, it is

important to consider the development artifacts (e.g. requirements

specification, architecture documentation, and the design diagrams)

available to ensure the goals of the study can be realized. The software

Life-Cycle Documentation attribute lists all the documentation artifacts

available for assessment. In addition to listing the documentation, the

Development Techniques that have been used to create the system (e.g.

design patterns, application toolkits, etc.) should also be described.

Different techniques can influence the quality of the final product and it

is therefore important to take this into account when selecting an

application. More details about the framework attributes are available in

[42].

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

� Aspect-Specific Attributes. The definitions of these attributes are

introduced in the definition of the BF [42], and they have also been

presented in Section 4.7, when the testware support introduces the AO

Attributes as an element to consider within its structure.

5.1.3 Maintenance Scenarios

The framework for empirical studies in software maintenance [42] has also

included a catalogue of scenarios that are representative of real software changes. This

is necessary to ensure the framework can evaluate a variety of recurring maintenance

issues. These scenarios aim to support decisions of both benchmark designers and

empirical study designers. An overview of the maintenance scenarios attributes of the

BF is illustrated in Figure 5.2 [149] and the attributes are discussed as follows.

Figure 5.2 Schematic overview of the BF’s maintenance scenarios attributes

The Scenario Description attribute provides the name and description of the

scenario. It is also necessary to specify the Change Type. This involves classifying the

change according to the effect it has on the base application. It has been considered that

changes can be of one amongst three types: corrective, adaptive, or perfective [42].

Moreover, they can be behavior-modifying or behavior-preserving.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

The Nature of the Change has also been considered, as it indicates how a given

change modified a development artifact. A change can involve the addition (e.g.

introduction of a new method), subtraction (deletion of an attribute), or alteration (to

modify an existing element) of functionality. Finally, it has been stated that it is

necessary to actually document the changes that are made. This involves specifying the

Changes at the Requirements Level, Changes at the Analysis and Design Level, and

Changes to the Implementation attributes. The changes performed in the requirements

can influence artifacts at later development stages. Almost all changes made to the

analysis and design artifacts are critical due to these artifacts being the core of software

development activities. Analysis and design changes are likely to affect the rest of the

application and can, consequently, impact software modularity.

5.2 The Test Attributes

Rather than a single component or element to be inserted into the BF process, as

illustrated in Figure 3.2, the testware support is orthogonal. Nevertheless, to be inserted

as such, the use of it can be driven by test attributes to be addressed, as detailed in test

elements (Chapter 4). The resumed definitions of the attributes listed below include

examples not necessarily regarding the same case study or application. Hence, the

criteria presented are more representative.

As explained in Chapter 4, the definition of the criteria and elements that

compose the testware support is not an easy task, since they have to be general and

specific at the same time. They should be general enough to identify test characteristics

that are mostly common to be considered in every software project or case study

concerned with testing, and they should also be specific to comply with the test

concerns that may/may not be feasible in each different software project being

evaluated. Still the quick appearance of new techniques is another factor that makes this

definition not an easy one. Hence, the listed criteria are not statically defined; they

should be dynamic to adapt imposed needed changes.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

The criteria have been defined based in previous studies [2, 3, 4, 5, 6, 7, 10, 55,

68, 70, 95, 108, 124, 131, 132, 146, 147] that have been able to identify and solve issues

from software development and maintenance, addressing and discussing relevant test

topics and directions into software projects. Test literature has determined the test

basics, specifications and concepts for test activities and test elements to address in a

software test project. Research has recommended requirements and specifications for

identifying and resolving software problems in its life cycle. The studies here referenced

that guided the definitions of the test elements in Chapter 4, and therefore the test

attributes to consider into the BF, have had a well acceptance in the community to

address test directions.

5.2.1 First Basics

As it has been discussed in Section 4.1, there are infinite possible ways to test a

piece of software. The first basics regarding testing within a software project or case

study are the first things that are essential to identify the existing test capabilities in it

and they enable the detection of missing test concerns that should exist, according to the

project goals. Therefore, there are important attributes that can surface such

information, as described below.

· Test policy – identifies whether the software project is provided with a

test policy with relevant test information objectively (YES/NO). The

existence of a test policy eases the test activities, since the organization

has previously defined test directions and has some experience with it,

which can be useful for current project. Example:

� Test policy: YES.

· Test objective – states the purpose of testing so that it is clear to every

party involved. Example:

� Test objective: evaluate adequacy of functional requirements to

software system behavior.

�

��	�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

· Test strategy – informs the test strategy to be followed in the project so

that it is clear throughout the whole project development. Example:

� Test strategy: test the most critical features of the software system

first.

· Test process - identifies whether the software project is provided with a

test process with relevant test information objectively (YES/NO). The

test process should be able to guide the test activities. Example:

� Test process: NO.

· Test history - identifies whether the application under test has been

tested before and there is a test history available with relevant

information that can be applied to the current test objective. An objective

statement (YES/NO) is encouraged. Example:

� Test history: YES.

· Test criteria – identifies the test criteria that have been selected as the

ones to address. Example:

� Test criteria: structure-based criteria and code coverage.

· Functional and structural test conditions – determines the major

functional and structural test conditions that will guide testing activities.

Such attributes have been derived from business and structural functions

from item 3 (Specifications) in the Standard Test Plan (Table 4.7). These

attributes can be used in a lower level test condition analysis to improve

the accuracy of details to be concerned when test planning and

addressing testing techniques. There are no list of possible answers to

these attributes in Chapter 4, for they depend on the software under

evaluation, so the examples here shown should not be understood as a

limitation. Example:

� Functional test condition: interface testing, input domain testing.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

� Structural test condition: data flow testing.

· Test environment – describes the constraints and minimum

requirements of environment to adequately functioning, which can be

associated to the project’s success. Example:

� Test environment: Two client-server machines configuration with

WTK 2.5.2 installed.

· Test tools – identifies the test tools necessary to perform required test

activities properly. Example:

� Test tools: Test Link version 1.7.4.

· Test people – identifies whether the software project is provided with

necessary test personnel to perform the required test activities. An

objective statement (YES/NO) is encouraged. Example:

� Test people: YES.

5.2.2 Test Strategy

 It is nearly impossible to thorough test a software system, for there are infinite

combinations that can be applied towards test execution. Thus, relevant attributes need

to be taken a closer look and assessed to build an adequate test strategy covering

essential information to the ones involved.

· Test plan - identifies whether the software project is provided with a test

plan addressing the necessary aspects to be taken into consideration. An

objective statement (YES/NO) is encouraged. Example:

� Test plan: NO.

�

��
�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

· Milestones – Defines important and strategic locations and events

throughout testing activities. The milestones will help identify when one

test activity is completed or ready to begin. Example:

� Milestones: Full bug reporting at the end of testing of each

release from software product line; new feature delivery every

other week.

· Test schedule – determines the test schedule for test activities assigning

every test person to specific tasks. Example:

� Test schedule: Feature 1 – Tester A and B – From August 10th to

September 1st.

· Test requirements – states the resources available to assess testing

activities against schedule and test objectives. Whatever requirement not

stated in such attribute is not available within the software project.

Example:

� Test requirements: specifications / feature model / personnel.

· Test techniques – lists the test techniques to be applied in the testing

activities. Example:

� Test techniques: equivalence partitioning and exploratory testing.

5.2.3 Test Environment

Every software project has different needs for test environment, and it depends

on the software under test. A suitable test environment is required and fundamental to

smoothly test a test object. Every program that should be installed on the available

hardware in order to run the software under test needs previous setup; the software

systems and other tools necessary to continuous run the software under test: all is part of

the test environment and represents a critical success factor for the software project.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

 The restrictions and constraints of testing environment are to be early identified

so that it does not become a bottleneck in a software project or case study. The

attributes are detailed below.

· Requirements – identifies the requirements a test environment must

comply with to provide reliable test activities. From the definitions in

Table 4.8, the requirements can be identified in a range of five different

conditions. Example

� Requirements: manageable, safe and centralized.

· Dependencies – describes the dependencies associated to the test

environment, so that they can be addressed and not become a

configuration issue or bottleneck. Example:

� Dependencies: the test environment relies on JDK1.5.0_09 and

Apache server running and port 80 open.

5.2.4 Test Tools

 The fact that testing is a time-consuming and costly activity is no news in the

community. Tools have the advantage to increase testers’ productivity, when combined

to a structured test approach. In a properly controlled process, tools can certainly add a

lot of value to a software project or case study. With the increase of software

complexity, tooling support is somewhat indispensable to testing activities. Therefore, it

is important to address the proper concerns in order to choose and use the right ones.

The attributes related to test tools have the goal to identify the aspects that can

contribute to a successful tool performance in a software project or case study, as

described below.

· Type of tool – identifies the type of the tool according to Table 4.9.

Example:

� Type of tool: control flow analysis and peer review.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

· Tool name – informs the name of the tool to be used. Example:

� Tool name: Selenium.

· Tool version – informs the version of the tool to be used. Example:

� Tool version: 3.2 (beta).

· Tool support – identifies whether there is tool support available, in case

of need. Whether by developers support or manual, it is important to

identify it so that it can be reached if necessary. Example:

� Tool support: user’s manual and developers support at

developers’ site at Computing Department of University of

Pernambuco.

· Tool expertise – identifies the level of expertise of the test people

involved in knowledge on the tool to be used. The tool expertise range is

defined in Section 4.4, in which: high, medium, low or even none can be

the answers, in a general way. Example:

� Tool expertise: medium.

· Tool dependencies – states the dependencies that the tool is trustworthy

to run. Such dependencies need to be addressed and prepared along with

test environment dependencies and setup. Example:

� Tool dependencies: the tool only works with JBoss server.

5.2.5 Test People

 Section 4.5 has presented the general roles existing in a test team from a

software test project. The attributes below shows what needs to be addressed in this

regard within the testware support to be inserted in the BF.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

· Test roles – identifies the test roles within a test team in a software

project or case study. The roles are defined in Table 4.13. Each role

needs to be addresses to one or more persons. Example:

� Test roles: Test manager – John Smith / Test designer – Mary

Stuart and Joe Jacob / Test administrator – Joe Jacob / Tester –

Joseph Ryan, Joan Marcs and John White.

· Training – identifies whether is necessary or not to provide training to

the test team. Example:

� Training: YES.

· Competency – Identifies the competency of the test team according to

the items introduced in Table 4.14. Example:

� Competency: Testing techniques – fully competent / Levels of

testing – fully competent / Testing different types of testing –

partially competent / Vocabulary – fully competent / Test process

– fully competent / Test planning – fully competent

5.3 Final Considerations

 This chapter has presented the extension of the Benchmarking Framework [42]

to consider the elements of the testware support defined here as attributes to be

addressed in such structure to assess test directions in a software project or case study.

Table 5.1 presents the summarized attributes discussed in this chapter as general

test attributes to be considered as test elements within the testware support – as

introduced in Chapter 4 – to be inserted in the BF.

Such attributes associated with the general and AO related attributes (Section

4.6) presented and explained in the BF [42] compose the BF and testware support

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

insertion, providing a more confident and thorough analysis of the software and the

current software project or case study capabilities. As explained on the definitions of the

BF [42], the main purposes of it are that the researcher or the practitioner is able to

identify a representative application to his study or help plan and create experiments,

within the context of software maintenance. In fact, the performed studies had given

more attention to maintainability assessment, but the BF can also be used in a wider

sense.

Table 5.1 Test attributes

First Basics

Test policy
Test objective
Test strategy
Test process
Test history
Test criteria
Functional and structural test conditions
Test environment
Test tools
Test people

Test strategy

Test plan
Milestones
Test schedule
Test requirements
Test techniques

Test environment
Requirements
Dependencies

Test tools

Type of tool
Tool name
Tool version
Tool support
Tool expertise
Tool dependencies

Test people
Test roles
Training
Competency

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

 Thus, provided with more information now regarding tests, the researcher or

practitioner using the BF will be able to:

· Increase the scope of the study considering the testing process;

· With the increase of the scope, will be provided with the necessary

testware support to address the test elements;

· Assess the most adequate test criteria and test elements accordingly;

· Have a broader view of the context.

The use of elements from the testware support can and should also be associated

with the maintenance scenario attributes [42], instead of only addressing regression

testing to them, as it could commonly be done. Also the elements from the testware

support can and should also be used in different assessment, other than maintainability,

for the BF can and should be used also in a wider sense.

Such extension here presented is the first study contribution extending the BF

and the testware support is the first initiative regarding testing within the context of the

testbed (Section 3.2) and the BF (Section 3.3). This initiative enriches the content of the

BF for it proposes testware support to consider tests within a software project or case

study. It also provides means to turn broader the view of researchers and practitioners

who is interested in selecting, adapting or evolving/maintaining their software

applications or planning or creating an experiment. Hence, it supports decision making

and enables faster and more confident empirical evaluations and assessments in

software engineering and software test engineering.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Chapter 6

Evaluation

The evaluation of test criteria is of great importance to software engineering for

it allows the comparison of their features and benefits between each other and the

analysis of examples and models to which they would best fit. Hence, it allows the

establishment of the best test strategies according to the project, considering costs and

efficacy [133]. Based on and motivated by such purposes, this chapter presents the

evaluation of the proposed elements of the testware support and discusses the obtained

results. The evaluation is divided into two different views: (i) the testware support

evaluation and (ii) the Benchmarking Framework extension evaluation.

6.1 Testware Support Evaluation

The testware support evaluation has the goal to assess whether the proposed

benefits can be achieved when the criteria defined are applied, i.e., the test elements are

addressed as they should and whether this can be advantageous to a software project or

case study. Throughout such evaluation, it is possible for a software project or case

study to surface the existing test elements and detect gaps in process that need to be

fulfilled, which may influence on decision making within the context of where it is

inserted.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

The testware support evaluation was performed by applying the concept

associated to the test elements on two different applications. One of the applications, as

mentioned in Section 3.4.2, was the starting point of the testware support study. It

served as a basis in an empirical study to evaluate error proneness in AOP mechanisms,

in which testing was required to be performed but there were no test directions or

process to address test issues that should have been previously identified in such a case

study in order to reach the expected results. After the creation of the testware support

with test elements to support and address testing issues and directions in a software

development process study, such as maintenance or evolution study, the same

application has been used to evaluate its fit to the proposed testware support. The other

application was used as a target to evaluation and analysis purposes only and was

chosen based on recent empirical studies.

 MobileMedia (MM) [96] and HealthWatcher (HW) [99] are the two different

applications used on this evaluation. The evaluation of both applications has been

performed by a Test Manager, who is usually the role responsible for this kind of

analysis in a software project. The evaluation of the testware support is able to extend

its focus on the testing perspective to a much broader context (as explained in Chapter

3) to help determining if the applications may be used in empirical studies to provide

patterns on the comparison and evaluation (benchmarking) of AO techniques and to

help identifying representative software systems. A testware support provided with test

core elements to address testing issues has the goal to provide a safer evaluation of an

application within such context, since it is considering now a whole new software

process that should run closely to development, maintenance and evolution.

 The applications used on this evaluation have been used in previous experiments

[51, 96, 96, 98, 99], hence they had already been extensively analyzed to be used in

different contexts. Still, two different research groups (SPG7 and AOSE8) are focused

on several studies to evaluate different aspects of such applications, such as their

maintainability. Tables 6.1 and 6.2 show both applications in numbers of code elements,

so it can be observed the size of each system here used.

� �http://www.cin.ufpe.br/spg
8 http://www.comp.lancs.ac.uk/computing/aod�

�

��	�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

 The two applications are also composed by diverse characteristics, which make

them able to represent AO software systems evolution. Both applications have been

developed in Java and AspectJ languages and there are different versions available of

them, in which each one of them exercises different kinds of changes that range from

one version to another. The applications are from different domains and have been

originally developed by different research groups. HW is a web information system,

based in classical n-tier architecture model [134], while MM is a software product line,

based in MVC architecture model [135], to manipulate data running in mobile devices.

Besides the applications share the concept of maintainability and reuse through non-

functional requirements control, they have different concepts of portability,

performance, privacy, usability and others [96, 98, 99]. The applications have been

projected and developed without any access to the information and goals proposed in

this dissertation.

 The criteria defined in the testware support through the existing test elements in

it were used and observed with the goal of evaluating if they were indeed effective in

the analysis and adaptation of the applications and their change scenarios, based on the

objectives of the planned case study or software project. Thus, the evaluation was

conducted based on the elements defined in Chapter 4. The objective in the evaluation

study with both applications was to include the address of test issues to expand the

scope when assessing applications’ characteristics within software maintenance context,

in order to provide more confidence and decision making support in such study.

Table 6.1 Details of OO releases of MM and HW

Release Classes Methods Interfaces
Interface
methods

MMOO_01 24 122 - -
MMOO_02 25 139 - -
MMOO_03 25 142 - -
MMOO_04 30 159 - -
HWOO_01 88 370 11 73
HWOO_02 92 375 12 73
HWOO_03 104 510 12 73
HWOO_04 106 520 14 21

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Table 6.2 Details of AO releases of MM and HW

Release Aspects Pointcuts Advices
MMAO-01 4 22 20
MMAO-02 4 22 25
MMAO-03 7 35 33
MMAO-04 10 36 34
HWAO-01 11 2 16
HWAO-02 13 3 18
HWAO-03 17 3 33
HWAO-04 19 4 37

6.1.1 MobileMedia

 The evaluation of the testware support against MobileMedia application is here

presented with the test elements assessed through the definitions from Chapter 4 and the

data from the application and case study in which it was inserted, as previously

explained. To ease identification of items and tables assessing test elements and test

directions, the case study regarding the use of MobileMedia application is here called as

“MobileMedia case study”.

First Basics

 The first basics are the first points of interest in what regards to testing that need

to be addressed in order to identify existing test capabilities through test elements

assessed and the initial test needs that have to be taken a closer look. Thus, Tables 6.3

and 6.4 have been applied to question the first concerns against MobileMedia case study

capabilities.

�

��
�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Table 6.3 Evaluating test items to address in MobileMedia case study

1 Are the objectives and requirements defined?
No.

2 Are the requirements testable?
No.

3
Are there time and resources available allotted for development and testing?
No.

4
Has the test process been defined?
No.

5
Are the testers familiar with the development methodologies and the
required testware to test them?
No.

Table 6.4 Evaluating items to address initial test directions

1
Is there a policy regarding software testing?
No.

2
Is there a software testing strategy?
Yes.

3 Are there trained resources to allocate on software testing?
Yes.

4 Are there available tools to support a testing strategy?
No.

5 Has the test object been under a testing process before?
No.

 As it is possible to observe, the answers to the questions from the tables above

regarding the evaluation of test items and initial test direction were not positive within

the MobileMedia case study. Thus, such study would need to start defining the basics of

testing in order to be able to positively assess the following items to address. The basics

of testing would, then, be to define the questioned items, such as to define the test

objective, requirements, resources, test process and so on. The next tables to continue

addressing test items and test directions (Table 4.3, 4.3 and 4.5) will not be applied,

since to go further with the evaluation, it is necessary to address the previous items first.

The elements from the testware support assist on the definitions of the test strategy, as

explained next.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Test strategy

 Here, a desirable test plan for MobileMedia case study is shown in Table 6.5 as a

proper plan to address the necessary aspects to consider in more details. The test people

from the test team have had their names changes to preserve the identity of the ones

involved.

Table 6.5 MobileMedia case study Test Plan

1. General Information
1.1 Summary – The application is a software product line containing four different

AO and OO releases, in which each release contains more complex features
than its previous. For details on the features, please see the feature model. The
tests to be performed can be code based testing and interface testing.

1.2 Environment and Pretest Background – Such application has never gone
under testing before, it is a complex and large application. The organization in
which the study is being developed is academic.

1.3 Test Objectives – Analyze code covered by testing.
1.4 Expected Behavior – The application should manipulate media files properly by

adding, removing and editing files. For specific behavior at each feature level,
please see the feature model available.

1.5 References – Feature model, features’ description file.
2. Plan

2.1 Software Description – As this application is a software product line, a specific
chart would be necessary for each release regarding the specific features’ inputs
from that release. For example:

MobileMedia OO Release 2
Sorting ® Try different orders
Edit Photo Label ® Try different labels
Others ® Reach exceptions and test exception

handling.
® Compilation without optional features.
® Access main variables and test

initialization

2.2 Test Team – Test manager – A
Test designer – B
Tester – C, D and E

2.3 Milestones – Full bug reporting at the end of testing of each release
New feature delivery every other week as of July 20th until

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

December 20th, holidays excluded.
2.4 Budgets – None.
2.5 Testing

2.5.1 Schedule
 May Jun Jul Aug Sep Oct Nov Dec
Plan
Training
Tests
Analysis
Evaluation

2.5.2 Requirements – A desktop computer to each test person involved. Testers

must have test tools installed and required software to run the test tools
running as well. Testers must have access to features’ specification,
requirements documents and feature model documents.

2.5.3 Testing Materials – Four AO and OO versions of MobileMedia software
product line, JaBUTi tool, code coverage tool, test documentation (test
cases).

2.5.4 Test Training – Two experienced users of the application under test will
provide training on how to use the application and how it has been
incrementally developed release by release. Plus, the testers should also
receive training on how to manipulate the test tools as defined in test
schedule.

3. Specifications
3.1 Business Functions – Interface testing as per test case description and steps;

input domain testing.
3.2 Structural Functions – Data flow testing. In Aspect-Oriented releases, first test

base code and then aspectized code and observe whether a bug is observed when
introducing the aspects in the base code.

3.3 Test/Function Relationships – For functional testing, a table is here attached
(Appendix A) to address the functional test cases as per functional descriptions.
For structural testing, unit test is applied along the code.

4. Methods and Constraints
4.1 Methodology – To follow functional and structure-based testing.
4.2 Test Tools – Capture/playback, code comparison, data flow analysis, defect

management, walkthroughs.
4.3 Extent – At least 80% of the code need to be tested by the end of the testing

activities.
4.4 Data Recording – A bug tracking system will be used to record bugs found and

relevant data (Appendix B).
4.5 Constraints – The test server from JaBUTi tool has a limitation of 3MB of data

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

transfer. There is only one JaBUTi developer available to solve eventual issues
that may come up with the tool.

5. Evaluation
5.1 Criteria – The analysis is based on code coverage analysis and AOP related

faults assessment.
5.2 Data Reduction – The functional tests performed throughout the application’s

interface s can and should make use of a automating tool, i.e., capture/replay
tool that records the steps of the tests executed in one release that can be applied
to the following releases, so that the tester does not have to do it manually all
over again. Also code comparison tools can be useful to identify and compare
the differences between two versions of the application, i.e., the piece of code
introduced by the addition of an optional or alternative feature.

Test environment

 The test environment element needs to be addressed when test planning to

consider relevant information regarding the environment where the testing should occur.

Considering the requirements defined in Table 4.8 and what has been discussed in

Section 4.3, in MobileMedia case study, the environment has different needs because it

had to handle different releases in a product line, developed in different programming

languages. Already considering tooling usage, but not too much, (test tool is discussed

next), the environment needed to conform the tool support for both AspectJ and Java

releases and the features implemented in each release. Besides, the test server required

connection between JaBUTi tool and the mobile emulator, thus, the environment needed

support from wireless toolkit application and client-server configuration management.

Besides other tooling support – in case of the automating tool and others – the test

environment required exclusive machines to the testers so that he/she could save, use

and reuse information from previous releases tests. Still, a test administrator would be

the right role to address the requirements for a manageable, continuous, safe and

centralized test environment in this case study.

Test tools

 Continuing the discussing regarding test environment, tooling support represent

a great part of the configuration needs for a proper test environment. First, the concerns

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

addressed in Table 4.12 are associated to MobileMedia case study’s conditions when

selecting test tools and Table 6.6 represents such evaluation.

Table 6.6 Items addressing issues when selecting test tools

1 Are test tools selected in a logical manner?
No.

2
Can testers use test tools only after they have received adequate training in
how to use them?
Yes.

3 Is the tool usage specified in the test plan? Is there a tool manual?
Yes.

4
Has a process for obtaining assistance in using test tools been established,
and does it provide testers with the needed instructional information?
Yes.

5
Have the dependencies to use the tool been identified and mitigated in order
not to become a bottleneck?
Yes.

 In the ideal case, the case study would identify that JaBUTi tool does not attend

the requirements to test AO releases as it does with OO releases. Hence, the tool

developers are previously contacted in order to plan and deliver such an update on time.

Also, the tool dependencies on the test server and the maximum of 3MB of data transfer

between it and the emulator to gather test trace execution. Such dependency needs to be

identified, so that long test executions that result in more than 3MB data transfer does

not become an issue.

 The automating tool to record test executions through the simulator interface

also needs to be identified and provided with necessary information in order to use it.

The use of it can and should reduce and optimize the executing time of manual tests –

common tests of the base code, present in every release, no matter the added feature.

Test People

 The test team is an essential subject within the case study to address people to

appropriate test roles. The roles can be associated with testing competencies, as defined

in Table 4.14, to identify how competent the members of the test team are when

evaluated in testing principles, as shows Table 6.7 in the case for MobileMedia case

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

study, in a general way. Such evaluation helps identifying and addressing the

appropriate tasks to appropriate personnel, which is fundamental to a smooth flow in a

case study like this.

Table 6.7 Evaluating software testing principles and tasks against competency in
MobileMedia case study

 Fully
competent

Partially
competent

Not
competent

1

Testing techniques
Understanding of the various approaches used
in testing and the methods for designing and
conducting tests.

Test
designer

Test
manager /
Testers

2 Levels of testing
Identifying testing levels.

Test
designer

Test
manager /
Testers

3
Testing different types of software
The changes in the approach to testing when
testing different development approaches.

Test
manager /
Test
designer /
Testers

4

Vocabulary
The technical terms to describe various test
techniques, tools, principles, concepts and
activities.

Test
designer /
Testers

Test
manager

5

Test process
An overview of the processes that testers use
to perform a specific test activity, policies,
standards, procedures, tools.

Test
designer

Test
manager /
Testers

6

Test planning
Assessing requirements, design, execution,
reports, risks, test methods, environment,
schedule, objectives, criteria, test scope, test
team.

Test
designer

Test
manager Testers

Aspect-Oriented attributes

 The criteria defined in the BF [42] list important AO attributes to be addressed.

Table 6.8 shows the application of such in MobileMedia case study, presenting the

existence of such attributes or not.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Table 6.8 Addressing AO attributes in MobileMedia

Classification of
crosscutting concerns

Functional Yes
Non-functional Yes
Homogeneous Yes
Heterogeneous Yes
Intra-component Yes
Inter-component Yes

Interaction and
composition of

crosscutting concerns

Invocation based Yes
Tangled code in component level Yes
Tangled code in operational level Yes
Overlapping Yes

6.1.2 HealthWatcher

 This subsection presents the evaluation of the testware support against

HealthWatcher application with the test elements assessed through the definitions from

Chapter 4. As mentioned, this application is a web information system with four

different releases (implemented in OO and AO languages), in which each release

contains applied changes to the previous one, as can be observed in Table 6.9 a

summary of the changes described at a more developer’s level. This application was

used in this dissertation as a target to evaluation and analysis purposes only and was

chosen based on recent empirical studies. The data here presented within the test

elements being addressed flow along towards reaching the goal of identifying and

assessing the test elements in the software system to provide the best test direction to fit

software system’s purposes. Hence, as of the context already here presented, the

evaluation introduced next is inserted within the software maintainability evaluation

benchmarking framework. To ease identification of items and tables assessing test

elements and test directions, the study regarding the use of HealthWathcer application is

here called as “HealthWatcher study”.

Table 6.9 HealthWatcher releases’ scenarios of changes

Release Description
01 Factor out multiple Servlets to improve extensibility.
02 Ensure the complaint state cannot be updated once closed.
03 Encapsulate update operations to improve maintainability.
04 Improve the encapsulation of the distribution concern.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

First Basics

Table 6.10 Evaluating test items to address in HealthWatcher study

1 Are the objectives and requirements defined?
Yes.

2 Are the requirements testable?
Yes.

3 Are there time and resources available allotted for development and testing?
Yes.

4
Has the test process been defined?
No.

5
Are the testers familiar with the development methodologies and the
required testware to test them?
No.

 Table 6.11 Evaluating items to address initial test directions

1 Is there a policy regarding software testing?
No.

2 Is there a software testing strategy?
Yes.

3
Are there trained resources to allocate on software testing?
Yes.

4
Are there available tools to support a testing strategy?
Yes.

5
Has the test object been under a testing process before?
No.

 It is possible to observe that although HealthWatcher is provided with

requirements and test strategy, there is no test process defined for it to follow. Hence,

the items to assess test process from Table 4.3 are not applicable, since the answers to

all five questions would be, therefore, negative. The next tables presented in the first

concerns of the testware support concerns test planning, which is also still not

applicable to HealthWatcher case at this point. Thus, the responsible manager would

have to define into more details the existing strategy and assemble the test process and

test planning. The tesware support assists such activities as follows.

�

��	�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Test strategy

 Here, a desirable test plan for HealthWatcher study is shown in Table 6.12 as a

proper plan to address the necessary aspects to consider in more details. The names of

the members of the test team have been changed to preserve the identity of the ones

involved.

Table 6.12 HealthWatcher study Test Plan

1. General Information
1.1 Summary – The application is a web information system containing four

different AO and OO releases, in which each release is the result of applying a
number of heterogeneous types of changes to the previous one. The tests to be
performed can be code based testing and testing through the browser.

1.2 Environment and Pretest Background – Such application has gone under unit
testing before, but only at one release for a case study. The history of such
testing is unclear. The organization in which the study is being developed is
academic.

1.3 Test Objectives – Analyze code covered by testing and if behavior meet the
specifications.

1.4 Expected Behavior – The purpose of the system is to collect and control the
complaints and notifications, also providing important information to the people
about the Health System. Allow exchange of information with the SSVS system
(Sanitary Surveillance System). This exchange will firstly be only to query
sanitary licenses and on another time – when SSVS have deployed the Complaint
Control module – it will be given the automatic entry of the Sanitary
Surveillance complaint nature.

1.5 References – HealthWatcher Use Cases document.
2. Plan

2.1 Software Description – The frame of reference for the functions to be tested is
based on use cases’ definitions.

HW System Overview
Query
information

Query Health Guide
The citizen might query:
· Which health units take care of a specific specialty.
· Which are the specialties of a health unit.

Query Diverse Information
The citizen might query:

� Information about the complaint made by the

citizen:
� Complaint specification.
� Situation (OPENED, SUSPENDED, or

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

CLOSED).
� Technical analysis.
� Analysis date.
� Employee that made the analysis.

� Information about diseases:

� Description.
� Symptoms.
� Duration.

� Inputs and pre-conditions:

� The data to be queried must be registered
on the system

� Outputs and post-conditions:

� The query result to the citizen
Specify
complaint

Animal Complaint – DVA

· Animals apprehension.

· Control of vectors (rodents, scorpions,
bats, etc.)

· Diseases related to mosquitos (dengue,
filariose).

· Animals maltreatment.

Food Complaint - DVISA

· Cases where it is suspicious the ingestion
of infected food.

Diverse Complaint - DVISA

· Cases related to several reasons, which are
not mentioned above (restaurants with
hygiene problems, leaking sewerage,
suspicious water transporting trucks, etc.).

The three kinds of complaints have the following
information in common:

� Complaint data: description (mandatory) and
observations (optional);

� Complainer data: name, street, complement,
district, city, state/province, zip code, telephone
number and e-mail. All these information are
optional;

� Complaint state (mandatory), which might be:

�

��
�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

OPENED, SUSPENDED or CLOSED. In the
event of a registration, its state must be
OPENED;

� The system must register the complaint
registration date.

Inputs and pre-conditions:

· None

Outputs and post-conditions:

· The complaint saved on the system
Update
complaint

Inputs and pre-conditions:

· The complaint must be registered and
have the OPENED state.

· Logged employee.

Outputs and post-conditions:

· Complaint updated and with state
CLOSED.

2.2 Test Team – Test manager – A1

Test administrator – B1
Tester – C1, C2 and C3

2.3 Milestones – The milestones are the end of each main flow test activities of each
functionality. At every milestone, test reports are delivered to assess test
activities.

2.4 Budgets – None.
2.5 Testing

2.5.1 Schedule
 Feb Mar Apr May Jun Jul
Plan
Training
Tests
Analysis
Evaluation

2.5.2 Requirements – A desktop computer to each test person involved. Testers

must have test tools installed and required software to run the test tools
running as well. Testers must have access to use cases document
specification to understand the specified behavior in order to test design.

2.5.3 Testing Materials – Four AO and OO versions of HealthWatcher system,
code coverage tool, test documentation (test cases).

2.5.4 Test Training – Testers will be provided with training on unit testing and
code coverage tools usage.

3. Specifications

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

3.1 Business Functions – Interface testing through browser as per test case
description and steps; input/output testing.

3.2 Structural Functions – Unit testing. In Aspect-Oriented releases, first test base
code and then aspectized code and observe whether a bug is observed when
introducing the aspects in the base code.

3.3 Test/Function Relationships – For functional testing, a table is here attached
(Appendix C) to example the functional test cases as per functional descriptions.
For structural testing, unit test is applied along the code.

4. Methods and Constraints
4.1 Methodology – To follow functional and structure-based testing.
4.2 Test Tools – Code comparison, defect management.
4.3 Extent – At least 80% of the code need to be tested by the end of the testing

activities.
4.4 Data Recording – A bug tracking system will be used to record bugs found and

relevant data (Appendix B).
4.5 Constraints – The system should have an easy to use GUI, because it might be

used by any person who has access to the internet. The system should have an
on-line HELP to be consulted by any person that uses it.

5. Evaluation
5.1 Criteria – The analysis is based on code coverage analysis and AOP related

faults assessment.
5.2 Data Reduction – Not Applicable.

Test environment

 As explained when addressing MM test environment element, it needs to be

addressed when test planning to consider relevant information regarding the

environment where the testing should occur. The system should be available 24 hours a

day, 7 days a week. Because of the nature of not being a critical system, the system

might stay off until any fault is fixed. Therefore, the system should use a security

protocol to send data over the internet. To have access to the complaint registration

features, the use must be allowed by the access control sub-system. Plus, the hardware

and software to be used for the system to work has been previously defined by

developers as follows:

� Software: one license for the Microsoft Windows for the workstation

� Hardware: One computer with: Pentium III processor, 256 MB of RAM

memory, net card 3Com 10/100. This equipment shall be used by the

attendant as a workstation.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

 After learning such conditions and based on the requirements presented in Table

4.8, the test environment for HW should, then, be manageable, safe and centralized, as

the most important characteristics.

Test tools

 Tooling support represents great importance in testing activities to make them

become faster and more efficient, at most times. In case of HW study, the only tool

support to address in testing activities is the code coverage tool. Thus, the concerns

addressed in Table 4.12 are assessed to HW study’s conditions when selecting test tools

and Table 6.13 represents such evaluation.

Table 6.13 Items addressing issues when selecting test tools

1
Are test tools selected in a logical manner?
Yes.

2
Can testers use test tools only after they have received adequate training in
how to use them?
Yes.

3
Is the tool usage specified in the test plan? Is there a tool manual?
Yes.

4
Has a process for obtaining assistance in using test tools been established,
and does it provide testers with the needed instructional information?
No.

5
Have the dependencies to use the tool been identified and mitigated in order
not to become a bottleneck?
Yes.

 In the HW study case, the only tool support is the code coverage tool to assess

how much of the code has been covered by the unit tests. The tests through browser are

executed manually. Therefore, in the test plan, it specifies the tool to be used. As it is an

academic study and there is no budget available, the tool used is an open source tool

free of cost. However, it has not been identified whether the tool supports AspectJ code

to assess such code coverage, nor if the unit tests will need a different framework, rather

than JUnit.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Test People

 The test roles attributed to test people with appropriate test activities have to be

associated against the individuals’ competencies so that essential test tasks are identified

and assigned to the most appropriate person. The roles and people assignment and

evaluation for HW study are shown in Table 6.14, as per definitions in Section 4.6.

Table 6.14 Evaluating software testing principles and tasks against competency in
HealthWatcher study

 Fully
competent

Partially
competent

Not
competent

1

Testing techniques
Understanding of the various approaches used
in testing and the methods for designing and
conducting tests.

Test
manager /
Testers

Test
admin.

2 Levels of testing
Identifying testing levels.

Test
manager /
Testers

Test
admin.

3
Testing different types of software
The changes in the approach to testing when
testing different development approaches.

Test
manager /
Test
designer /
Testers

Test
admin.

4

Vocabulary
The technical terms to describe various test
techniques, tools, principles, concepts and
activities.

 Testers

Test
manager /
Test
admin.

5

Test process
An overview of the processes that testers use
to perform a specific test activity, policies,
standards, procedures, tools.

Test
manager /
Testers

Test
admin.

6

Test planning
Assessing requirements, design, execution,
reports, risks, test methods, environment,
schedule, objectives, criteria, test scope, test
team.

Test
manager

Testers /
Test
admin.

Aspect-Oriented attributes

 Important AO attributes are listed in the criteria defined in the BF [42]. Such

attributes are the ones to be addressed in order to assess AO related required

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

information in the study. Table 6.15 shows the application of such attributes in

HealthWatcher study.

Table 6.15 Addressing AO attributes in HealthWatcher

Classification of
crosscutting concerns

Functional No
Non-functional Yes
Homogeneous Yes
Heterogeneous Yes
Intra-component Yes
Inter-component Yes

Interaction and
composition of

crosscutting concerns

Invocation based Yes
Tangled code in component level Yes
Tangled code in operational level Yes
Overlapping Yes

6.1.3 Discussion over Testware Support Evaluation

 Subsections 6.1.1 and 6.1.2 have presented the use and application of the

proposed testware support against two different software systems. Such application

provides more consistency on the discussion of the evaluation. First, it is important to

remember that the testware support provides the necessary elements and test issues to

address in order to lay out a proper test direction in a software project. The elements

provided in Chapter 4 have been used with the two studies of the two applications to

surface the existing test information and identify yet necessary achievable test topics.

These goals have the aim to enlarge software project visions and scope and supplying it

with more confidence towards decision making.

 The existing test information identified in both studies (Subsection 6.1.1. and

6.1.2) enables test managers, designers and testers becoming aware of what are the test

elements the project currently has, what can be done with them and how to do it

according to the needs and to what they represent. The test people may also become

aware of, according to what test information they have, what is the information and

elements they still need in order to achieve the test objective in the software project.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

 Despite this discussion and the benefits may seem too general at this point, the

connection of the elements is related to each project specifically. It has been possible to

surface and identify useful information in the two studies though. In case of

MobileMedia case study, the testware support has surfaced important information (and

lack of it) that had not been identified before (case study Section 3.4). Such information

could have helped on the issues that occurred throughout the case study, or even better,

could have avoided bottlenecks, wrong decisions making and unsuccessful results. It

has been possible to observe through the testware support evaluation that the case study

had no test process nor policy defined, and it had been executed without assistance and

planning. Such lack of coordination could hardly lead to successful results. If the

testware support had been used to identify such issues, the case study could have taken

a different test direction instead in time.

 The evaluation with the other study regarding another application

(HealthWatcher) allowed the observation that the testware support has also provided the

identification of relevant test data and information that can be applied into the right test

topic (environment, tool, planning) and clarify the test activities, milestones, process in

a smooth and organized way. The identified characteristics support building the right

test process provided with the right assessed test strategy, test environment and test

tools.

 Thus, the outcome of such evaluations indicates that the use of the testware

support can be beneficial in software projects that is concerned with test directions and

properly addressing the test elements. Such benefit can be even more important when

the software project concerns critical levels of software life cycle, like its maintenance

or evolution phase. When a piece of software has never been under test before and it

needs to evolve, some minimum quality and reliability that the software system indeed

does what it is supposed to do needs to be assessed and/or (re)assured. Without any

prior test activity or history, such confidence is hardly achievable. Or even worse, with

prior test activity or history, but inappropriate ones or not suitable to the new scenarios,

the software system may be evolved or maintained through an inadequate path, which

can lead to serious damaged and unsuccessful outcome in its life cycle. The test strategy

and test criteria to be applied in a piece of software need to be evaluated each time it

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

goes under changes. The existing testware of a software project may not be suitable to

the new scenario. In other words, the software evolution can be inadequate in what

regards to test issues, or be provided with the inadequate testware, and this may be

harmful to the software in the future. Therefore, testware support comes to play a very

important role to assess its testware and provide means to reach a proper test direction

in a process flow, so that the software system can evolve, provided with proper

information that has been evaluated.

 The use of the testware support is fundamental to avoid misunderstandings

during software assessment, since it documents the test elements. It is essential to help

standardizing the terms used in analysis, replication and evaluation of studies that

concern this subject and rely on initiatives, like this testware support, to progress on

consistent and reliable information.

 The testware support may guide researchers and practitioners to analyze

software test projects and software test case studies to analyze test characteristics

inherent and / or assessed from software systems towards many different purposes.

The next section evaluates the BF extension presented in Chapter 5 with the

addition of the testware support, and discusses its benefits.

6.2 Benchmarking Framework Extension
Evaluation

As explained in the introduction of the BF [42], the definition of the criteria that

compose the BF is not an easy task, for they have to be general and specific at the same

time. They should be: (i) general enough to identify different characteristics of the same

application and, (ii) specific to comply with applications of different domains that use

AO techniques. Yet another factor that makes this definition not an easy task is the

quick appearance of new AO techniques, which hinders the criteria list to be statically

defined; therefore, it should be dynamic to adapt imposed needed changes.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

The list of test criteria, as known as the testware support addressing the test

elements have been created and inserted to the BF (Chapter 5) so that testing, in a

general way, is inserted within the context presented of the BF regarding the empirical

studies on software maintenance. The insertion of the testware support in the BF has the

goal to increase the scope of the software assessments and consider test issues,

providing means to achieve more confident and reliable scenes and paths to evolve and

maintain software, as it has been explained previously in this chapter.

This section presents the evaluation of the test attributes to consider within the

BF extension. Such evaluation has followed the same line adopted in the evaluation of

the BF in its original study [42]. Besides the goals described above regarding the

expected achievements with the BF extension, this evaluation aims to provide means to

assess whether the use of the BF extension in an experiment, software project or case

study can indeed be beneficial, i.e., its use is advantageous than what it would be if it

had not make use of such structure. The test attributes addressed in the BF extension

aim to surface and provide further relevant information to a project that is important and

can help on the outcome in the manners discussed in the previous chapters, but such

need is unknown until it appears.

The evaluation has been applied into the two studies explained in the previous

section, provided with two applications (MobileMedia and HealthWatcher). As the

attributes exhibited in the extension are a summarized way to present the analysis

assessed through the thorough use of the testware support, the evaluation here presents

Tables 6.16 and 6.17 assessing the test elements discussed in Section 6.1, as per

definitions from Table 5.1, in Chapter 5.

The test attributes introduced in Chapter 5 as the extension to the Benchmarking

Framework structure to now consider test issues in software maintenance and evaluation

studies and research have been assessed for two different applications above. The

evaluation assesses the important test elements that surface test information, or the lack

of it, providing the necessary knowledge for a software project or case study to pursue

and follow the right path in what regards to software testing. Considering the testing

process and elements in such BF broadens the view of researchers or practitioners that

�

��	�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

are assessing software systems to evolve. It also provides means to assure a higher level

of quality and confidence in the related studies. This only confirms the benefits of the

testware support discussed in Section 6.1 and expands such benefits towards the BF

extension.

Together with the general software attributes and Aspect-Oriented attributes

presented in the definitions of the BF [42], the test attributes, here assessed, contribute

to the evaluation of the representativeness of applications, because it enlarges the scope

to a different process that may impact on other related criteria. Thus, the extension

enables the evaluation of applications in a more in-depth and embracing fashion of what

may impact the case study or software project, increasing its confidence. Besides, the

attributes also contribute to guiding, selecting and analyzing software systems to

experimental studies, for it enables the consideration of further characteristics inherent

to the project, that were unknown, without the use of the testware support.

Table 6.16 MobileMedia case study test attributes

First Basics

Test policy No
Test objective Analyze code covered by testing

Test strategy
Code based testing and interface testing with
full bug reporting at the end of testing each
release

Test process No
Test history No

Test criteria
Functional and structural based testing (data
flow testing). Analysis based on code coverage
and AOP related faults.

Functional and
structural test
conditions

Interface testing as per test case description and
steps; input domain testing. Data flow testing. In
AO releases, first test base code and then
aspectized code and observe whether a bug is
observed when introducing the aspects in the
base code.

Test environment No definitions
Test tools JaBUTi tool, code corage tool, automating tool
Test people Yes

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Test
strategy

Test plan No

Milestones
Full bug reporting at the end of testing of each
release. New feature delivery every other week
as of July 20th until November 20th

Test schedule See schedule table in item 2.5.1 in Table 6.5
Test requirements Feature model
Test techniques Functional and structure-based testing

Test
environment

Requirements Manageable, continuous, safe and centralized

Dependencies
Tools, wireless toolkit, client-server
configuration management, test server

Test tools

Type of tool
Capture/playback, code comparison, data flow
analysis, defect management, walkthroughs

Tool name JaBUTi, Automate5, Cobertura
Tool version 1, 5, any – respectively
Tool support User’s manual
Tool expertise Low
Tool dependencies No definitions

Test people
Test roles

Test manager – A
Test designer – B
Tester – C, D and E

Training Yes
Competency See table 6.5

Table 6.17 HealthWatcher case study test attributes

First Basics

Test policy No

Test objective
Analyze code covered by testing and if behavior
meet the specifications

Test strategy
Code based testing and interface testing through
browser

Test process No
Test history Yes

Test criteria
Functional and structural based testing.
Analysis is based on code coverage analysis and
AOP related faults assessment

Functional and
structural test
conditions

Interface testing through browser as per test
case description and steps; input/output testing.
Unit testing. In AO releases, first test base code
and then aspectized code and observe whether a
bug is observed when introducing the aspects in
the base code

Test environment

Software: one license for the Microsoft Windows
for the workstation.
Hardware: One computer with: Pentium III
processor, 256 MB of RAM memory, net card

�

��
�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

3Com 10/100. This equipment shall be used by
the attendant as a workstation.

Test tools Code comparison tool
Test people Yes

Test
strategy

Test plan No

Milestones

The milestones are the end of each main flow
test activities of each functionality. At every
milestone, test reports are delivered to assess
test activities

Test schedule See schedule table in item 2.5.1 in Table 6.12
Test requirements Use cases
Test techniques Functional and structure-based testing

Test
environment

Requirements Manageable, safe and centralized
Dependencies Other information services

Test tools

Type of tool Code comparison, defect management
Tool name Cobertura, spreadsheets
Tool version any
Tool support User’s manual
Tool expertise Medium
Tool dependencies No definitions

Test people
Test roles

Test manager – A1
Test administrator – B1
Tester – C1, C2 and C3

Training Yes
Competency See table 6.12

6.3 Final Considerations

 This chapter has presented the evaluation of the proposed testware support and

the evaluation of the Benchmarking Framework [42] extension with the insertion of the

testware support in it. The evaluation relied on two different applications,

HealthWatcher and MobileMedia, which, because of their differences and

particularities, have contributed to increase the representativeness of such assessment

and provided more consistences to the results. It has been a positive and beneficial

outcome to make use of the testware support, presented in this dissertation. The use of it

has surfaced important and relevant test information from test elements that need to be

considered in order to provide and pursue a proper test direction in a software project or

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

case study. The benefits become even more important when looking at the perspective

that to evolve a piece of software, the quality and confidence are essential aspects to be

considered in order to reach and develop proper evolution or maintenance scenarios.

Without test support, such confidence and reliability is hardly achievable, for a software

system’s test conditions or assessments are unknown. This throws a software to a very

vulnerable situation and this is unlikely accepted in the software engineering

community.

Thus, the testware support elements introduced in this dissertation contributes to

the improvement of studies in this regard planning and elaboration, analysis and

replication, in the context in which the BF has proposed to assist. Further details on

beneficial implications of the testware support and its insertion in the BF are presented

in the next chapter, the conclusions.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Chapter 7

Conclusions

 As it has been introduced in Chapter 1, software testing plays an essential role to

uncover and correct as many of the potential errors as possible in a piece of software.

However, when the test issues worked in a project or case study are not provided with

the proper way in techniques, tools and test environment to make them right, test

objectives become hard to achieve. If the testware in a software project is not addressed

adequately, it may be difficult critical for this system to evolve or maintain, since its

quality will be provided with inappropriate elements and incorrect or incomplete

information and assessment. Motivated by a case study that has taken place without a

proper test direction to follow in a process flow, this work presented in this dissertation

has developed a structure to serve as a guide to address test issues through test attributes

in such situations, as known as the testware support. The context in which the case

study has taken place regards software evolution and maintenance case studies, and

focus on Aspect-Oriented (AO) software systems. The environment in which the case

study was applied has been introduced in Chapter 3 and it concerned a Testbed [105], a

systematic structure to provide end-to-end comparison between techniques, approaches,

metrics, empirical studies, artifacts and applications, essential framework to stimulate

the research, contributions and use of its benefits within software engineering

community. A specific part of the Testbed, the Benchmarking Framework (BF), has

been developed [42] to support the maintainability assessment of AO software

development (AOSD) techniques through a definition of an idealized scheme for

benchmarking applications to evaluate AO attributes within the maintenance context.

The framework guides researchers and practitioners in selecting or adapting applications

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

and their maintenance scenarios that best fit specific experimental goals as well as it

supports the design replication and evaluation of empirical studies, as it has been

previously explained. Such framework, however, did not address any test issues within

this context. A study handling a software system, assessing its characteristics and

disregarding any information related to testing activities or test attributes, quality and

confidence could easily be addressing an improper maintenance scenario, once such

scenario has not been tested or evaluated.

When a maintenance scenario is taken into consideration to evolve or maintain a

piece of software, it is important to assess whether it is indeed specified as it should. If

there is a bug in it, it may not be known and may imply further complications and

damages in software life span. Based on such proposition and motivated by the case

study executed without much of testing knowledge, this dissertation presents the

testware support addressing test core elements to be taken into consideration in case

studies and software projects and its insertion within the BF. The BF extension now

considering testware support addresses test attributes, as presented in Chapter 5.

Chapter 6 has introduced the results of this work evaluation within two different

perspectives: the testware support evaluation itself and the BF extension considering the

test attributes as a support to consider test activities and learn from what they can

provide along the software project. The benefits have been observed in both evaluations

for the elements have surfaced relevant and important information that can make the

difference. The avoided problems can also avoid further damages, provide confidence

and enlarge the scope when assessing AO or non-AO software attributes in a software

maintenance or evolution case study.

The next section discusses the relevance of such initiative and related work,

Section 7.2 presents the final considerations about this chapter and dissertation and,

finally, Section 7.3 discusses the future work following the line of the testware support

and the context here presented.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

7.1 Related Work

 When discussing software testing in the context of software evolution or

maintenance, it is mostly related to regression testing and regression test selection

technique [23, 24, 25, 27, 85, 86, 88, 89, 91]. Once testing the whole software is

practically not feasible and testing is an expensive task, test cases prioritization and best

techniques matched with project goals are then performed. However, further interests

have taken place in this regard and some studies [14, 15, 16, 17, 18, 103] have

researched about a software system testability, i.e., the degree to which a system or

component facilitates the establishment of test criteria and the performance of tests to

determine whether those criteria have been met. Such research is important to reduce

testing cost and time and increase software maintenance rate of success, once testing

effort can be reduced and optimized with testability levels. Still, some studies [7, 8, 9,

12, 20, 21, 22, 56, 57, 60, 70, 73, 90, 104, 106, 128, 129, 133, 136] have taken place to

experiment test techniques and prove their suitability to specific contexts and

requirements, address a specific model to a specific kind of software, application or case

study, others [84] have focused on identifying dependencies that could decrease quality

and hinder proper test activities, while other authors [58, 59, 60, 136] have even built

testing framework with specific tools for specific programs. However when focusing on

empirical studies context, there are many works [29, 30, 31, 32, 33, 34, 35, 36, 37, 38,

94, 111, 113] that presents relevant aspects to be taken into consideration when

evaluating methods, presenting empirical evidence, discussing existing ways to purport

software methodologies or providing new techniques into the community but does not

consider the testing world in it. Some works in software evolution [42, 115, 116, 117,

118] even address attributes and discuss relevant perspectives in this matter, but very

few works [9] extend the subject with regard to testing in the evolutionary context.

Thus, because no authors have provided a testware support that would be nearly

applicable to the context here inserted, none is discussed into more details or compared.

Some are described in the state of art (Chapter 2) but their comparison to the subject

from this dissertation is not pertinent, since the work here presented, besides being

focused in software maintenance and AOP, its use is appropriate to a wider sense. And

in a wider sense, since this work has gathered existing information in the testing world

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

that would best fit its purposes, i.e., there are no new testing concepts, its comparison to

the existing testware is also not applicable.

Benchmarking as a way to assess software characteristics is still a recent subject

within the community with not so many works [42, 54, 58] available. Yet, testing is not

present in this research. There is no testware support along the software evolution in any

of these works, which can lead to the issues revealed and discussed in this dissertation.

The lack of planning necessary resources to develop and / or maintain or evolve

software systems can be pointed out as one of the serious reasons from unsuccessful

results, software crisis and lack of directions to assist towards a proper path [133]. A

proper path, in this context, is the one to lead to the expected software project’s results,

confidence and successful outcome. The test activities planning should be part of

system’s global planning, whether in development, maintenance or evolution, in any

phase of the software life cycle, the lack of an adequate test direction can lead to serious

issues to be faced by researchers and practitioners as it has been discussed in this

dissertation.

7.2 Final Considerations

 This dissertation has discussed the importance and shortage of testware support

in the field of software engineering, more specifically in AOSD. The testware support

provides test elements to be considered with regard to testing in a software project, so

that the researcher or practitioner has the means to expand its scope, vision and

capabilities towards decision making. The expansion comes from the context of the

Benchmarking Framework [42] here discussed. The insertion of the testware support in

such context can only provide benefits and contribute to a more confident and further

acquainted and explored scenario, rather maintenance scenario, evolution or application

assessment. However, to manipulate the test elements, some expertise is required and

test resource is necessary so that its proposed benefits can indeed be achieved, as

assessed and demonstrated in Chapter 6.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

 The results shown in Chapter 6 are of extreme importance for software

engineering field for this is the first initiative to extend the BF structure and the first

contribution regarding testing within the Testbed [105]. The benefits of the BF can be

summed up as facilitating the execution of empirical studies and accelerating the

collaborative progress of the software engineering field, in a general way. Looking

closer at it, it constitutes a significant progress towards the creation of a comprehensive

methodology for designing and assessing AO software benchmarks. It provides a

systematic approach to the design of AOSD maintainability studies and it guides the

selection, design or adaption of representative evolving applications and releases to be

used in such studies and their replications. Finally, it helps the community to accelerate

the improvement of software engineering body of knowledge and better support for

judgment of industrial decision makers. Extending such advantages, the testware

support provides means to surface existing test information and testware in a software

project and identifies the lack of other elements in the testware that need to be addressed

in order to build an adequate test strategy, followed by a test process, test planning and

so on. Such testware support helps the researchers to address and follow through a

proper test direction in a case study that regards testing. Considering testing elements

within the BF structure, as mentioned, enables the improvement of confidence and

quality level of the information available to researchers and practitioners that are

responsible for decision making and software characteristics assessment.

Hence, despite being great advance, in the perspective of software testing, there

is still a lot to improve and progress. The elements handled in the testware support are

the basics of software testing, as it has been previously stated in this dissertation. The

basic testware in order to assess the minimum information in order to achieve a proper

test direction with a proper test process and test plan is here presented and discussed.

However, there are still many important subjects that are not here discussed which can

and should be further investigated, as it is discussed in the next and last section.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

7.3 Future Work

 As it has been introduced in Section 7.2, the testware support provides the

“basics” to address basic software test elements to reach an adequate test direction to

follow in a test process, with appropriate own test process, planning, environment and

other decisions. However, there are still many other aspects that can and should be

considered in future studies.

 This work is only the first initiative to address test concerns within the BF and

Testbed world. It can and should serve as a starting point to develop and address further

concerns, such as test metrics, test case design, test prioritization, risks and others.

 Further empirical research considering tests can and should take place to provide

more confident means to address testing in this context and show, by each study, the

importance and relevance of concerning test elements in this context.

 Further research should also take place to evaluate in different manners the

proposed testware support and the BF extension. The BF is a very new and important

contribution within empirical studies community and it has not yet been continually

used and tested. Such use is important to assess its benefits and representativeness by

different kinds of applications and studies. Following this line, the testware support can

and should also be used, tested and extensively assessed, so that it helps supplying the

lack of test directions in software development, maintenance and evolution empirical

studies and projects.

�

��	�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

References

[1] Lenski, G. Power and Privilege: A Theory of Stratification. McGraw-Hill, 1966.

[2] ISO/IEC 9126-1:2001 Standard. Software Engineering – Product quality – Part

1: Quality model, Quality characteristics and sub-characteristics.

[3] Myers, G. J. The Art of Software Testing. Second Edition. John Wiley & Sons

Inc., 2004.

[4] Harrold, M. J. Testing: A roadmap. In 22th International Conference on Software

Engineering – Future of Software Engineering Track, 2000, p. 61-72.

[5] Spillner A., Linz, T. and Schaefer, H. Software Testing Foundations. Dpunkt-

verlag, 2006.

[6] Graham, D., Van Veenendaal, E., Evans, I. and Black, R. Foundations of

Software Testing, ISTQB Certification. Thomson, 2007.

[7] Maldonado, J. C., Vincenzi, A. M. R., Barbosa, E. F., Souza, S. R. S. and

Delamaro, M. E. Aspectos teóricos e empíricos de teste de cobertura de

software. Relatório Técnico 31, Instituto de Ciências Matemáticas e de

Computação – ICMC-USP, 1998.

[8] Hutchins, M., Foster, H., Goradia, T. and Ostrand, T. Experiments on the

Effectiveness of Dataflow- and Controlflow-Based Test Adequacy Criteria. In

Proceedings of the 16th International Conference on Software Engineering.

Number 16 in ICSE, IEEE, 1994, p. 191-200.

[9] Harman, M. and McMin, P. A Theoretical & Empirical Analysis of Evolutionary

Testing and Hill Climbing for Structural Test Data Generation. In International

Symposium on Software Testing and Analysis, 1997.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

[10] Perry, W. E. Effective Methods for Software Testing. Third Edition. Wiley,

2006.

[11] Pressman, R. S. Engenharia de Software. Translation of Software Engineering:

A Practitioner’s Approach. Third Edition. Makron Books, 1995.

[12] Agrawal, H. et al. Mining Systems Tests to Aid Software Maintenance. IEEE

Computer Society Press. Volume 31, Issue 7, p. 64-73, 1998.

[13] Tichy, W. F. Should Computer Scientists Experiment More? IEEE Computer

Society Press. Volume 31, Issue 5, p. 32-40, 1998.

[14] Gupta, S. C. and Sinha, M. K. Impact of Software Testability Considerations on

Software Development Life Cycle. In Proceedings of the First International

Conference on Software Testing, Reliability and Quality Assurance, pp.105–110,

1994.

[15] Jimenez, G., Taj, S. and Weaver, J. Design for Testability. In Proceedings of the

9th Annual NCIIA Conference, 2005.

[16] Jungmayr, S. Design for Testability. In Proceedings of CONQUEST 2002, pages

57–64, 2002.

[17] Pettichord, B. Design for Testability. In Proceedings of Pacific Northwest

Software Quality Conference (PNSQC), Anaheim, California, 2002.

[18] Eickelman, N. S. and Richardson, D. J. What Makes One Software Architecture

More Testable Than Another? In Proceedings of the Second International

Software Architecture Workshop (ISAW-2), pp. 65–67, 1996.

[19] Kolb, R. and Muthig, D. Making testing product lines more efficient by

improving the testability of product line architectures. In Proceedings of the

ISSTA 2006 Workshop on Role of Software Architecture For Testing and

Analysis ROSATEA '06. ACM, pp. 22-27, 2006.

�

��
�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

[20] Kung, D., Gao, J., Hsia, P., Toyoshima, Y., Chen, C., Kim, Y., and Song, Y.

Developing an object-oriented software testing and maintenance environment.

Commun. ACM 38, 1995.

[21] Fayad, M.E. Object-oriented software engineering: Problems and perspectives.

Ph.D dissertation, University of Minnesota, 1994.

[22] Binder, R. Object-oriented software testing. Commun. ACM 37, 1994.

[23] Agrawal, H., Horgan, J., Krauser, E. and London, S. Incremental regression

testing. In Proceedings of the Conference on Software Maintenance. IEEE, pp.

348–357, 1993.

[24] Rothermel, G. and Harrold, M. J. A safe, efficient regression test selection

technique. ACM Trans. Softw. Eng. Methodol. Volume 6, Issue 2, pp. 173-210,

1997.

[25] Graves, T. L., Harrold, M. J., Kim, J., Porter, A. and Rothermel, G. An empirical

study of regression test selection techniques. ACM Trans. Softw. Eng. Methodol.

Volume 10, Issue 2, pp. 184-208, 2001.

[26] Beizer, B. Software Testing Techniques. Van Nostrand Reinhold, 1990.

[27] Martinig, F. Software testing: Poor consideration. Testing Tech. Newsletter,

1996.

[28] Jedlitschka, A., Ciolkowski, M. Reporting Experiments in Software

Engineering. In 14th International Software Engineering Research Network

Annual Meeting ISERN. 2006.

[29] Sjoberg, D. I., Dyba, T., and Jorgensen, M. The Future of Empirical Methods in

Software Engineering Research. In 2007 Future of Software Engineering.

International Conference on Software Engineering. IEEE Computer Society, pp.

358-378, 2007.

[30] Ciolkowski, M. and Münch, J. Accumulation and presentation of empirical

evidence: problems and challenges. In Proceedings of the 2005 Workshop on

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Realising Evidence-Based Software Engineering REBSE '05. ACM, pp. 1-3,

2005.

[31] Vegas, S., Juristo, N., Moreno, A., Solari, M., and Letelier, P. Analysis of the

influence of communication between researchers on experiment replication. In

Proceedings of the 2006 ACM/IEEE international Symposium on Empirical

Software Engineering ISESE '06. ACM, pp. 28-37, 2006.

[32] Zannier, C., Melnik, G., and Maurer, F. On the success of empirical studies in

the international conference on software engineering. In Proceedings of the 28th

international Conference on Software Engineering ICSE '06. ACM, pp. 341-

350, 2006.

[33] Jedlitschka, A. and Ciolkowski, M. Towards Evidence in Software Engineering.

In Proceedings of the 2004 international Symposium on Empirical Software

Engineering. IEEE Computer Society, pp. 261-270, 2004.

[34] Redwine, T. and Riddle, E. Software Technology Maturation. In Proceedings of

the 8th international Conference on Software Engineering. IEEE Computer

Society, pp. 189-200, 1985.

[35] Kitchenham, B., Al-Khilidar, H., Babar, M. A., Berry, M., Cox, K., Keung, J.,

Kurniawati, F., Staples, M., Zhang, H. and Zhu, L. Evaluating guidelines for

reporting empirical software engineering studies. Empirical Software

Engineering. Volume 13, Issue 1, pp. 97-121, 2008.

[36] Shull, F., Mendoncça, M. G., Basili, V., Carver, J., Maldonado, J. C., Fabbri, S.,

Travassos, G. H. and Ferreira, M. C. Knowledge-Sharing Issues in Experimental

Software Engineering. Empirical Software Engineering. Volume 9, Issue 1-2,

pp. 111-137, 2004.

[37] Kitchenham, A., Pfleeger, L., Pickard, M., Jones, W., Hoaglin, C., El Emam, K.

and Rosenberg, J. Preliminary guidelines for empirical research in software

engineering. IEEE Transactions on Software Engineering, Volume 28, No. 8, pp.

721 -734, 2002.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

[38] Singer, J. Association (APA) Style Guidelines to Report Experimental Results.

In Proceedings of Workshop on Empirical Studies in Software Maintenance. pp.

71-75, 1999.

[39] Lemos, O. Teste de programas orientados a aspectos: uma abordagem estrutural

para AspectJ. MSc dissertation. ICMS-USP, 2005.

[40] Watt, David. Programming Language Design Concepts. Wiley, 2004.

[41] Gradecki, J. D.; Gradecki, J.; Lesiecki, N. Mastering AspectJ: Aspect-Oriented

Programming in Java. Wiley, 2003.

[42] Moura, M. Um Benchmarking Framework para Avaliação da Manutenibilidade

de Software Orientado a Aspectos. MSc dissertation. DSC-UPE, 2008.

[43] McDaniel, R. and McGregor, J. Testing polymorphic interactions between

classes. Technical Report TR-94-103, Clemson University, 1994.

[44] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.J.

and Irwin, J. Aspect-oriented programming. In Proceedings of the 11th European

Conference on Object-Oriented Programming, 1997.

[45] Murphy, C., Walker, J., Baniassad, L., Robillard, P., Lai, A. and Kersten, A.

2001. Does aspect-oriented programming work? Commun. ACM Volume 44,

Issue 10, pp. 75-77, 2001.

[46] Coady, Y., Kiczales, G., Feeley, M., Hutchinson, N. and Ong, S. Structuring

operating system aspects: using AOP to improve OS structure modularity.

Commun. ACM Volume 44, Issue 10, pp. 79-82, 2001.

[47] Coady, M. Y. Improving Evolvability of Operating Systems with Aspectc.

Doctoral Thesis. UMI Order Number: AAINQ86004., The University of British

Columbia (Canada).

[48] Papapetrou, O. and Papadopoulos, G. A. Aspect Oriented Programming for a

component-based real life application: a case study. In Proceedings of the 2004

ACM Symposium on Applied Computing. SAC '04. ACM, pp. 1554-1558, 2004.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

[49] Cacho, N. et al. Composing Design Patterns: A Scalability Study of Aspect-

Oriented Programming. AOSD ’06, 2006.

[50] Krüger, H., Mathew, R. and Meisinger, M. From scenarios to aspects: exploring

product lines. In Proceedings of the Fourth international Workshop on

Scenarios and State Machines: Models, Algorithms and Tools. SCESM '05.

ACM, pp. 1-6, 2005.

[51] Figueiredo, E. et al. Evolving Software Product Lines with Aspects: An

Empirical Study on Design Stability. ICSE ’08, 2008.

[52] Kulesza, U., Sant’Anna, C., Garcia, A., Coelho, R., von Staa, A. and Lucena, C.

Quantifying the Effects of Aspect-Oriented Programming: A Maintenance

Study. In Proceedings of the 22nd IEEE international Conference on Software

Maintenance ICSM, 2006.

[53] Demeyer, S., Mens, T. and Wermelinger, M. Towards a Software Evolution

Benchmark. In Proceedings of the 4th international Workshop on Principles of

Software Evolution IWPSE ’01. ACM, pp. 174-177, 2001.

[54] Sim, S., Easterbrook, S. and Holt, R. Using Benchmarking to Advance

Research: A Challenge to Software Engineering. In Proceedings of the 25th

international Conference on Software Engineering. IEEE Computer Society, pp.

74-83, 2003.

[55] Spillner, A., Rossner, T., Winter, M. and Linz, T. Software Testing Practice:

Test Management. Rockynook Computing, 2007.

[56] Do, H., Elbaum, S. and Rothermel, G. Supporting Controlled Experimentation

with Testing Techniques: An Infrastructure and its Potential Impact. Empirical

Software Engineering. Issue 10, Volume 4, pp. 405-435, 2005.

[57] Vegas, S. and Basili, V. A Characterisation Schema for Software Testing

Techniques. Empirical Software Engineering. Volume 10, Issue 4, pp. 437-466,

2005.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

[58] Eytani, Y., Havelund, K., Stoller, S. D. and Ur, S. Towards a framework and a

benchmark for testing tools for multi-threaded programs: Research Articles.

Concurrency and Computation: Practice & Experience. Volume 19, Issue 3, pp.

267-279, 2007.

[59] Xie, J., Ye, X., Li, B. and Xie, F. A Configurable Web Service Performance

Testing Framework. In Proceedings of the 2008 10th IEEE international

Conference on High Performance Computing and Communications - Volume

00. HPCC. IEEE Computer Society, pp. 312-319, 2008.

[60] Masemola, S. S. and De Villiers, M. R. Towards a framework for usability

testing of interactive e-learning applications in cognitive domains, illustrated by

a case study. In Proceedings of the 2006 Annual Research Conference of the

South African institute of Computer Scientists and information Technologists on

IT Research in Developing Countries. J. Bishop and D. Kourie, Eds. ACM

International Conference Proceeding Series, vol. 204. South African Institute for

Computer Scientists and Information Technologists, pp. 187-197, 2006.

[61] Sebesta, W. Robert. Concepts of Programming Languages. 5th Edition. Addison

Wesley, 2001.

[62] Winck, V. Diogo and Junior, G. V. AspectJ: Programação Orientada a Aspectos

com Java. Novatec, 2006.

[63] Gosling, J., Joy, B., Steele, G. and Bracha, G. The Java Language Specification.

2nd Edition. Addison Wesley, 2000.

[64] Soares, S. and Borba, P. AspectJ – Programação orientada a aspectos em Java.

UFPE.

[65] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W.

G. Getting started with AspectJ. Commun. ACM Volume 44, Issue 10, pp. 59-

65, 2001.

[66] Binder, R. V. Testing Object-Oriented Systems: Models, Patterns and Tools.

Version 1. Addison Wesley Longman, Inc., 1999.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

[67] Alexander, R. T., Bieman, J. M. and Andrews, A. A. Towards the Systematic

Testing of Aspect-Oriented Programs. Technical Report, Colorado State

University, 2004.

[68] Tian, J. Software Quality Engineering – Testing, Quality Assurance and

Quantifiable Improvement. IEEE Wiley-Interscience, 2005.

[69] Boehm, B. W. Software Engineering Economics. Prentice Hall, 1981.

[70] Boehm, B. W. Guidelines for Verifying and Validation Software Requirements

and Design Specifications. In Proceedings of Euro IFIP, pp. 711-719, 1979.

[71] URL: http://www.v-modell-xt.de/

[72] Swanson, E. B. and Dans, E. System Life Expectancy and the Maintenance

Effort: Exploring Their Equilibration. MIS Quarterly, volume 24, pp. 277-297,

2000.

[73] Pol, M. and van Veenendaal, E. Structured Testing of Information Systems.

Kluwer Bedrijfsinformatie: Deventer, The Netherlands, 1998.

[74] Martin, J. Rapid Application Development. Macmillan, 1991.

[75] Gilb, T. Competitive Engineering: A Handbook for Systems & Software

Engineering Management using Planguage. Butterworth-Heinemann, Elsevier,

2005.

[76] Beck, K. Extreme Programming. Addison-Wesley, 2000.

[77] Canning, R. The Maintenance ‘Iceberg’. EDP Analyser, volume 10, nº 10, 1972.

[78] Swanson, E. B. The Dimensions of Maintenance. In Proceedings of 2nd

International Conference on Software Engineering, IEEE, pp. 492-497, 1976.

[79] Kästner, C., Apel, S. and Batory, D. A Case Study Implementing Features using

AspectJ. In Proceedings of International Software Product Line Conference

(SPLC), 2007.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

[80] Dósea, M., Costa Neto, A., Borba, P. and Soares, S. Specifying Design Rules in

Aspect-Oriented Systems. In Proceedings of I Latin American Workshop on

Aspect-Oriented Software Development – LA-WASP’2007, affiliated with SBES

2007, pp. 67-78, Brazil, 2007.

[81] Ribeiro, M., Dósea, M., Bonifácio, R., Costa Neto, A., Borba, P. and Soares, S.

Analyzing Class and Crosscutting Modularity With Design Structures Matrixes.

In Proceedings of XXI Brazilian Symposium on Software Engineering –

SBES’2007, pp. 167-181, Brazil, 2007.

[82] Garcia, A., Sant'Anna, C., Figueiredo, E., Kulesza, U., Lucena, C. and von Staa,

A. Modularizing Design Patterns with Aspects: A Quantitative Study. In

Proceedings of the 4th international Conference on Aspect-Oriented Software

Development AOSD '05. ACM, pp. 3-14, 2005.

[83] Baniassad, E. L., Murphy, G. C., Schwanninger, C. and Kircher, M. Managing

Crosscutting Concerns during Software Evolution Tasks: An Inquisitive Study.

In Proceedings of the 1st international Conference on Aspect-Oriented Software

Development AOSD '02. ACM, pp. 120-126, 2002.

[84] Podgurski, A. and Clarke, L. The Implications of Program Dependences for

Software Testing, Debugging. Technical Report. UMI Order Number: UM-CS-

1989-043., University of Massachusetts, 1989.

[85] Engström, E., Skoglund, M. and Runeson, P. Empirical Evaluations of

Regression Test Selection Techniques: A Systematic Review. In Proceedings of

the 2nd ACM-IEEE international Symposium on Empirical Software Engineering

and Measurement ESEM '08. ACM, pp. 22-31, 2008.

[86] Rothermel, G., Elbaum, S., Malishevsky, A. G., Kallakuri, P. and Qiu, X. On

Test Suite Composition and Cost-effective Regression Testing. ACM Trans.

Software Engineering Methodologies, Volume 13, Issue 3, pp. 277-331, 2004.

[87] Eaddy, M., Zimmermann, T., Sherwood, K. D., Garg, V., Murphy, G. C.,

Nagappan, N. and Aho, A. V. Do Crosscutting Concerns Cause Defects? IEEE

Transactions on Software Engineering, Volume 34, Issue, pp. 497-515, 2008.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

[88] Xu, G. and Rountev, A. 2007. Regression Test Selection for AspectJ Software.

In Proceedings of the 29th international Conference on Software Engineering.

International Conference on Software Engineering. IEEE Computer Society, pp.

65-74, 2007.

[89] Zhao, J., Xie, T. and Li, N. Towards Regression Test Selection for AspectJ

Programs. In Proceedings of the 2nd Workshop on Testing Aspect-Oriented

Programs WTAOP '06. ACM, pp. 21-26, 2006.

[90] Xu, D. and Xu, W. 2006. State-based Incremental Testing of Aspect-oriented

Programs. In Proceedings of the 5th international Conference on Aspect-

Oriented Software Development AOSD '06. ACM, pp. 180-189, 2006.

[91] G. Xu. A Regression Tests Selection Technique for Aspect-oriented Programs.

In Workshop on Testing Aspect-Oriented Programs, pp. 15–20, 2006.

[92] Lehman M. M. and Belady L. A., Program Evolution – Processes of Software

Change. Acad. Press, London, 1985.

[93] Mens, T. and Demeyer, S. Software Evolution. Springer, 2008.

[94] Black, R. Managing the Testing Process,: Practical Tools and Techniques for

Managing Hardware and Software Testing, Second Edition. Wiley, 2002.

[95] Koomen, T., Aalst, L. van der, Broekman, B. and Vroon, M. Tmap Next for

result-driven testing. Sogeti. UTN Publishers, 2006.

[96] Young, T. Using AspectJ to Build a Software Product Line for Mobile Devices.

Master Dissertation, Computer Science, University of British Columbia, Canada,

2005.

[97] Greenwood, P. et al. On the Design of an End-to-End AOSD Testbed for

Software Stability. Proceedings of International Workshop on Assessment of

Aspect-Oriented Technologies (ASAT.07), AOSD Conference, Canada, 2007.

[98] Soares, S. An Aspect-Oriented Implementation Method. PhD thesis, UFPE,

Brazil, 2004.

�

��	�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

[99] Soares, S. et al. Implementing Distribution and Persistence Aspects with

AspectJ. In Proceedings of International Conference on Object Oriented

Programming Systems, Languages and Applications OOPSLA, pp. 174-190,

2002.

[100] Mezini, M. and Ostermann, K. Conquering Aspects with Caesar. In Proceedings

of Aspect-Oriented Software Development Conference AOSD, pp. 90-99, 2003.

[101] Zhao, J. Data-Flow Based Unit Testing of Aspect-Oriented Programs. In

Proceedings of the 27th Annual IEEE International Computer Software and

Applications Conference. USA, 2003.

[102] Xu, W.; Xu, D.; Goel, V. and Nygard, K. Aspect flow graph for testing aspect-

oriented programs. In Proceedings of the 8th IASTED International Conference

on Software Engineering and Applications, 2004.

[103] Ceccato, M.; Tonella, P. and Ricca, F. Is AOP code easier or harder to test than

OOP code? In 4th International Conference on Aspect-Oriented Software

Development AOSD – Workshop on Testing Aspect Oriented Programs. USA,

2005.

[104] Zhou, Y.; Richardson, D. and Ziv, H. Towards a practical approach to test

aspect-oriented software. In Proceedings of the 2004 Workshop on Testing

Component-based Systems TECOS. Net.ObjectiveDays, 2004.

[105] Greenwood, P. et al. On the Contributions of an End-to-End AOSD Testbed. In

11th Workshop on Early Aspects - Aspect-Oriented Requirements Engineering

and Architecture Design ICSE. USA, 2007

[106] Lima, G. M. P. S. and Travassos, G. H. Estratégia para Testes de Integração

aplicada a Software Orientado a Objetos. UFRJ. Rio de Janeiro, Brazil.

[107] Harrold, M. J. and Rothermel, G. Performing Dataflow Testing on Classes. In

Proceedings of the ACM SIGSOFT ´94 Symposium on the Foundations of

Software Engineering. ACM, pp. 154-163, 1994.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

[108] Huynh, D. Software Testing Maturity ModelSM (SW-TMMSM). University of

Maryland, 2002.

[109] Burnstein, I., T. Suwanassart, and C.R. Carlson. Developing a Testing Maturity

Model. Crosstalk, Software Technology Support Center, Hill Air Force Base,

Utah; Part I: August 1996, pp. 21-24; Part II: September 1996, pp. 19-26.

[110] Paulk, M., C. Weber, B. Curtis, and M. Chrissis, The Capability Maturity

Model: Guideline for Improving the Software Process, Addison-Wesley,

Reading, Mass., 1995.

[111] Banker, R. D., Datar, S. M. and Kemerer, C. F. Factors Affecting Software

Maintenance Productivity: An Exploratory Study. In Proceedings of the 8th

International Conference on Information Systems ICIS. Pp. 160-175, 1987.

[112] Martin, J. and McClure, C. L. Software Maintenance: The Problems and Its

Solutions. Prentice Hall Professional Technical Reference, 1983.

[113] Kemerer, C. F. Software Complexity and Software Maintenance: A Survey of

Empirical Research. Annals of Software Engineering (1), pp. 1-22, 1995.

[114] Banker, R. D., Datar, S. M., Kemerer, C. F. and Zweig, D. Software Errors and

Software Maintenance Management. Inf. Technol. and Management 3, 1-2, PP.

25-41, 2002.

[115] Barry, E., Slaughter, S. and Kemerer, C. F. An Empirical Analysis of Software

Evolution Profiles and Outcomes. In Proceedings of the 20th International

Conference on Information Systems. Association for Information Systems, pp.

453-458, 1999.

[116] Kemerer, C. F. and Slaughter, S. An Empirical Approach to Studying Software

Evolution. IEEE Transactions on Software Engineering. 25, 4, pp. 493-509,

1999.

[117] Kajko-Mattson, M., Lewis, G. A. and Smith, D. B. A Framework for Roles for

Development, Evolution and Maintenance of SOA-Based Systems. In

�

��
�

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Proceedings of the 29th International Conference on Software Engineering

Workshops ICSEW. IEEE Computer Society, pp. 117, 2007.

[118] Goldschmidt, T., Reussner, R. and Winzen, J. A Case Study Evaluation of

Maintainability and Performance of Persistence Techniques. In Proceedings of

the 30th International Conference on Software Engineering ICSE. ACM, pp.

401-410, 2008.

[119] Rosenblum, D. S. Validation and Verification – Regression Testing. Department

of Computer Science, University College London UCL, 2009.

[120] iBATIS Data Mapper – http://ibatis.apache.org/ (13/03/2009)

[121] JUnit Testing Framework – http://www.junit.org/ (13/03/2009)

[122] Zhu, H., Hall, P. A. V. and May, J. H. R. Software Unit Test Coverage and

Adequacy. ACM Computing Surveys 29 (4), pp. 367-427, 1997.

[123] Pohl, K. et. al. Software Product Line Engineering: Foundations, Principles and

Techniques. Springer, 2005.

[124] McGregor, J.D. Testing in a Software Product Line, School on Software

Engineering–Testing. Recife, Brazil, 2007.

[125] Li, S. and j. Knudsen. Beginning J2ME, Apress, 2005.

[126] Report at the conference Quality Assurance: Management & Technologies.

Ukraine, 2007.

[127] Vincenzi, A. M. et. al. JaBUTi – Java Bytecode Understanding and Testing-

user’s guide-version 1.0, 2004

[128] Delamaro, M. E. and Vincenzi, A. M. R. Structural Testing of Mobile Agents. In

E. A. Nicolas Guelfi and G. Reggio, editors, III International Workshop on

Scientific Engineering of Java Distributed Applications (FIDJI’2003), Lecture

Notes on Computer Science. Springer, 2003.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

[129] Vincenzi, A. M. R., Maldonado, J. C., Wong, W. E. and Delamaro, M. E.

Coverage testing of Java programs and components. Journal of Science of

Computer Programming, 56(1-2):211-230, Apr. 2005.

[130] Sun Java Wireless Toolkit for CLDC – http://java.sun.com/products/sjwtoolkit/

(13/03/2009)

[131] Pezzè, M. et al. Software Testing and Analysis: Process, Principles and

Techniques. Bookman, 2008.

[132] McKay, J. Managing the Test People – A Guide to Practical Technical

Management. Rocky Nook Computing, 2007.

[133] Maldonado, J.C.. Critérios potenciais usos: Uma contribuição teste estrutural de

software. PhD Thesis, Unicamp, Brazil, 1991.

[134] Buschmann, F. et al. Pattern-Oriented Software Architecture: A System of

Patterns. John Wiley & Sons, 1996.

[135] Gamma, E. et al. Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1995.

[136] Spring, L. J., Harris, G. H., Forster, J. J., and Berghel, H. A Proposed

Benchmark for Testing Implementations of Crossword Puzzle Algorithms. In

Proceedings of the 1992 ACM/SIGAPP Symposium on Applied Computing:

Technological Challenges of the 1990's. H. Berghel, E. Deaton, G. Hedrick, D.

Roach, and R. Wainwright, Eds. SAC '92. ACM, pp. 99-101, 1992.

[137] Vincenzi, A. M. Orientação a Objeto: Definição, Implementação e Análise de

Recursos de Teste e Validação. PhD Thesis, ICMC/USP, Brazil, 2004.

[138] Darwin, C. The Origin of Species. P. F. Collier & Son, volume 11, Harvard

University, 1909.

[139] White, L. The Evolution of Culture: The Development of Civilization to the Fall

of Rome. University of Indiana. McGraw Hill, 1959.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

[140] Foley, R. and Lahr, M. M. On Stony Ground: Lithic Technology, Human

Evolution and the Emergency of Culture. Evolutionary Anthropology 12, pp.

109-12, 2003.

[141] Morgan, L. H. Ancient Society: Researchers in the Lines of Human Progress

from Savagery through Barbarism to Civilization. University of Virgina. H.

Hold and Company, 1907.

[142] Sahlins, M. D., Service, E. R. and Harding, T. G. Evolution and Culture.

University of Michigan Press, 1960.

[143] Toffler, A. Future Shock. University of Michigan. Random House, volume 644,

1970.

[144] Naisbitt, J. Megatrends: Ten New Directions Transforming Our Lives. Warner

Books, 6th Edition, 1982.

[145] The Free Dictionary by Farlex Copyright 2009 –

http://encyclopedia.thefreedictionary.com (22/06/2009)

[146] Stellman, A. and Greene, J. Applied Software Project Management. Addison

Wesley, 2005.

[147] Sharma, D. Ten Essentials Elements to Guarantee Enhanced Software Quality.

Article at Embedded.com – The Official Site of the Embedded Development

Community, 2009 - http://www.embedded.com/design/218000002 (17/06/2009)

[148] Filho, F. C.et al. Exceptions and Aspects: the Devil is in the Details. In

Proceedings of FSE, pp. 152-162, 2006.

[149] Moura, M., Garcia, A., Soares, S., Castor, F., Monteiro, M. and Greenwood, P.

On Deriving Benchmarks for Aspect-Oriented Software Maintainability.

Submitted in XXIV Brazilian Symposium on Database – XXIII Brazilian

Symposium on Software Engineering, 2009.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Appendix A
 Here there are some examples of the test cases created to execute MobileMedia

releases. The complete set of the test cases is available in a spreadsheet file at

http://www.cin.ufpe.br/~scbs/liana/.

32

S
or

tin
g

S
or

t p
ho

to
's

 li
st

 b
y

vi
ew

1.
 A

pp
lic

at
io

n
m

us
t b

e
la

un
ch

ed
;

2.
 T

he
re

 m
us

t b
e

ph
ot

os
 a

va
ila

bl
e

an
d

st
or

ed
 o

n
ph

on
e'

s
im

ag
es

 fo
ld

er
.

1.
 T

he
 u

se
r

cr
ea

te
s

a
ne

w
 a

lb
um

 a
nd

 in
se

rt
s

ph
ot

os
 in

 it
 w

ith
 c

or
re

ct

la
be

l a
nd

 p
at

h;

2.
 V

ie
w

 th
e

ite
m

s;

3.
 S

el
ec

t o
pt

io
n

to
 s

or
t

by
 v

ie
w

.

1.
 It

em
s

m
us

t b
e

in
se

rt
ed

 p
ro

pe
rly

;
2.

 Im
ag

es
 s

ho
ul

d
be

sh

ow
n

pr
op

er
ly

;
3.

 T
he

 p
ho

to
's

 li
st

sh

ou
ld

 n
ow

 b
e

or
ga

ni
ze

d
ac

co
rd

in
g

to

vi
ew

 o
rd

er
.

33

E
di

t L
ab

el

E
di

t a
n

ite
m

's
 la

be
l

1.
 A

pp
lic

at
io

n
m

us
t

be
 la

un
ch

ed
;

2.
 T

he
re

 m
us

t b
e

ph
ot

os
 a

va
ila

bl
e

an
d

st
or

ed
 o

n
ph

on
e'

s
im

ag
es

 fo
ld

er
.

1.
 T

he
 u

se
r

cr
ea

te
s

a
ne

w
 a

lb
um

 a
nd

 in
se

rt
s

ph
ot

os
 in

 it
 w

ith

co
rr

ec
t l

ab
el

 a
nd

 p
at

h;
2.

 E
di

t l
ab

el
 o

f i
te

m
s;

3.

 V
ie

w
 th

e
ite

m
s

th
at

ha

d
la

be
l c

ha
ng

ed
.

1.
 It

em
s

m
us

t b
e

in
se

rt
ed

 p
ro

pe
rly

;
2.

 L
ab

el
s

sh
ou

ld
 b

e
ch

an
ge

d
pr

op
er

ly
;

3.
 V

ie
w

in
g

sh
ow

s
co

rr
ec

t i
m

ag
es

 o
f t

he

fil
es

.

1

C
re

at
e

P
ho

to

A
lb

um

N
ew

 p
ho

to
 a

lb
um

cr

ea
tio

n

A
pp

lic
at

io
n

m
us

t b
e

la
un

ch
ed

1.
 T

he
 u

se
r

se
le

ct
s

th
e

op
tio

n
to

 c
re

at
e

a
ne

w
 p

ho
to

 a
lb

um
;

2.
 T

he
 u

se
r

ty
pe

s
so

m
et

hi
ng

 a
nd

sa

ve
s

it.

1.
 A

 n
ew

 s
cr

ee
n

sh
ou

ld
 b

e
di

sp
la

ye
d

w
ith

 a
lb

um
's

 n
am

e
in

fo
rm

at
io

n
to

 b
e

in
se

rt
ed

.
2.

 T
he

 n
ew

 a
lb

um

sh
ou

ld
 b

e
cr

ea
te

d
an

d
di

sp
la

ye
d

on

th
e

al
bu

m
s

lis
t.

3

A
dd

 /
D

el
et

e
P

ho
to

La

be
l P

ho
to

A
dd

in
g

a
ph

ot
o

w
ith

co

rr
ec

t a
ttr

ib
ut

es
.

1.
 A

pp
lic

at
io

n
m

us
t b

e
la

un
ch

ed
;

2.
 T

he
re

 m
us

t b
e

a
ph

ot
o

av
ai

la
bl

e
an

d
st

or
ed

 o
n

ph
on

e'
s

im
ag

es
 fo

ld
er

.

1.
 T

he
 u

se
r

se
le

ct
s

an

av
ai

la
bl

e
al

bu
m

 a
nd

se

le
ct

 th
e

op
tio

n
to

 a
dd

a

ph
ot

o;

2.
 T

he
 p

ho
to

 n
am

e
an

d
pa

th
 s

ho
ul

d
be

 in
se

rt
ed

(p

at
h

as

'/i
m

ag
es

/n
am

e.
pn

g'
)

an
d

sa
ve

d.

1.
 A

 n
ew

 s
cr

ee
n

sh
ou

ld

be
 d

is
pl

ay
ed

 w
ith

ph

ot
o'

s
na

m
e

an
d

pa
th

in

fo
rm

at
io

n
to

 b
e

in
se

rt
ed

;
2.

 T
he

 n
ew

 p
ho

to
 is

st

or
ed

 in
 th

e
se

le
ct

ed

al
bu

m
.

T
C

 #

F
ea

tu
re

D
es

cr
ip

tio
n

P
re

-
co

nd
iti

on

S
te

ps

E
xp

ec
te

d
R

es
ul

t

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Appendix B
 The bug report created by iBATIS/MobileMedia joint case study test people.

 iBATIS/MobileMedia Joint Case Study

 Fault Description Sheet

1 Tester/Developer who has identified the
fault

2 Fault location

3 Fault description

4 Test case name

5 Test case file

5 Has this fault been previously reported
(e.g. in

Yes No

 a bug repository)?

6 If you answered “yes” in question 5, please provide details (e.g. fault repository, fault
identifier etc.)

7 Is the fault related to OO
mechanism?

 AO mechanism? Both
?

8 Please, provide more details (e.g. which mechanism, which way it is applied)

9 Is the fault related to CC-concern? Non-CC
concern?

 Both
?

10 Please, provide more details.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Appendix C
 The example of a test case created in the HealthWatcher study. The other test

cases created can be found at http://www.cin.ufpe.br/~scbs/liana/.

Insert Complaint

1. Normal flow

Inputs

o The system must be on air.
o The user chooses the Insert a new complaint option and

describes the refered complaint (Animal, Food, or Other).
o The user fills all information on the form and asks for the

complaint to be inserted.

Results

o The complaint is inserted and its code is displayed so that
the user takes a note. No exception shall be thrown.

o In case the system is using the database, a query to it
must be done in order to confirm that the data typed on the
form were inserted (use the class util.ManageTables).

2. Alternative flow 1

Inputs

o The system must be on air.
o The user chooses the Insert a new complaint option and

chooses the kind of the refered complaint (Animal, Food,
or Other).

o The user fills only the the mandatory information (defined
by the use case) on the form and asks for the complaint to
be inserted.

�

����

�

ESCOLA
POLITÉCNICA DE

PERNAMBUCO

Results

o The complaint is inserted and its code is displayed so that
the user takes a note. No exception shall be thrown.

o In case the system is using the database, a query to it
must be done in order to confirm that the data typed on the
form were inserted (use the class util.ManageTables).

3. Alternative flow 2

Inputs

o The system must be on air.
o The user chooses the Insert a new complaint option and

chooses the kind of the refered complaint (Animal, Food,
or Other).

o The user shall provide no information on the form and asks
for the complaint to be inserted.

o If requested to, the user fills the information, but only the
information requested by the form.

o The latter step is repeated as many times as the system
asks so that the information is filled.

Results

o A message is displayed asking him/her to fill the
mandatory fields in blank, and the complaint is not
inserted.

o The latter step is repeated until all mandatory information
is provided, when the complaint is inserted and its code is
displayed so that the user takes a note. No exception shall
be thrown.

o In case the system is using the database, a query to it
must be done in order to confirm that the data typed on the
form were inserted (use the class util.ManageTables).

