Departamento de Jistemas e (omputagao

- ﬁ:d S.C...

ESCOLA POLITECNICA
DE PERNAMBUCO

Programa de Pos-Graduacdo em Engenharia da Cor@putac

Testware Support: Addressing Test
Elements and Supporting a
Benchmarking Framework in Aspect-
Oriented Software Assessment

Dissertacéo de Mestrado

Engenharia da Computacéao

Liana Soares de Oliveira e Silva
Orientador: Prof. Dr. Sérgio Castelo Branco Soares

Recife, 22 de Junho de 2009

sdd

8

UNIY]R’i]i)AI}L
DE PERNAMBUCO

. _ad
- ﬁ[d S.C....

Departamento de Jistemas e (omputagao
ESCOLA POLITECNICA
DE PERNAMBUCO

Testware Support: Addressing Test
Elements and Supporting a
Benchmarking Framework in Aspect-
Oriented Software Assessment

Dissertacéo de Mestrado

Engenharia da Computacéao

Esta Dissertacdo € apresentada como requisito
parcial para obtencdo do titulo de Mestre em
Engenharia da Computacdo pela Escola
Politécnica de Pernambuco - Universidade de
Pernambuco.

Liana Soares de Oliveira e Silva
Orientador: Prof. Dr. Sérgio Castelo Branco Soares

Recife, 22 de Junho de 2009

sdd

8

UNIY]R’i]i)ﬁ]}L
DE PERNAMBUCO

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Liana Soares de Oliveira e Silva

Testware Support: Addressing Test
Elements and Supporting a
Benchmarking Framework in Aspect-
Oriented Software Assessment

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Acknowledgements

First of all, | would like to thank God for givingne strength and sanity to get
this far. To my mother Miriam who has always beéidun me and has never measured
efforts to support me in the pursuit of my goals. my father Frederico who is no
longer among us but has taught me so much, | digonothe Navy but | know | made
him proud. To my sister Daniela and my niece Daphihe cheer up my days and keep
me standing. To my dear grandfather Francisco ainwimany gifts | have inherited.
To my dear grandmother Luisa who has showed me2bdtis always above all things.

To my advisor Sérgio for having always been supp®idlong these two years,
and since college classes. Has found the balanees&e work demanding and being
friendly, has been a fundamental piece to assethisi€onquer.

Thanks to my friends and family spread out overalNaRecife, Rio and Séo
Paulo.

Thanks to my MSc colleagues from “O que vale é&afr | am sure the tracks
in the forest, the events attendance and the rtatkly have somehow helped me along
the way. To Georgina for being so available to hefpadministrative issues at the
University.

Thanks to the BSc students who have helped me enexiperiments, data
collections and facing issues. To the researchera Lancaster University, USP and
UFPE. To SPG research group for the discussionsapylort.

Thanks to the professors from the Department of @dmg and Systems at

University of Pernambuco, and the University fanding my research.

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Abstract

The process of developing or evolving a softwarstesy involves many
activities and different principles, techniquestmoels and tools have been used to help
building a reliable product. New project developiideas and programming principles
have been suggested to support the software deweltpprocess. Aspect-Oriented
Programming has been proposed as a new technigdeviEop software achieving
better modularity through separation of crosscgtoncerns, that otherwise would be
tangled with other concerns and spread along thdufes. Also, the reliance on
services and information requires software to fiomctorrectly over many years ahead.
This scenario stands out the need of having qadlgoftware. Software testing plays an
essential role to uncover and correct as many ef gbtential errors as possible
according to the software project's strategy artips. Without an adequate technique
to assure quality and reliability, the softwaretegs may decrease over its lifetime.
Experiments and studies in software engineering aken place to provide sufficient
evidence regarding suitability, limits, qualitiests and associated risks of the subject
under observation within this context. A BenchmagkiFramework (BF) has been
proposed in this regard defining criteria and appeted guidelines to assess the
representativeness of empirical studies and Aspeeirted (AO) benchmark candidate
applications characteristics. Therefore, this dissien presents a Testware Support
with test core elements addressing test elemergsrmort the capabilities of a software
project against testing issues to conduct the prajgo the right test direction. Such
initiative extends and helps supporting the BF,vgliog the minimum testware
information required within a software project oase study in order to provide
effective test measures and support more reasondblgsions regarding its
maintainability and evolution. The effectivenesstbé testware support is assessed
through its appliance in two different studies wi® applications and the evaluation of
the BF extension considering the insertion of g#sware support.

Keywords: Software Testing, Testware, Software Maintenandspect-Oriented

Software Development, Benchmarking, Testbed.

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Contents

Introduction
1.1 Motivation
1.2 Objectives
1.3 Contributions
1.4 Organization of Dissertation
2 State of Art Review
2.1 Object-Oriented Software Development
2.2 Aspect-Oriented Software Development
2.3 Software Testing
2.3.1 Testing within Software Life Cycle
2.3.2 Types of Testing
2.3.3 Test Maturity Model
2.4 Object-Oriented and Aspect-Oriented Softwargtimg
2.5 Software Maintenance
2.5.1 Problems in Software Maintenance
2.5.2 Maintenance Testing
2.6 Software Evolution
2.7 Final Considerations
3 Background

3.1 Empirical Studies on Software Maintenance

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

3.1.1 Frameworks, Benchmarks and Testbeds
3.1.2 Aspect-Oriented Software

3.2 The AO Software Development Testbed

3.3 The Benchmarking Framework

3.4 The Case Study
3.4.1 Goals
3.4.2 Target Systems
3.4.3 Testing Strategy
3.4.4 Tooling Support
3.4.5 Bug Reporting
3.4.6 Test People

3.5 Final Considerations

4 Testware Support

4.1 First Basics

4.2 Test Strategy

4.3 Test Environment

4.4 Test Tools

4.5 Test People

4.6 Aspect-Oriented Attributes

4.7 Final Considerations

5 Benchmarking Framework Extension

5.1 Original Definitions of the Benchmarking Franuaw
5.1.1 Process
5.1.2 Attributes of AO Software Products
5.1.3 Maintenance Scenarios

5.2 The Test Attributes

5.2.1 First Concerns
5.2.2 Test Strategy
5.2.3 Test Environment
5.2.4 Test Tools
5.2.5 Test People
5.3 Final Considerations
6 Evaluation
6.1 Testware Support Evaluation
6.1.1 MobileMedia
6.1.2 HealthWatcher
6.1.3 Discussion over Testware Support Evaluation
6.2 Benchmarking Framework Extension Evaluation
6.3 Final Considerations
7 Conclusions
7.1 Related Work
7.2 Final Considerations
7.3 Future Work
References
Appendix A
Appendix B

Appendix C

> |
POLE
ESCOLA

POLITECNICA DE
PERNAMBUCC

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

List of Figures

Figure 2.1General V-model

Figure 2.2 Testing in incremental development

Figure 2.3 The 5-level structure of the TMM

Figure 3.1 The various elements that compose Hibdd

Figure 3.2 The inputs and outputs of the benchmgriiamework process
Figure 3.3 MobileMedia feature model

Figure 3.4 Interface of MobileMedia Release 2

Figure 3.5 JaBUTi screen showing different colanrsdifferent weights associated to test
requirements for bytecode of MobileMedia SPL Redehs

Figure 4.1 Testware Support
Figure 4.2 Modules of testing first concerns agsess questionnaire
Figure 5.1 Schematic overview of the BF's produtilautes

Figure 5.2 Schematic overview of the BF's mainteeascenarios attributes

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

List of Tables

Table 2.1 Current Statements of the Laws of Evoluti

Table 3.1 Summary of changes in MobileMedia SPL

Table 3.2 MobileMedia SPL OO Releases’ details

Table 3.3 Numbers from OO Releases — iBATIS andiMbledia
Table 3.4 Test case example

Table 3.5 Number of test cases executed on MobieM8PL
Table 4.1 Test items to address in software project

Table 4.2 Items to address initial test directions

Table 4.3 General items to address test process

Table 4.4 General items to address test planning

Table 4.5 Test concerns to address test planning

Table 4.6 Examples of test activities during thag@s of a software project
Table 4.7 Standard Test Plan

Table 4.8 Requirements for environment

Table 4.9 List of test tools

Table 4.10 Steps to consider when selecting ddebt

Table 4.11 Advantages of using test tools

Table 4.12 Items addressing concerns when seleetidgools
Table 4.13 Test Team Roles

Table 4.14 Software testing principles and taslksrs competency

Table 4.15 AO attributes to address in softwaregegect

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Table 5.1 Test attributes

Table 6.1 Details of OO releases of MM and HW

Table 6.2 Details of AO releases of MM and HW

Table 6.3 Evaluating test items to address in Mdbéddia case study
Table 6.4 Evaluating items to address initial tisdctions

Table 6.5 MobileMedia case study Test Plan

Table 6.6 Items addressing issues when selectadgo@s

Table 6.7 Evaluating software testing principled tasks against competency in MobileMedia
case study

Table 6.8 Addressing AO attributes in MobileMedia

Table 6.9 HealthWatcher releases’ scenarios ofggsn

Table 6.10 Evaluating test items to address intHé&tcher study
Table 6.11 Evaluating items to address initial tistctions

Table 6.12 HealthWatcher study Test Plan

Table 6.13 Items addressing issues when seleasidgdols

Table 6.14 Evaluating software testing principled tasks against competency in
HealthWatcher study

Table 6.15 Addressing AO attributes in HealthWatche
Table 6.16 MobileMedia case study test attributes

Table 6.17 HealthWatcher case study test attributes

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Chapter 1

Introduction

The evolution of mankind has been a subject ofatoand anthropological
studies and theories dealing with social and caltuvolution, ever since the
evolutionism paradigm concept was made in Bioldgye idea of Charles Darwin [138]
that the living species are capable to transformmitelves throughout time and the most
adapted to their environment are naturally pribedti and more able to survive longer
has also fit as a concept to early social scierdesy sociologists have created social
theories with different perspectives and some eihth139, 140, 141, 142] defend
technological progress as the main factor headimg development of human
civilization. Gerhard Lenski [1] declares that thre information and knowledge a
given society has, the more advanced it is.

Lenski’'s approach became more relevant when teolgiwal advances followed
and increased through time representing massivgrgse on different areas, such as in
economic system, agriculture, civil engineeringchétecture, communication and
telecommunication systems. In the ancient worldhnelogy meant the invention of
means that would evolve a civilization era, sucliires bow, pottery, domestication of
animals, agriculture, metalworking, the alphabbg tvriting and the like. Thus, the
researchers were able to establish a link betweeralsprogress and technological
progress. They argued that different environment$ t&chnology required different
adaptations, and that as a resource base or tegynchanged, so too would a culture.
They point that the determinant factors in the tgwment of a given culture are mostly

related to technology, but noted that there arersdary factors. Lenski has focused on

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

information, its amount and use. Such declaraticas wof paramount importance
towards the growing importance of information tealogies and technology progress
over the decades. The globalization in the 197@sthe upcoming years have been
studied [143, 144] towards the trends that wouldemheine the development of
computers and technological progress. Thus, theitapce of software in the modern

world could no longer be underestimated.

Technological improvements have exponentially growvnsuch a way that
information systems came to a point where dailyvaies and business decisions
depend on their efficiency. For example, in the aradvorld, a failure in a transaction
software from a bank, a long time of response de@ce management connection or
even just a software engineering experiment whiak hot been properly tested and
analyzed can cause serious consequences, suaaasidl damages, loss of customer
trust, waste of time and energy and mistaken pipdli paths, among other

disadvantages.

The process of developing a software system ingolveny activities and
different principles, techniques, methods and tbalge been suggested to help building
a reliable product. In the middle of these advanoew project development ideas and
programming principles have been suggested to stupgpe software development
process [39]. As a result, a more comprehensiveflaxible software code became
available. With the evolution of these principlesdathe programming techniques
gradual upgrades, Object-Oriented programming (OBdy arisen and became the
dominant programming paradigm in the 90s [40]. tlesPOP has caused a great
revolution on the way how to create software,iit Bad some issues, such as not being
able to separate all concerns, especially the mgerding functional interests. Hence,
not even a decade later, many developers found sd&ned to be the resolution of
OOP problems: Aspect-Oriented Programming (AOP) [k been proposed as a new
technigue to develop software achieving better regjo@m of crosscutting concerns,
instead of being spread into the code.

The reliance on services and information requiodssvare to function correctly

over a long time, so that means that possible ®ittat could occur on the software

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

product are not meant to be there. This scenaaimdstout the need of having qualified
software, which means the bugs and associatedarsk® be reduced. Software quality
entails more than just the elimination of failur@scording to ISO/IEC-Standard 9126-
1 [2], some factors belong to software qualityioédhcy, reliability, maintainability,

portability, functionality, usability, security, dnnteroperability.

Among the existing techniques of software verifimatand validation in order to
increase quality, software testing plays an esslertie to uncover and correct as many
of the potential errors as possible before itsvaeli to final use. Software testing can
provide evidences to measure quality based on nements and warn the software
engineer of potential errors. The test engineer d@termine if the observed system
behavior conforms to its specifications and aimandinding defects, testing can bring
to light the lack in quality, which may reveal ifsia defects. Besides testing, there are
other quality assurance alternatives such as fomweaification, inspection, defect
prevention and fault tolerance. All these actigtiseed to be managed during quality
engineering process in order to keep pace withityuedsurance strategies early defined
in the product development planning.

Different levels can be distinguished when softwiareested throughout its life
cycle [5]. Thus, the focus and test objectives rtlagnge and different types of testing
can be more relevant than others. Generally, faintypes of testing can be identified:
functional testing, non-functional testing, struelutesting and testing related to
changes. These techniques must be seen as comfdeynene of the other. It is
appropriate to consider all the existing differéypies of test techniques in a project,
since testing a system’s functionality or compormamy at a specific level may not be
enough to meet overall test objectives [6]. Basedhmse types of testing, different
approaches and test criteria have been developpbtide a systematic evaluation of

test activity.

Because exhaustive testing is not possible andubecshere are so many
different established criteria, a crucial pointttiias to be faced when dealing with

software development and software testing is tloécehof a test strategy to be followed

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

in project or study. The test strategy is partlod test plan and it defines priorities

depending on the risks involved, it specifies teshniques and test exit criteria.

The cost of a failure on a high-tech system in@saaccordingly to its
importance and when a critical application or stddys, serious damages can be
derived. Considered one of the most expensive tasksoftware development process
[3], software testing can reach up until 50 peragina project’s total cost. Still, the
information obtained with testing is of paramountpbrtance to other tasks of the
software development process, such as debuggingntanance and reliability

estimation [4].

Empirical and experimental studies regarding safweesting and software
testing techniques are of great importance for #illw the establishment of strategies
of low cost and high efficacy [7]. Empirical stugjesuch as to verify the effectiveness
of structure-based criteria [8] and evolutionarstiteg for structural test data generation
[9], have been developed throughout the years atinfytesting criteria, analyzing their
characteristics and performing comparisons amorah edher in order to provide
reliable examples and models to be taken for fustudies.

Regarding the context of this dissertation, tesélsg plays an important role on
software maintenance. More than 50 percent of @mvaoé system’s life cycle costs are
spent on maintenance [10]. As the system is ustst df has been released, it is
modified either to correct errors or to improve tbdginal system. After each
modification, the system must be retested in otdererify if the modifications have
impacted overall system’s functionalities. Thiskt@s known as regression testing [23,
24, 25, 85, 86, 199], in which the goal is to miraenthe cost of system revalidation.
However, changes at any level may lead to all-levgldates and this can lead to an

enormous task force.

Generally, one of the drawbacks towards the pregoésoftware engineering is
associated with the first steps to be taken irdofaware maintainability empirical study
[13], which include selecting, developing and adaptepresentative systems that can
be used as benchmark for future studies. In spiseftware engineering being part of a

science that aims to fulfill the need of smoothammplex activities, software systems

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

development tasks are still strongly dependabléunan creativity and participation;
and this may reduce the accuracy of software ergimg studies. Thus, scientific
experiments are required to testify and increasddbel of reliability of new methods,
technigues, processes and tools suggested by reticabsoftware engineering study.

Literature regarding software maintenance cont@nspieces when comparing
to software development activities [11]. Stilljstpossible to say that most of the issues
associated with software maintenance are relatethéoway the software has been
planned and developed. Based on latest studies §b¥jware maintainers can use
information from test analysis to reveal valuableaimenance information. The
testability of a system, i.e., “the degree to whacBystem or component facilitates the
establishment of test criteria and the performavifctests to determine whether those
criteria have been met”, according to IEEE Standalaksary definition, has the power
of reducing testing difficulties, and thereby reuhgctesting costs and time, and, thus,
increasing effectiveness on software maintenanbe.ideas and importance regarding
the attention to testability in the beginning oé teoftware development process have
been studied by different authors [14, 15, 16,18}, but what can certainly be outlined
from all of them is that the higher the testabilgyel in a software system, the easier it

will be to test it and, hence, the lower the tegeffort [19].

Test models [20], test procedures [21] and stu2§ regarding programming
languages particularities that need to be takem astount when a software system is
under maintenance have helped testers and softwairgainers to understand the way
to handle software evolution and systematicallyrionp their jobs on providing a better
strategy on this task. Different regression teshméues have also been suggested [23,
24, 25, 88, 89] for the test engineers to findlhkst strategy that would fit their project,
considering test environment and test automati@veltheless, regression testing is not
always well seen and followed in a project or iadequately performed: either the
testing of new features or the revalidation of otes, or both, is sacrificed [24, 26]. In
a survey of 118 software development organizatiomsly 12 percent of these
organizations were found to have mechanisms faurgmsgs some level of adequacy in

their regression testing [27].

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Without an adequate technique to assure quality rahdbility to software
development or maintenance, the system will deereager its lifetime. Software
systems require continuous change and enhancemeaatisfy new and changed user

needs and preferences, business requirements ladreasons.

Empirical studies in software engineering aim tovue sufficient evidence
regarding suitability, limits, qualities, costs aadsociated risks of the subject under
observation. However, software development’s ozgtions face the heterogeneity of
study reporting, which hinders the integration mfiormation into a common body of
knowledge and, hence, incomprehensive decisionstpghen selecting a software
engineering technology, method, technique or t@d].[It is possible to cite some

reasons for this lack of solidity in software eregrnng empirical studies:

There is no pattern of where to find required infation: it is difficult to find
relevant basic information for the study becaugestiime type of information
is located in different sections of different studports;

The difficulty to handle and control every artifacvolved in the study: there
may be variables, such as different technologiesthadologies, process,
personnel, partial results, environment, that may the experimental job
into an ad-hoc confused procedure;

The portability of the results: what has been dafifrom a study may not
always fit in another study, if a minor variableaitered. Empirical evidences
and conclusions cannot always be generalized apdledpto a different
project;

The general costs to allocate people, tools andggnduring the process of
software development, experiments may be requintdnay be declined due

to the high probability of costs that may be regdifrom different fields.

However, not to drive attention (and money) to amal study in the beginning
of software development or in software maintenasare lead to even higher costs later
on when the software is already being finally uaed not studied as it should. With
this principle in mind, different researchers [28, 30, 31, 32, 33] have reported the

need of a standardized system to conduct empstadles that could improve the way

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

new technologies are emerged, especially from awed® industry. The transference
of a technology from academic field to industry algutakes an average of 18 years to
be effectively disseminated [34]. Thus, the needresults and scientific evidences
become an obstacle when organizations’ and institsit decision makers are required

to evaluate the risks and benefits of technologies.

Several guidelines [34, 35, 36, 37, 38, 115, 1Hsjehbeen proposed aiming to
reduce the gap of scientific substantiation addrasd assessment. However, the
particularities of the area have increased thd lefvéifficulty in finding the best path to

follow.

AOP, for instance, is a relatively new approach e is little evidence about
the advantages and disadvantages regarding itstamahility [42]. Testing and
analyzing Aspect-Oriented (AO) software must dedlhwew problems introduced by
AO language characteristics and the ones inhefited OOP as well. Encapsulation,
inheritance, polymorphism, aspects; they all previeénefits to a project and to coding,

but they also offer new challenges to testing aathtenance [43].

1.1 Motivation

One of the creators of AOP, Gregor Kiczales, haggssted that “for a
programming paradigm to reach a broad acceptaneeeds to be sufficient expressive,
efficient, intuitive, compatible and provide a gosupportive tool” [44]. In spite of still
being considered a new concept, AOP is alreadwasimg these characteristics. Several
studies [45, 46, 47, 82, 100] have been condudezhow that AOP can indeed work
and, furthermore, it is even being adopted on thglementation of applications from
different domains like web systems [48, 99], operatl systems [47], software product
lines [50, 51, 96] and middleware [49]. Howevegerthis a lack of contributions to the
community when advantages and disadvantages rega®lDP maintainability are
under discussion [51, 52].

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Benchmarks have been used in software engineeongompare different
techniques dealing with software evolution. Fewnegkes [53, 54] have been proposed
listing the characteristic attributes of softwargstems, representative cases and
attributes to classify the merits of the technigaed tools themselves. Still to create
such benchmark model within the context of OA safsvmaintenance required dealing
with empirical studies general difficulties and maning AOP related challenges.
Hence, such benchmarking may not be consideredaap &sk. On top of that, a
Benchmarking Framework (BF) [42] has been propasedssist on preparing and
standardizing empirical evaluations regarding A@veare maintenance techniques. It
defines criteria, standards and appropriated guie®lto assess the AO software

maintenance characteristics, across benchmarkcagiphs.

The development and maintenance of software systeEwglve complex
relations among a high number of artifacts. Difféngersions and configurations evolve
in such a way that the update of requirements caanmadaptations in associated
testwaré. While it is clear that testing intends to detéamilure, test activities are
strongly related to software evolution, for whebu is corrected, a new functionality
may become available. When testing different saiw@atures and components in a
larger perspective, the number of new availablectionalities that could have been
bugged and, thus, properly detected and fixed, waterstandably be increased and
significant. Besides, a piece of software that eeslwithout any endorsement that it
indeed functions as expected and there is a minimuatity assured with it, is mostly
vulnerable to address inappropriate maintenancevotution scenarios concerning

inadequate software elements, and not even knowving

The strong interconnection between the test proaedsthe development and
maintenance processes means that appropriate radjust must be made to achieve
optimum collaboration [55]. Different studies haaiened to provide a characterization
schema for software testing techniques [56, 54lst68] and/or framework [59, 60],
where test engineers could define data models oadsested when selecting a test

! Testware Artifacts produced during the test process regliio plan, design and execute tests, such as
documentation, scripts, inputs, expected resuled;up and clear-up procedures, files, databases,
environment, and any additional software or uéitused in testing [6].

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

technique. However, the studies were not geneaigimto be used as a whole element
within a software evolutionary benchmarking; ledbred¢ adequate to fit and support an

AO software maintenance benchmarking frameworkha®ne [42] mentioned above.

With proper testware in a software maintenance hacking, the quality
improvement engineers in a software project defireerelated necessary information
about how the test data can be useful during avaodt maintenance or evolution
process in order to downsize the dimensions ofiesui a more specific scenario to be
handled, such as AO software evolution scenariaisTthis dissertation has developed

a testware support to extend such BF structurersider the test context in it.

As it is explained in details in Chapter 5, thisrkvbhas been motivated from a
case study that has taken place within the comtettte BF and was provided with poor
test strategy and no test planning. As it was aptexncase study, it happened not to be
able to provide the expected successful outcontleeirend of it, and the reasons mostly
lie upon the lack of testing process flow knowledgased on such experience, the
context and what the testing literature offers nbaya, this dissertation has proposed to
create the testware support with test core elentenbe addressed in a case study or

software project, so that testing flows smoothlg anthe right direction.

1.20bjectives

The subject explored in this dissertation is reldie the definitions of the AO
software maintenance Benchmarking Framework [42]iclv is already a consistent
contribution in which the context this work is ing&l and makes use of. The main
purpose of it is to define a testware support weting core element to be introduced to
the existing BF.

The testware support provides what it takes froentéstware context to allow a
higher confidence and positive effect on the sdienassessment of AO software
maintenance and evolution. While the BF defineteda and guidelines to evaluate

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

maintainability characteristics of AO software, tbere testing element embraces the
minimum test information to enable a proper strategcording to the software project
particularities. Such information comprises thestfibasic concerns to consider, testing
strategy, test environment, test tools, and thepesple. To support maintenance and /
or evolution decisions, questionnaires are presetttgurport and surface the existing

test information there is in the study and whatlsamone with it.

The issues observed in the case study that madivtate start of this work are
described in details along Chapter 3, 4 and 5 heg $erved as lessons learned of what

needed to have been addressed so that it coulddeavea successful study.

The testing core element aims to help design, wexifd validate a software
system under maintenance or through evolution uappyopriate testing process flow
to address adequate approaches to assess aspdtis $oftware to evolve. With the
introduction of the testing core element into the, Besearchers and professionals will
have more resources to spread their visions angesimoreach a more critical and safe
evaluation when selecting an application or effedyi performing its evolution or
maintenance than if they did not consider testwatbe context.

This study will also help upcoming studies thay reh the BF for evaluation of
scenarios to represent a proper AO software mantn It differs from a software
process because it addresses the core test eledneuidy, initially assessing the first
concerns in testing through a first set of questiona questionnaire, as it shows ahead,
and, after, assessing and addressing specifiel@sents, and not only the process. The
test process can be handled along together witlugb&ul information provided by the
tesware support study assessment, according toeteapproach that fits the project so
that it flows properly.

This study aims reducing the likelihood of wronglgdressing maintenance
assertions and decisions for a system to flow ®pribcess. It also aims to improve the
accuracy of planning and evolving future projedtsis work is relevant and important
for the reasons here introduced and because heisfitst initiative to address test

elements within the context of this kind of framelo

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

This initiative intends to reduce the lack of sd¢ifen results in AO studies, for

its purpose is to smooth over the evaluation pcasd enable to spread their

replications involving AO software maintenance. Enit will also become easier to

evaluate the pros and cons when adopting AO teakeignd understand the benefits of

different AO testing approaches in different ciraiamces.

1.3Contributions

The contributions of this dissertation can be sunued as:

Definition of testware support:

o Definition of test elements (first testing ideastrategy,

environment, tools, test factors, risks, test peppb assess test
characteristics and test process flow in a softypaogect or case
study;

Use of the testware support to guide researcheesested in testing

perspectives:

o Guide selection of applications and their mainteeascenarios,

based on their testware and testing needs;

0 Guide evaluation of what test direction in a precé®w to

o

(0]

follow, based on test process, environment, tquéssonnel, test
factors and risks;

Guide test characteristics assessment in a softgraject within
different contexts in its life cycle (developmembaintenance,
evolution);

Possibility of criteria extension considering fuathest elements
to be addressed to comply with software projectase study

goals.

The extension of the AO software maintainability ntlemarking

framework:

(0]

More detailed assessment of characteristics in éf@vare;

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

o More confidence in spreading the scope and consigler
information from another process that flows alongftvgare
development or maintenance;

o0 More controlled and assisted decision making fr@searchers
and practitioners using the BF.

Evaluation of using testware support:

o Use of the testware support to address testing ezltsmin
software development or test projects, softwarenteaance
projects, case study, experiments;

0 Use of testware support to surface existing testnehts in a
software project or case study;

o0 Use of testware support to assess the state ofimexisest
elements and detect lack of test direction in gegto

Evaluation of using the extension of the BF consindetestware support:

0 To plan more detailed new experiments;

o To identify applications and benchmarking scenarios

1.40rganization of Dissertation

This dissertation is organized in further 6 chaptén which the context and
evaluation are described in details to provide numesistencies to the contributions.
Chapter 2 describes the state of art, where ibdhices the main concepts of OO and
AO paradigms, software testing and a brief dedonpbf software maintenance, its
importance and problems. In Chapter 3, backgronfaitration is introduced, such as a
discussion regarding the empirical studies on so#vwmaintenance and evolution, the
existing structures to support such works and #se study inserted in this context that
has motivated this work, for it was provided withpaor test strategy and testware,
which led to unsuccessful results. In Chapter 4 tibstware support is presented
addressing the test core elements to be considesedase study, such as the one which

motivated this dissertation. The testware suppoovigdes such test elements, and its

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

benefits and advantages are discussed. The propasedsion of the BF now

considering test issues with the insertion of #&tware support in it is presented in
Chapter 5. Chapter 6 presents the evaluations thf tegtware support analyzed alone
and its insertion within the BF with two differeapplications in different case studies.
The conclusions of this work are presented in Girapt Finally, the References are

found next and the Appendixes afterwards.

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Chapter 2

State of Art Review

This chapter presents some of the concepts arspgmives related to software
development, testing, maintenance and evolutiomedisas it characterizes the scenario
for the associated perspectives regarding AO softwa/lost attention is paid to testing
views, concepts and challenges, as it is the n@uosf of this dissertation. Initially, in
Section 2.1 and Section 2.2, there is a brief gesen of the main characteristics and
concepts of Object-Oriented and Aspect-Orientedwsok development. Next, in
Section 2.3, some of the main directions in sofevéesting are described. The
definitions of testing during software developméife cycle, test levels, types of
testing, Test Maturity Model concepts and main teshniques are emphasized because
of the context of this dissertation. In Section, 2lvé main criteria defined for OO and
AO software testing are described. The importaricofiware maintenance, drawbacks
and testing process flow within maintenance areudised in Section 2.5. Following
this line, software evolution and testing proceksvfwhen evolving software are
described in Section 2.6. Finally, Section 2.7 @n¢s final considerations about this

chapter.

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

2.1 Object-Oriented Software Development

The programming language Smalltalk can be seethasresult of the full
concept of Object-Oriented Programming (OOP) degyedioin the 80s [61]. Born as the
solution for the search of quality software impnont that would keep up with
hardware increasing complexity back then, OOP ade&e common problems focusing
on data rather than processes. Reuse, modulanzaimplification and maintenance
costs reduction were some of the benefits of uSIogP.

The OO programming language must provide suppariséme key language
concepts, such as objects, classes and subclagdesiitance and inclusion
polymorphism, which are briefly described as foléown OOP, data and procedures are
part of a single basic element, tbieject. Objects provide a natural way to model real
and cyber-world entities, such as files, databasesy pages and user interface
components. A family of objects with similar vad@bcomponents and methods
(functions) is known as @lass An extension of a class with additional comporemt
methods is known assaibclass which can extend itself to its own subclassedding
a hierarchy of classes. The subclass usually itsheli methods of its superclass. This
inheritance concept helps programmers on reuse, which imgastproductivity. The
concept ofinclusion polymorphism represents the possibility of an object to have
different forms, i.e., an object of a subclass fnayreated as an object of its superclass.

This concept enabled adding new methods to exiglimgses without the need
of recompiling the application bgynamic binding. Also objects can send and receive
messages. Mnessagas an object’s request to execute one of its nmithth can change
the state of an object or send messages to otfenteb

Because of the enormous progress from procedueeted and imperative
programming that dominated the industry before G@dse, OOP became the master
programming paradigm in 1990s. OOP enabled a highstraction level than other
methodologies, allowing a better representatiothefelements that would compose a
problem’s solution and this would be good for reudewever, the advantages would

also be a challenge for a developer to face antbyed to. The implementation of

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

concerns (also known as some functionality, requénet or interest in a program)
should follow the methodology’s rules and desigttgras principles. The goal was to
design a program so that functions could be opgdhindependently on other functions,
making it easier to understand, design and maintamplex systems; but some
concerns defy these forms of implementation andgsmat multiple abstractions in a

program, making a class handle more than its owicerm.

The incapability of OOP to modularize systemic @mne causes the
decentralization of the code and its implicatio®]{

Code replication: a same treatment may be necessdifferent classes
that do not belong to the same inheritance tree;

Maintenance hindrance: every change on existingcerms implies a
complete scan throughout the code to locate a lpesshplementation
modification;

Less code reuse: a change in a specific orthogmralern in a generic
class may hinder the generic method use by anolhes;
Understanding: the code becomes less comprehensilite systemic

concerns implemented (scattering code and tanglde)c

These problems break the essential principles oP O@poverish software
design quality and restrict the tasks of projectimgplementing and maintaining
software artifacts. Thus, it is possible to obsehat although OOP may simplify some
issues from older programming languages and probelgefits to software systems

projects, it may also generate new issues and casmbe software quality.

2.2 Aspect-Oriented Software Development

Aspect-Oriented Programming (AOP) [44] has beenppsed as a way to
improve the separation of concerns in software ldgweent aiming to support better
reuse and software evolution.

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Concerns are relevant characteristics of an apitawhich can be divided
into aspects, and thus, representing the requiresnathe application. Crosscutting
concerns are transversal aspects of an applicétimmcerns) which affect (crosscut)
other concerns, i.e., that can interfere in a systmplementation. These concerns
usually could not be cleanly separated from the levhimplementation, so they
remained scattered and tangled along with the cA@# supports these crosscutting
concerns modularization through the abstractiorfschvenables their separation and
composition when building a software system. AORBbézs a higher abstraction level
in software development, enabling a well defineplasation of the system components.
And because the components can be well separatedrganized, they can be better

reused and maintained and their readability becdreegdlier.

Using AOP, it is possible to organize a softwarepleamentation based on
functional and non-functional requirements. Fronmctional requirements, a set of
components can be expressed in a contemporaneogsmming language, such as
Java [63]. From non-functional requirements, adfedspects (crosscutting concerns)
can be derived, which are related to the propethas affect the system’s behavior.
With this technique, the non-functional requirensecdn be easily manipulated without
causing major impact on general code (functionguirements), since they are not
tangled and scattered throughout system’s unitsus,TPAOP enables software
development using such aspects, which implies olatisn, composition and reuse of

aspect implementation code [64].

AspectJ [65] is the most widely used AO programniamgguage, created as of
Java [63]. It uses Java-like syntax and has incuE? integrations for displaying
crosscutting structure since its initial publiceaée in 2001. The main language
constructors are described as follows. The conoépispectis introduced as a new
abstraction that encapsulates a crosscutting fumadity. Similar to a class, an aspect
contains methods and attributes and it can intredenethods, attributes, interface
implementation declaration and class extensionaglaiitbn using a construction known

asinter-type declaration. Introduced members may be visible to every caskaspect

? Integrated Development Environment.

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

(public inter-type declaration) or be only internal the aspect (private inter-type
declaration).Join points are essential to the composition process betwspects and
classes. They represent a well defined locatiora iprogram execution, such as a
method call or an attribute access, where an aspagtalter the behavior of the base
code.Pointcuts are the execution points in an application at Whimsscutting concern
need to be applied. An aspect may speadyicesto define some code that should be
executed when a pointcut is reached. They can beugadbefore, after or instead

(around) of the pointcut.

The improved software modularization with the sapan of code of similar
concerns that affects different parts of the systprovided by AO paradigm, is an
essential factor to ease the development, maintenamd evolution of software
systems, because it reduces dependencies and systeies coupling [42]. Since
AOP is a relatively new technique, but there arecamly many implemented
programming languages of it [65, 100], further sfedeatures and advantages may

vary according to the adopted language.

2.3 Software Testing

Many books and papers have already been publigshddpresented regarding
software testing. The first edition of the Myergdk [3] from 1979 introduced the
software testing principles that are still applieabven today. Despite it had become
both easier and more difficult than ever, accordm$lyers — more difficult due to the
vast technology progress and complexity and edsemause of the sophistication
evolvement making the testing tasks smoother anegk meusable — software testing is
still a process followed in software developmentgjgcts to make sure an application
does what it has been designed to do. In ordezdohr the specified software behavior,
the existing bugs in it should be found and fixadd a better software quality should

be, therefore, achieved.

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

As mentioned in Chapter 1, testing activities en@ortant to support quality
assurance. Its basic idea involves the executiosofitvare and the observation of its
behavior or outcome. If a failure is observed, é¢Recution record is analyzed to locate
and fix the fault(s) that caused the failure. Othse, confidence is obtained only by

when the software under testing is more likelyuidilf its designated functions [68].

Although it is possible to see that executing steist important, it is also
necessary to have a plan of actions and reporteeputcome of the testing activities.
The idea of a fundamental test process for allltewé testing has developed over the
years. Whatever the level of testing in a projdog, same type of main activities was
always observed, although there may be a diffeaambunt of formality at different
levels. Still, it is possible to state the follogimlivision of major activities within the

fundamental test process [5, 6, 68]:

Test planning and preparation;

Test analysis and design;

Test implementation and execution;

Test exit criteria evaluation and reporting;

Test closure activities.

Although logically sequential, these activities mayerlap or take place

concurrently.

It is important to differentiate the existing norokxture in software testing

literature, as it will be used many times on thssdrtation:

Defectis a bug, a fault, a flaw in a component or sofersystem that can cause
the component or software system to fail to perfasrequired function. If a
defect is found during execution, it may cause ibra of the component or
software system.

Error is a mistake, a human action that produces anriecioresult.

Failure is a deviation of the component or software system its expected

delivery, service or result [5, 6].

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

The definitions of the test levels and how testgmserted in a software project

is described in the following sections.

2.3.1 Testing within Software Life Cycle

To understand the relation between software dewsdop and software test
activities, it is important to know that the testéls (as it has been mentioned in Section
2.3) are related to the software development ljelec There are many software
development life cycle models [69, 70, 71] thatdnéeen created in order to achieve
different aims and goals in a software projectc8igoftware testing is not a stand-alone
task — it is inserted in software development tijele — the chosen model in a project
directly impacts software testing activities. Thaséng models specify the various

stages of the process and they influence the detation of test techniques to use.

In general V-model [70], testing is handled as ativay that is performed
throughout development, being as important as sbirting test design early based on
business requirements and development artifactislendest engineers to find defects
on specifications and documentations. As it camliserved in Figure 2.1 [5], the two
branches of the letter “V” symbolizes developmemd éesting processes, showing that
the software system is gradually created as thgrano elements are inserted at each
level. In practice, the V-model may have more, l@sdifferent levels depending on the
project. At each test level, the development oue®must be checked whether they
fulfill original requirements \(alidation), whereas the outcome of a particular
development phase is verified whether satisfiesirifsed conditions at the start of

that phasewverification).

The V-model divides the development into constugctactivities in which, at
each level, new testing characteristics are addedhe left branch, in the initial phase
of defining and gathering requirements, which isdendy the customer or user, the
system needs are specified and, therefore, therésatand purpose of the software
system can be defined. Then, in functional systesigih, the requirements are mapped
onto functions of the new system being developatithe requirements documentation

Is used to create functional system test cased, Heximplementation of the system is

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

designed: interfaces are defined and the systelademposed into manageable smaller
components, enabling independent development Huicehsidering interaction with
each other. During components specification, tHeab®er and inner structure within a
component are defined for each subsystem. Finedlgh specified component (module,

unit, class) is implemented in a program languagend programming phase.

A

L \ 2

A

Figure 2.1 General V-model

Having levels of software development helps detgiit and finding mistakes’
root cause. It also helps defining test levels gltre process; thus, the right branch of
the V-model represents correspondent test levetyaoy development level previously
explained:

Component test the software unit is tested for the first timeodiles, units,
programs, classes, objects are independently teéstedake sure external
attributes do not influence if a defect is detect€gpically, this level of
testing considers the code behavior being testéu support of developers

and development support, such as a unit test framear debugging tool;

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Integration test: at this level, software components are supposedate
already been individually tested and eventual deface supposed to have
already been corrected, so that the componentbedested in groups. The
goal of integration testing is that eventual fauderived from integrated
components interaction and interfaces can be egpas@ manner that such
conflicts could not occur during component testifogit could only be
manifested by integrating the system parts andcteteby such further

interoperability tests;

System test checks whether the integrated system meets specif
requirements. It concerns the system’s behaviomftbe customer and
future user’s point of view, investigating both @tional and non-functional
requirements of the system. Typical non-functiotedts would include
performance and reliability. Failures from wrongcomplete or inconsistent
implementation of requirements are the ones thaulghbe detected by
system testing, and requirements that are not dested should be
identified;

Acceptance testmost often focused on a validation type of tegstimat aim
to establish confidence in the system; for instabgeverifying its usability.
The user or customer are usually responsible figrtésting and their main
focus should not be to find defects in the systbuat,to determine whether

the software system fits its purpose, before bdrygoyed.

After the software system has experienced the natste phases and test levels
throughout its development, it should be ready @odeployed, whether in customer
field or for other purposes, and used for a peabtime. For non-experienced software
engineers and testers, it can be easy to imagateaththe work has been accomplished
by then. However, what happens in the real word, @xperienced software engineers
and testers are well aware of, is that, afterwagtanges in requirements are common
requests to update the system to keep up with tdatn evolution for instance, such as
adding new functionalities, correcting or improviegisting ones, improving data base

capacity, inserting new mechanisms and technigtipsogramming to enable a better,

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

faster and more user-friendly system and so ons,T$nftware life cycle maintenance is
a forward-focused activity used to prolong the e lifespan of a software system
[72]. Such incremental modifications of softwaresteyns are often referred to

collectively as software evolution.

Maintenance Testing within Software Life Cycle

In Chapter 1, the testability concept of a systa® lbeen briefly introduced and
it is possible to understand that the higher tis¢atslity level in a software system is,
the easier it is to test it. This subsection intiwes the concept of testing that is handled
during this life cycle phase, which is calledintenance testingand it usually consists

of two parts [6]:

1. Testing the change;
2. Regression testing to show that the rest of theéesyshas not been
affected by the maintenance work.
A deep care is necessary when analyzing what prtde code may be
unintentionally affected by the maintenance. Thgrassion testing is usually planned

based on risk and impact analysis.

From the point of view of testing, there are twpdy of modifications than are
part of maintenance: the ones in which testing @yplanned, and the ones ad-hoc
corrective modifications which cannot be plannef Téhe following types of planned

modification may be identified:

Perfective: to adapt software to what the user svantl needs;
Adaptive: to adapt software to environmental change

Corrective: deferrable correction of defects.

Overall, the corrective planned modifications reprg over 90% of all
maintenance work on software systems [73], i.e,dtandard structured test existing
approach is almost fully applicable to planned rficdiions only, while ad-hoc
corrective modifications need to immediately benfdwa solution, and the risk analysis
and the choice of best test approach may be comgedm

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Moreover, regression testing is crucial for larggamizations with critical
software systems. Therefore, a software systenghieadequately regression tested in
a software project without a proper technique agptiuring its maintenance, its quality
and reliability will languish over its lifetime [24£6].

Testing in Incremental Development

Incremental development is usually related to @eck development that are
gradually delivered. The initial version of softwatontains basic functionalities and the
requirements are grown over time to upcoming vessid hroughout its development,
software receives increments with new features each version contains more and
improved functionalities than the previous onesm8anodels [74, 75, 76] following
this principle have been created, and testing estdapted to be continuous, having

reusable test cases that can be reused for ev@gment.

v

Figure 2.2 Testing in incremental development

The practical way for testing to follow such moaelo run several V-models
one after the other, in which every phase reuse®xlsting testware and adds what is
needed for what is new. Figure 2.2, adapted fromfin®p et. al [5], pictures how the

testing is handled in incremental development.

2.3.2 Types of Testing

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

As stated on Section 2.3.1, there are differerglteof testing. The objective of
testing in each level changes distinguishing défifiertypes of testing that are classified

in software testing literature as follows:

Functional testing (or black box testing);
Non-functional testing (or white box testing);

Experience-based testing.

Functional Testing

Also known as black box testing because the tegicbis seen as a black box,
functional testing is mostly used for high levefsasting, where the inner structure of
the test object is not considered. Instead, it eomthe compliance of the system or
component with specified functional requirements pkimary goal is to assess whether
the software does what is supposed to do. It cgreldermed at different levels but, for

different levels, there are different requiremeantd objectives.

Functional testing approach can be used as a tpohrio elaborate test cases.
Whether formal or informal, the requirements are liasis from which the test cases
will be designed to exercise the software systeorder to find defects, not considering
its implementation structure. Test design is sup@dse make a reasonable selection of
all possible test cases, thus, there are somefigpdion-based techniques that assess

the test object in different ways, the two mostamant are briefly described below:

Equivalence patrtitioning: test only one conditioonh each partition. The
equivalence partition (or equivalence class) costa division of a test
conditions set, in a way that they are sufficientypresentative to be

tested as one, avoiding unnecessary test cases;

Boundary value analysis: test the boundaries betwepartitions,
addressing test efficiency, for the number of ntestl cases is reduced in

order to obtain a certain level of confidence ia oftware under test;

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Non-Functional Testing

Known as white box testing because the test olgesgen a white box, since the
software code is known and used for test desigm-fNoctional testing is also known
as structural testing, because the structure ofesteobject (component hierarchy, flow
control, data flow) is considered. It can be apmplie lower levels of testing, i.e.

component and integration test.

The generic idea behind this code-based testitigatsevery part of the code of
the test object is to be executed at least once.uBhal primary goal of such technique
is to reach a previously defined coverage percentdgode statements while testing;

thus, there are some basic white box test critstieh as:

Statement coverage: test a predefined number ténséeats of the test
object’s code, which can be better understood tghuse of a control
flow graph, where control elements, connections seguences can be

represented,

Branch coverage: test every decisiomué€ or false) that can
determine the next move of the program; in otherdspall possible
transitions from a decision node are to be tedtedlso can be better
understood with the use of a control flow graph,which, for this

technique, the focus is on edges in the graph;

Multiple-condition coverage: test of decisions lghsen several
conditions. It must be considered which input degal to which result of
the condition or condition part and which partstloé software system

will be executed after the decision;

Path coverage: test all different paths throughtéisé object, combining
nodes and edges from a control flow graph. Thenglmeaa huge number
of existing paths in a software system; hence,ay mot be a practical

approach to require execution of all paths fromdbee.

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Experience-based Testing

Besides the methodical criteria described aboveretlare non-systematic test
techniques that can be used as complementary twvenstill remaining faults in the
software system. This type of testing is based gemon’s knowledge, experience,
imagination, creativity and testing skills, so tehe can act as a “bug hunter”. The most

common techniques are:

Error guessing: with the experience of a testeprievious similar test
objects from previous studies, she is able to kmdwere the defects are

most likely to lurk;

Exploratory testing: when there is no test planniBgsed on intuition

and experience of the tester, this approach islynadbpted when the

specifications are poor and time is limited, howatean also be used as
complementary to systematic testing.

2.3.3 Test Maturity Model

A software process can be defined as a set ofitaesivmethods, practices and
transformations that people use to develop and taiairsoftware and the associated
products [108]. The capability of a software praceegscribes the range of expected
results that can be achieved by following a sofeyarocess, and the software process
capability of an organization provides one meangreficting the most likely outcomes
to be expected from the next software project tigamization undertakes. Based on this
idea, software process maturity can be defineth@®xtent to which a specific process
is explicitly defined, managed, measured, contdodad effective. It implies a potential
growth in capability and indicates both the riclmetan organization’s process and the
consistency with which is applied in its projects.

It is easy to cite some of the benefits for an pization to reach maturity in its
projects: long-term success of a project increasayction of software development

risks, manageability, etc. As testing is appliedtsnbroadest sense to encompass all

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

software quality-related activities, a Test MaturiModel (TMM) [109] has been
created to improve the testing process thorougHicapion of the TMM maturity

criteria, with the goal of having a highly positivepact on software quality, software
engineering productivity, and cycle time reductefforts.

The development of the initial version of the TMMasvguided by the work
done on the Software Capability Maturity Model (CHMMa process improvement
model that has received widespread support fromsdiievare industry [110]. Figure
2.3 [109] illustrates the five levels of such modeht are self explained. The
characteristics of each level are described in gepimorganizational goals and testing
capability. Such model works as a reference to bejanizations assess and improve
their testing processes, for it is based on afsptinciples in which software engineers
practitioners can assess and evaluate their s@&tigating processes.

A TMM Assessment Model (TMM-AM) can help organizais assess and
improve their testing processes by:

determining its level of testing maturity;
identifying its test process strengths and wealagss
developing action plans for test process improvemen

identifying mature testing subprocesses that andidates for reuse.

For such, the TMM-AM is composed by a set of thm@mponents: a
questionnaire, the assessment procedure and teanmdgr and selection criteria. A set
of inputs and outputs is also prescribed for theVIFlM that guide an assessment team
in carrying out a testing process self-assessréhéreas some models for test process
improvement focus only on high-level testing or r@$d only one aspect of structured
testing, e.g. test organization, the TMM addresstetic and dynamic testing. With
respect to dynamic testing both low-level and Heyel testing are within the TMM
scope. Studying the model more in detail one wakh that the model addresses all four
cornerstones for structured testing (life cyclechteques, infrastructure and

organization).

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

() * +3

Test process optimization

Quality control

Application of process data for defect prevention

A 4

Py
Software quality evaluation

Establish a test measurement program
Establish an organization-wide review program

A 4

o
Control and monitor the test process
Integrate testing into software life cycle
Establish a technical training program
Establish a software test organization

A 4

0%
Institutionalize basic testing techniques and meho
Initiate test planning process
Develop testing and debugging goals

A 4

Figure 2.3The 5-level structure of the TMM

2.4 Object-Oriented and Aspect-Oriented Software
Testing

Despite AO and OO features mentioned in Sectiodsabd 2.2 represented
great advances for software development activitiesy also stress out new technical
challenges to software testing. Testing and anady£2DO and AO software systems

must deal with the new challenges introduced byp#radigm’s characteristics

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Encapsulation may create obstacles that limit thidiity of the implementation
state but it may also prevent defects from glolzalables stored data access and few
lines methods may turn control flow defects legelii to occur — the many ways a
system can be composed due to different contekicraderive from distinct hierarchy
levels and run-time defined system behavior magl teaoccurrence of errors, once an
incorrect association of the language resourcesken place. According to Binder [66],

some essential features of OOP languages poseandvhézards:

Dynamic binding and complex inheritance structugate many
opportunities for faults due to unanticipated bing$i or misinterpretation
of correct usage;

Interface programming errors are a leading caudaudfs in procedural
languages. OOP typically have many small componants therefore

more interfaces. Interfaces errors are more likely;

Objects preserve state, but state control (the paabke sequence of
events) is typically distributed over an entire greom. State control
errors are likely.

Towards OO software testing specifically, there aoene researches in the
community combining testing strategies and thegigma’s particularities. For instance,
Lima and Travassos [106] have presented a newegtrdor integration testing of
Object-Oriented software systems by creating afskeeéuristics and a process for its use
allowing establishing an integration priority order the classes to be tested. Harrold
and Rothermel have considered a class as the sinaiié of an OO code [107] and
proposed the test of a class dataflow that corsither interactions between the public
methods when being called in different sequencdé®yThave also considered the
dataflow test on classes’ integration.

Based on the previous studies mentioned abovs, pbssible to conclude that
conventional testing techniques can be adaptedest ©bject-Oriented software

systems, since OO code matters a lot and an ustalfldw approach may not fit
properly.

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

As previously mentioned, AspectJ [65] has beenteteto address some of the
OOP issues and it is currently the most used A@Buage to develop software. This
Java extension adds new constructors, as presemtéfbction 2.2, to allow the
modularization of crosscutting concerns implemeotat However, with AOP, the
aspectized code affects the implementation of milelticlasses and methods; the
software development process is changed. Classksnathods are still developed as
before, but instead of embedding the crosscuttodeadnto method bodies, separated
aspects are defined containing this kind of codsdel, the aspects are woven into the
classes that represent the core concerns of theasef system. Once complete, the
woven targets should be the behavior union betwees and crosscutting concerns. On

top of that, AOP raises new issues, such as [67]:

Aspects do not have independent identity or extsgemhey depend upon

the context of some other class for their iderditg execution context;

Aspect implementations can be tightly coupled teirthvoven context.
Aspects depend on the internal representation ampdementation of
classes into which they are woven. Changes to tblasses will likely
propagate to the aspects;

Control and data dependencies are not readily epp&mom the source
code of aspects or classes. Due to the natureeofi@aving process, the
developer of classes or aspects knows neitherethdting control flow
nor data flow structure of the resulting woven fadi. Thus, relating

failures to the corresponding faults may be ditticu

Emergent behavior. The root cause of a fault may in the
implementation of a class or an aspect, or it maalside effect of a

particular weave order of multiple classes.

These challenges should not and cannot be addrdssecdhditional unit or
integration test techniques applied in OO softwaygems, for they are not feasible to
aspects. Zhao was the very first researcher togsep structural testing approach for
AOP. He has suggested [101] that the basic testiitgs an aspect, in Aspect-Oriented

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

programming. On his approach, he suggests to lestaspects together with the
methods which the behavior might be affected byadvand to test the classes together
with the advices that might affect their behavibne research conducted by Xu et al.
[102] deals with combining state models (class aspect) and flow graphs (method
and advice) as an aspect scope coverage modeioidu@ng test suites. Essentially, the
result is a hybrid testing model which is a comboraof a responsibility-based testing
model and an implementation-based testing moded. djproach consists of merging
the class state model and the aspect state mottelam aspect scope state model
(ASSM). The ASSM allows tracing the behavior of extporiented programs by

identifying sequence results of the states traomsstof the AOP.

On some other researched works, it is discussegrbblematic of testing AO
programs. A defect in an aspect-oriented program mod be found in components, nor
in aspects, but on the weaving process, for examyxander and others [67] propose
a fault model for AO programs. The model explores types of defects that may
happen due to the paradigm’s particularities araugrthem according to its nature.
They suggest that criteria and testing strategeADP should be developed in terms
of the fault model. A discussion about the propofedt model [103] states that the
only two fault types that seem to be not adequatetyed by means of extensions of
traditional techniques are types 2 and 5, as @et&élow. They demand AOP exclusive
testing techniques.

Type 2 — Incorrect aspect precedence: When the saae portion is
affected by more than one aspect, depending onottler in which
aspects are woven to the base code, differenceo@aur. When no
composition precedence is defined, all the posstmpositions are

potential instances to be considered.

Type 5 - Incorrect focus of control flow: Pointa#signators that contain
conditions on the execution stack define a joimpget that cannot be
evaluated statically. Therefore, errors can be dmndioh them which are
difficult to expose, in that they require very sifieexecution conditions

to hold.

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Some works [90] suggest techniques for incremeasting of programs that use
aspects. On this approach, the base classes dimstilde implemented and tested for,
afterwards, have the aspects added and testedyoned) so that integration testing
tasks can be performed. Zhou [104] proposes aroapprfor unit testing, integration
testing and system testing for AOP. Another incnetale testing approach [103]
suggests that the base classes should be testedlyimot considering the aspects,
intending to reveal errors that are not relatedsjoects. Smoothly, the aspects are added
to software testing. One of the issues pointedisuhe need of creating stubs and

drivers to simulate the aspect’s behavior.

Another thing that may be issued from increment@PAtesting is the creation
of cycles that would cause a dependency insidedde between aspects and classes.
Elsewhere [105], different types of dependenciesstudied and two alternatives for

sorting classes on AOPs are applied.

2.5 Software Maintenance

Canning [77] has described software maintenancandsceberg”, where there
are many further problems and potential costs mddwler the surface than what comes
up during software development. More than 50 pdroéithe costs from the life cycle
of a software system are spent on maintenance [EOEn adopting the best
development criteria, a software system is createdcerning deployment details
constraints. When a system is deployed and has heening for quite some time,
eventual changes, such as platform changes, opeahtsystem changes and other
technology update changes, may require an update the system so it is able to
attend user’s needs. Such update range from simpte edit to meaningful

improvements and new requirements adjustments.

It is not reasonable to presume that testing ssewhroughout development will
uncover every existing bug. When using the systifferent bugs that have not been

detected on testing activities may be manifesteugtixer because a combination of

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

features in use was necessary to arouse such bugcause testing activities were not
vast enough or due to many other possible rea3tmesdiagnosis and correction of one

or more bugs on this phase is knowrtasgective maintenance

When a new hardware generation is launched, negratpnal systems or
updates from old ones are on the market and gadgetother system’s elements are
constantly being modified, thadaptive maintenanceis responsible to modify the

software system so it has the adequate interfatteetenvironment.

When the system is being used, the users usually recommendations to the
developers for some kind of improvement on it. Néwactionalities, changes on
existing ones and expansions are the general reqined theperfective maintenance
is determined to attend. This activity is respolesfbr the most part of all applied effort
in software maintenance [11]. These three termmidef the three types and activities
on software maintenance described above have betermdned in 1976 [78] when it

was already possible to visualize such trend.

Finally, when the software system is modified tgrove its reliability or its
future maintenance, or to offer a better framewlrkfuture expansions and updates,
the preventive maintenancetakes place. Such term, on the other hand, is aotym
used on hardware maintenance, although software hamndware development and

maintenance processes strongly differ from onelreanot

2.5.1 Problems in Software Maintenance

Most of the issues regarding software mainten@aoebe connected to software
planning and development. Based on Pressman’glLlit below are the main reasons

of the problems associated to software maintenance:

Lack of documentation of software requirements

Sometimes the developers are part of the softwangeq planning and

responsible to capture the system’s requiremenéy, start developing right

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

away without specifying well with the project maeag and stakeholdérs
the main functionalities of it. When the systenraady, it is deployed and
the developers are usually the focal point for wtrenusers need help. This
may be familiar to small projects, but in projecis any size, when the
documentation is not adequate or sufficient and the developers who
initially built the system are no longer reachalttes, system will certainly be
hard to evolve, since it will be difficult for theurrent developers to
understand the exact requirements just on lookingh@ code or at the

system functioning;

Undefined software process

If a software system is developed in a project authan accurate software
development process, it will be hard to track addi@nd milestones that
would help software maintenance activities ideitifythe best actions and

techniques to follow on its evolution.

Many different versions

When a software system is developed and evolvekifferent branches, it is

difficult or impossible to track all the changespbgd to such application.

This is very common within academic works, whenrghare not many

suitable available applications to an experiment] the existing ones are
used by so many different institutions and orgaiong that sometimes the
people working on it do not even known about thdale releases from other
studies.

Most of the software systems are not designed atvev

It is not common, except when it is pre-determinéal, find software
developers coding systems concerning future passiihnges on each class

being created. The developers need to make exXwd & visualize future

% Stakeholders Group who shares interests, as in an enterpsisigh affects and can be affected by an
organization’s actions.

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

changes and to separate eventual dependenciesstance, so this is not

usually the case.

Motivation

It is not usually a fun task having to modify oraptl a software system.
Psychologically, the individuals are mostly saédfiwvhen creating things,
but modifying them tells them that they have ddmartjobs perfectly, since
they need a modification. It is rather hard forradividual to admit and hear
the critic that the application he developed is gmbd enough and requires
improvement; even if it is just an adaptive maiaiere due to new
technology arising that could not have been preditty the time the system
was being developed. For those reasons, it isasyt ® deal with motivation

skills from developers having to work on a softwaystem maintenance.

After these problems’ considerations, it can beéenstood how hard it may be to
guarantee a well planned and integrate system wthéas to be modified. Those
problems cited above are general to any kind ofwswé system. When effectively
maintaining one, low-level aspects, such as pdaiities of the code and programming

language used to code, need to be taken into crasion.

2.5.2 Maintenance Testing

The testing activities for maintenance basicallyurees on regression testing
[23, 24], which aims to provide confidence that thenges were made correctly and
other portions of the software are not affectedtigm. Researchers on this subject
performed studies analyzing the best regressidmique selection [24, 25, 85] and the
cost-effective metric from them [86], among otheattars. Regression testing is
important but expensive. Regression test seledgohnique could reduce the cost of
regression testing by selecting a subset of artiegisest suite to use in retesting a
modified program. Such strategy is very suitablesdéiware projects, since not every
existing test case is required to be run. The pidation of test selection usually helps

on software projects cope with deadlines and cd@stest suite is a set of several test

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

cases for a component or system under test, wherpdst condition of one test case is

often used as the precondition for the next one

2.6 Software Evolution

The approach of Lenski stating that the developnoériiuman civilization is
dictated by technological progresses reflects tiygortance of keeping software up to
date. The identification and observation of rel@vanftware behaviors has been
established as the Laws of Evolution [92], firstlgt in the early seventies, in which
rules to software system evolution planning and agament have enabled a gradual
understanding of software process over the yedrs.€lght laws of software evolution
are listed in Table 2.1 below.

A full analysis of the the meaning and implicatiarighis classification requires
more discussion than cannot be provided here, big possible to observe that
continuing changes and growth are necessary to tkeepystem’s functionalities up to
date to user’s requirements over its lifetime. ®ystem usually implements new
features on its evolution and this usually impliesreasing complexity, which makes it
a strong proposition in this scene. The feedbagkn fthe results of the behavior under
software system execution, observed by stakehgldelient and users reflects
experience that changes perception, understandi@siyes and ambition towards system
evolution; hence it plays an important role on cstesitly concluding the refined

version of the eight laws of software evolution.

Table 2.1Current Statements of the Laws of Evolution

Law Description
A system must be continually adapted, else thegrne¢
progressively less satisfactory in use

1 Continuing Change

Increasing As a system is evolved, its complexity increasdesm
Complexity work is done to maintain or reduce it
Self Regulation Global system evolution processesself regulating
Conservation of Unless feedback mechanisms are appropriately

Organizational adjusted, average effective global activity ratanmn

_aed

POLI
ESCOLA
POLITECNICA DE
PERNAMBUCC

Stability evolving system tends to remain constar product

lifetime
5 Conservation of In general, the incremental growth and long term
Familiarity growth of systems tend to decline

The functional capability of systems must be

6 Continuing Growth | continually increased to maintain user satisfactioer
the system lifetime

Unless rigorously adapted to take into account for

7 Declining Quality | changes in the operational environment, the quafity

system will appear to be declining

Evolution processes are multi-level, multi-loop, ItAu

agent feedback systems

8 Feedback System

Evolution in large software systems can lead tmas challenges when dealing
with increasing complexity. Empirical studies [28), 32] are a useful mechanism for
highlighting areas that need maintenance attefi@i®n83], providing information to be
taken into account when evolving systems [30, 38,35, 37, 38, 47] and creating
frameworks [42, 53, 54] with models that may fostcaffects and special conditions

for specific types of system evolution.

2.7 Final Considerations

This chapter described the state of art on whagards to the context of this
dissertation’s subject. It has discussed the magrctibns regarding software testing,
the importance of testing software throughout safevdevelopment and maintenance,
the testing levels, phases and types, TMM andstdtieessed the associated knowledge

for testing AO software.

The main testing studies and criteria related @ goftware testing have been
characterized, as a result from OO software ewaiutind its concepts, also presented in
this chapter. It has been possible to verify thaté are many issues when maintaining
or evolving a software system and the main reasanse related to software planning
and development. Following this line, there is naich research considering testing
activities during software maintenance or evolutibat is not related to regression

testing or regression test selection criteria. ihgsimay be, therefore, limited to

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

regression testing and regression test select@migues during software maintenance

or evolution, which does not consider test tasks lomoader view, when evolution takes

place in large software projects, arising highesgilale test changes and challenges. The
existing research is valid for specific scenarit®, always possible to become general

enough to adapt to higher leveled views or fiteté#int processes. There is a lack of
contributions when the testware elements need apdating a software system

evolution or maintenance.

The TMM concept is also introduced and presensed model to assess testing
process and determine its maturity in a softwaggept in an organization. Still, such
model has proven to be of a great validity for eatihg testing process, but apart from

or not considering the maintenance scenario antliemo details of a software system.

Therefore, the revision here presented motivates development of this
dissertation that aims to provide testware suppuith test core elements to be taken
into consideration and applied when maintainingwwlving an AO software system, as
well as to define the extension of an existing Benarking Framework for AO
software maintenance to consider such testwarmtrasluced in Chapter 1 and further

detailed in this dissertation.

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Chapter 3

Background

This chapter presents essential information reggrthe context in which this
dissertation is inserted. A general view on the iecg studies on software
maintenance, introducing concepts of frameworksnchmarks and testbeds are
described as well as the perspective for Aspeatr@ed (AO) software in the software
engineering community. Such information is fundatakrio introduce the testbed
(Section 3.2) and the benchmarking framework (8ac8.3) to which the case study
introduced in the next section (Section 3.4) isoesded. Such case study was the
starting point of the work of this dissertationitientify testing issues and needs and,

therefore, provide the solution for such proble@kdpter 4).

3.1 Empirical Studies on Software Maintenance

Section 2.5 has introduced the basic concepts ofware maintenance,
presenting the types of possible maintenance clsarnighas discussed its importance
and drawbacks, as well as it has introduced thageprocess flow within such context.

It has been possible to comprehend that such gcis/ilong and expensive [11] and

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

such issues can be explained by a bad, incompiétease project planning, which lead
to bad projected software, hence, difficult to ni@im and evolve. Thus, it becomes
essential to stimulate the development and creatbmew techniques, methods,
processes, technologies and paradigms in ordexs® &d reduce costs of maintenance
tasks and, therefore, enable to identify the mdstjaate approaches to comply with the

changing scenarios.

To improve software evolution it is necessary tentify what are the
characteristics of the software system, environnaglt personnel that may affect such
process. This need has motivated several empisicalies to search for the perfect
answers. Although many issues have been detectedradul to software maintenance
(Section 2.5.1), there are still other factors frather perspectives related to the
invested effort in maintenance tasks. Hence, imigortant to identify them to enable
better and more effective software maintenancesdme studies [111, 112], these
factors include software system’s characterisscgh as structure, size, age, input and
output data, type of application and programminggleage. Large software systems
tend to more maintenance effort when compared tllemand simpler systems. This
happens because the larger the software systenois, time is necessary to understand
it, and also because of the number of diverse ioimalities that complex applications

usually posses [113].

With the objective of extending the discussionarélgng the factors that may
cause problems in maintenance, other researcheg [15] have investigated the
relation between types of changes and generatedteffThe characteristics repeat each
other many times, generating cause and conseqpatieens that can be associated to
the factors previously mentioned. Both studies imeaetd on this paragraph indicate the
need of following a process and specific modeldndusoftware maintenance phase,
which help controlling environmental variables. Hower, such studies are not general
enough when generating empirical evidence, nor whealyzing methods and
technigues to best fit software maintenance.

There is still further research [116] that hasleaid a broader view of software

maintenance, which contribute to software engimgeempirical data. However, such

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

investigation during software maintenance remaiadlenging; the existence of studies
analyzing software systems maintenance that hawacteristics which can be
categorized to be used in various experiments,cesdpeusing new approaches like
AQ, is very limited.

Hence, the experience from related areas is irapbtb define guides, models
and methodologies for software experiment evalaatian order to accelerate the
generation of empirical evidence within softwareimtenance research. In the next
sections, it is introduced the use of frameworlendhmarks and testbeds focused on

software maintenance activities.

3.1.1 Frameworks, Benchmarks and Testbeds

The termframework introduced in Chapter 1 in the context of thissdrsation
can be defined as a set of rules and attributésatkaesponsible to assist the execution
and evaluation of process, techniques or methods sgecific field. It is not easy to
define a generic framework to be used within soféraaintenance that simultaneously
attend different specific domains, therefore redees [59, 60, 117] have been
conducted in order to build it in a more limitedpe, restricting its use to determined
domains, but with an increased level of detailse Ttameworks, however, have the
deficiency of not paying much attention to the teabgies and techniques used during

software maintenance process.

Thus, with the aim of covering such lack and analgnaintenance in a broader
view, some studies [42, 53, 54, 58] have been odeduvith the use dfenchmarksto
evolve and maintain software systems. Differentbnf frameworks that only provide
criteria but do not allow the comparison betwegresentative cases, benchmarks have
the goal to enable the comparison among differechriiques used in software
maintenance. Researches [42, 53] have been coddiwtestablish a trustworthy
method to evaluate such techniques, since the iex@etr environment is adequately
configured by standards and the applications andiet are selected representatively

and according to criteria. A specific benchmarldgt[#2] has been used as background

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

source for the development of this dissertationmamntioned in Section 3.1.1 and is

described in details in Section 3.3.

Finally, some other researches [97, 105, 118] leweduated systematically the
maintainability and performance of different metblodjies in a specific matter. The
difference here is that they regardestbed and an evaluation process with specific
metrics in order to evaluate the maintainabilityd gmerformance of techniques. A
testbed can be understood as a platform for expetation in large development
projects [145]. Testbeds allow for rigorous, treargmt and replicable testing of
scientific theories, computational tools, and othew technologies. In spite of
restricting the studies to a specific domain, stegearch can serve as a base to further
general maintenance studies and experiments. Fiigetkin which the context of this

dissertation is inserted is introduced in Sectidh 3

The research regarding frameworks, benchmarkstesttieds definitions are
innovative and provide a valid approach to advascffware engineering on what
regards to controlled empirical studies, which dématihe production of significant
scientific results. Such research should be exhealgttested, extended and evaluated
before being broadcasted to vast used in the contyndie process of evaluating and
validation is important to identify existing limtitans and possible extensions, since the
techniques, methods and technologies in this Aeddconstantly evolving. Therefore, it
is nearly impossible to define a structure, seatbibutes or process that are static and
complete. Technology evolves quickly and it demarmscepts to be defined in a way
that improvement and extensions to it are posshb allowed, such as considering a

new domain in it or just a simple removal of bugs.

3.1.2 Aspect-Oriented Software

This subsection presents an introduction of relevaformation regarding
Aspect-Oriented (AO) software maintenance, evofutiad testing, which is the context

in which this dissertation is inserted.

Maintenance and Evolution

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Aspect-Oriented Programming (AOP) modularizes sgoing concerns that
otherwise would be implemented spread over othedutles and tangled with other
requirements implemented in the software systenusTAOP improves software
modularity with separation of the code implementangilar concerns, as explained in
Section 2.2. Such characteristic is very importahen developing, maintaining and
evolving software systems, for it reduces the ddpeay and coupling of software
modules with the introduction of a new implemematunit: the aspect. The aspect
changes a software system behavior, since it enlzps the code that is spread
throughout software modules and it becomes theugniigansversal implementation unit
in the system. Such change may occur in well ddfgecution pointsi@in pointg, as
explained in Section 2.2, and some other poiptsn{cuty may be affected by their

execution as well.

AOP can be used in a software project as an apprtacupport and ease
software evolution through the representation oiv rfeatures development using
aspects as patches in separated units composirmagitheal software for evolving it to
the next generation, in a planned evolution pracesing aspects within incremental
modifications to a system’s base classes increasestate space of the software model,
after the evolution, it provides higher code realitgtband visibility which makes the

code friendlier and easy to manipulate.

AORP is relatively a new software development payadand most of the studies
[45, 46, 47, 49, 52] taken on this regard mostlgleate advantages and disadvantages
of whether using it or not. There is not much emmie[51, 52] of studies analyzing its
maintainability, nor testing directions, values amssues. Some studies [51, 79] have
presented case studies reporting several limitation modularizing features when
using AspectJ, such as the increase of couplingd®at aspects and classes due to the
strong dependency @bintcutson implementation details of the base code. Tiaisds
out the importance of performing studies evaluatimgosscutting concerns
implementation so that it is possible and easieurtderstand how they may behave
when they become vulnerable to changes and updasssciated to software

maintenance and evolution. Aware of such inforrmgtithe developers handling AO

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

software maintenance or evolution have more taptietal with necessary code changes

and, thus, carry out a more reliable and reasorggipeoach for this task.

On top of that, some studies [46, 48, 51, 52] hdigeussed how crosscutting
concerns could affect future implementation by carmg modularity characteristics
and software stability; and have also analyzed ithpacts of changing scenarios
towards software evolution. Despite having few dbmtions on this regard, it is
possible to cite some of the difficulties when deglwith AO software maintenance or

evolution:

Knowing which parts of the code are affected byabgects;

The need of understanding other modules to undwtstee behavior of one
module;

Identifying the behavior that may be affected by dspect;

Identifying parts of the programs affected by aedethat needs correction.

Some researchers [80, 81] have tried to solve saintkeese problems creating
models to define modules and aspects’ dependertésgever, there is little evidence
of studies [51, 52] and guides [37, 42, 47] thaph#evelopers identifying general
elements to consider when evolving or maintainir@ goftware. Some studies [31, 32,
33, 34] sometimes are handled and applied so spabyfin a special context or case
study that cannot be reused to other scenarios.

As briefly mentioned on Chapter 1, a Benchmarkingmework [42] has been
proposed to assist on the evaluation of AO softwachniques, within the context of
software maintenance. Such guide is of fundamdyaekground information towards
the contributions of this dissertation. Therefatds presented and discussed in more

details in Section 3.3.

Software Testing

Although few but still helpful and useful empiricatudies and analysis on
regression testing, the contributions are limitedew the scope is focused to AO

software maintenance.

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Crosscutting concerns degrade software qualitynd@® software system. They
negatively impact internal quality metrics, such pgram size, coupling and
separation of concerns. Such proposition servea ftarting point to many researchers
[46, 49, 51, 52, 80, 81, 82, 83] study differenpeats of the paradigm that would
provide more confidence towards quality in AO s@itevmaintenance and AO software
evolution. Identifying the crosscutting concernsdrder to manage them [80, 81]
throughout software evolution has served as a matdir to studies focusing to keeping
up the modularity [46, 82] or relative to desigritees [49, 83]. Identifying control and
data dependencies [84] could also help on detengimihen the semantics of one
statement can affect the behavior of another stterand this would contribute to

anticipating effects on the program’s behavior.

Although the above mentioned studies have helpgarawing quality in AO
software development and maintenance and may hasedethe costs and issues,
generally speaking, after the modifications for dwelution, the system still needed to
face testing activities. The issues of crosscuttngcerns affecting code quality has
inspired researchers [83, 87] on studying the coimes and relations between
crosscutting concerns and defects in a softwaresysThe researchers have studied the
impact code quality is vulnerable to suffer. Sonfethem [52, 82, 87] focused on
developing new metrics or adapting existing ones doantifying crosscutting and
assessing the impact of modularization crosscuttimgcerns using AOP techniques,
improving separation of concerns. The theory [87tta crosscutting concern is
harmful for maintenance is acceptable for multi@led sometimes unrelated) locations
in the code have to be found and update simultatgo8uch complexity is still even
higher when the concerns are required to untangée dode to attend update or

maintenance requirements.

The existing approaches [106, 107] for OO softwaegression testing
unfortunately are not effective for aspectized cddleecific testing techniques for AO
software have been derived and developed [88,BHX 101, 102, 103, 104], in which
structure-based methodology is unanimously theoWald approach to develop
regression test selection strategies. Xu [91] amaloZet. Al [89] both have proposed a
control flow graph (CFG) to model the control flaAO programs. Xu [91] defines a

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

new test selection criterion and implements tharigpie in a regression test selection
for AO programs framework. In the technique propbbg Zhao et. Al [89], it is not
included any complex situations, such as multipleices or dynamic advices and there
is no evaluation of this model. Xu and Xu [90] hgresented an incremental approach
to testing whether or not AO programs. With regar@dspect-orientation, they analyze
the impact of aspects on the state transitionsaséltlass objects and generate tests for
base class and AO programs based on their statelsnodiccording to the authors,
model-based testing is appealing because of sevenaffits:

The modeling activity helps clarifying the requiremts and enhance
communication between developers and testers;

Design models, if available, can be reused foirtggiurposes;

Model-based testing process can also be automated;

Model-based testing can improve error detectionabdipy and reduce

testing cost by automatically generating and exeguhany test cases.

Modeling is a broad concept that can be involveffledint perspectives of
software development, such as design, specificattmale generation, testing and
reverse engineering. Taking aspects as incremenudlfications to their base classes,
the authors [90] identify how to reuse the concredse class tests for testing AO
programs according to AO state models. The incréaheapproach can be seen as

similar to regression testing.

Xu and Rountev [88] propose a regression test setetechnique based on
AspectJ language features also building a CFG, wmt@presents the interactions among
multiple advices and captures the semantic intiésaof aspect-related interactions in

order to be able to compare the algorithm for $esction.

In every approach here mentioned the aim is toaedbe cost of regression
testing by selecting the criterion that best fite tobject under test and software
project’s constraints. The regression test techaiguhe most adequate way to validate
the system after modifications have been appliedwéVver, when the system needs

change for upgrades, regression test approach roaye the only requested test

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

direction to head up. Also regression testing maiybe good for radically modified
software, coverage-based testing, GUI testing,aonptex simulation of software or
hardware [119]. Specialized tools and support khggr necessary test elements
(testware) may be required for such cases to asldites existing variables and,
therefore, the most adequate test criteria tohint, so that the testing activities can
provide the expected confidence that testing isnidéd to provide: that a software
system has been safely and properly tested, irr tsdacrease software system quality.
This is the context in which this dissertationnsarted; it addresses a testware support
(Chapter 4) provided with test core elements tocbasidered within an existing

benchmarking framework, the BF [42], described orendetails in Section 3.3.

3.2 The AO Software Development Testbed

In order to promote a smooth adoption of AO sofavdevelopment (AOSD)
technigues, an AOSD testbed [105] has been ideal@zerovide end-to-end systematic
comparison between such techniques, enabling tbpopents of AO and non-AO
techniques to compare their approach in a consistanner. A testbed is a platform for
experimentation, an environment to allocate andestdexperiments and tests, in which
different aspects and elements are considered ngpase such structure to become
useful for its purposes. Therefore, the AOSD tabtihere presented is not yet
concluded. Research is currently taking place tires$ further items, problems and / or

elements to provide higher effectiveness and ctergis in its use and purposes.
The testbed is composed of:

i. A benchmarking application;
ii. An initial set of metrics suite to assess certaiternal and external software
attributes; and
iii. A repository of artifacts derived from AOSD apprbas that are assessed based
on the application of (i) and (ii).

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

The purpose of the testbed is to help answer questiregarding the

effectiveness of AOSD throughout the developmédatdycle by:

Providing a set of core applications from differdpmains in which a variety of
software engineering approaches can be applied;

Defining metrics suites to facilitate end-to-endtware life cycle assessment
under different quality perspectives; and

Providing a set of artifacts that have been creatad applying a variety of AO
and non-AO approaches to the applications provie().

From providing such artifacts and case studies, téstbhed has the goal to

provide proponents of software engineering apprescwith the ability to easily

compare their approach to others. Such study enéiasto stimulate the application of

AO approaches in order to enable results to reacider audience.

Such testbed consists of four core elements (Figur¢l05]):

Applications that contain a variety of crosscuttomncerns;

AO and non-AO approaches that are applied to a camiupplication to
generate artifacts;

A suite of metrics associated with a variety ofemal and external software
attributes; and

A set of metric results that have been gathereah fapplying the metrics suite

mentioned in (iii) to the artifacts produced.

Each of these elements is extendable to include inst&nces of applications,

approaches and metric suites. As it has been tescan its definition and study [97,

105],

for such testbed to be successful it requicestributions from software

engineering community. Hence, in order to exparmdtéstbed into a valuable resource,

the benchmarking framework — mentioned many tintesughout Chapter 1 and

previous sections from this chapter — complemenmtsinitiative, as it is explained in

details in the next section.

-

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Figure 3.1 The various elements that compose the testbed

3.3 The Benchmarking Framework

This section introduces the Benchmarking FramewBF) [42], which supports
maintainability assessment of AOSD techniques befaition of an idealized scheme
for benchmark applications to assess maintainghalitributes of AO techniques. The
framework guides researchers and practitionerslgcsng or adapting applications and
their releases that best fit for specific experitaemaintainability goals. The BF can
also be used to support the design replicationeaadluiation of empirical studies. The
users or framework stakeholders have been clagsiite two categories: the designer
of empirical studies on AO software maintainabjlia;gd the benchmark designer. The
goals and interests of each category and furthiilslen this matter are described in
Chapter 5 (Section 5.1).

The BF is the result of a research [42] extendivg proposed AOSD Testbed
described in Section 3.2 that aimed to provide l&d sstructure to fill the gap in

scientific evidence associated to AO software nesianhce in order to enable reduction

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

of difficulties and challenges when generating seeidence. The BF provides the
appropriate structure for applications to be eualdiaand compared with regard to
maintainability attributes of the applied technigu&herefore, as mentioned, it is able
to guide researchers and practitioners when setgctelaborating or adapting
applications in their process and in their respeathaintenance scenarios, helping them
become more adequate to attend specific goals edifgp experiments or software
system project on what regards to AO software reasnice. Besides, its systematic use
when evaluating and comparing applications and gdatenarios allows it to be used
as a tool to verify benchmarks examples. Henceeases the identification of
applications and change scenarios that are repedsenenough to be considered
benchmarks of specific domains, which can be platedrepository and used in future
case studies and experiments. Thus, the main eonéthe BF can be summarized in:

Assisting the evaluation of software developmeahméques;

Supporting the elaboration, replication and evabmatof empirical
studies;

Easing the identification of applications and cheasgenarios to consider
as benchmarks;

Possible extension of the criteria to comply witiffedent context of

studies and applications.
The framework is composed by three main components:

i. The process;
ii. The product;

iii. The maintenance scenarios.

Further details on each of these components ardaiegd in Chapter 5 (Section
5.1).

Figure 3.2 [42] illustrates the composition of BE. The BF defines a process
that consists in different stakeholder categories$ some input/output transformations.
For instance, a set of experimental requirementsseave as an input to generate the

first version of an experiment plan. The output alo work as framework feedback in

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

order to improve it. Besides the output generatgdiifferent kinds of stakeholders,
there is a possible output that is common to alld&i the cookbook, in which the
actions experienced by the users, related to tlee aisevaluated techniques and
methods, and the use of the framework itself aserileed. The cookbook is consisted
by: (i) lessons learned and (ii) best practicexhSpractice is important to gather and
disseminate technical knowledge, issues and expmE$efrom software engineers that
can be used and learned from by other users. Thal®Fdefines a list of criteria that
classify the characteristics related to the produet, applications or software systems.
The criteria can be used in different approachasdb according to the goals of users,
stakeholders and/or software project. The criter@ude general attributes, common
properties to any applications, such as systemtifde=tion, packaging, life cycle
documentation and development techniques; and Awes, the ones specific to the
main characteristics related to the applicationseligped using AO techniques, such as
classification of crosscutting concerns, compositiof concerns, scope and AO
language constructors. The BF also embraces theriarithat describe the main
characteristics regarding change scenarios, whaih telp, for example, software
engineers identify and map the impacts generatecaninapplication during the
implementation of different scenarios. Such créteniclude the scenario description and
the identification of the type of change, goalsegls, etc.

Nevertheless, there is no support on what regard®ftware testing within the
BF, nor the testbed (Section 3.2). As the BF isesagwithin the testbed universe, it has
been considered as the base to insert the tessuport (Chapter 4), which is the
subject of this dissertation. The proposed inseréind the BF extension is presented in
Chapter 5 and the evaluation of the testware swppibhin the BF is presented in
Chapter 6.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Figure 3.2The inputs and outputs of the benchmarking framkywoocess

3.4 The Case Study

This section introduces the case study that seagethe starting point of this
dissertation. The case study aimed to be an exphyratudy on the error-proneness of
the AOP mechanisms. It involved four OO releasetsvof medium-sized systems from
different domains, each with an AO counterpart. Qoal was to obtain high-test
coverage and reveal results not yet found regarthegcollected AOP faults. Such
experiment was part of the research related tbedshere presented (Section 3.2); the
two applications involved are already part of testibed and the results to be obtained
were supposed to provide the testbed with mordaetsi and useful information
regarding AOP related faults to be used in futtweliss. That was the first experiment
within the testbed context considering testing @ets, therefore, there were many
different test factors to address. As this sect@gplains, the test factors became risks
and, therefore, issues, which motivated the creaifahe testware support (Chapter 4)
addressing testing process flow to address whesidenng testing as part of a software

experiment or project. The case study involvededgit variables that are presented in

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

this section. However, the details of the issuegdathroughout this case study are
described in Chapter 4, in which the different teleiments can be identified and the

respective associated issues in the case studthare,detailed.

3.4.1 Goals

As briefly mentioned above, the goal of such cstsely was to identify error-
prone AOP mechanisms when they are applied to englprograms. The analysis if
the nature of specific concerns exerts some inflaem fault location embraces a wide
range of heterogeneous concerns implemented astsspe addition, each AOP
mechanism naturally introduces different forms @pendencies between the base
classes and the aspectual modules; therefore ptidengs to evaluate how the degree of
base-aspect coupling could help developers idemtifgr-prone modules in evolving

software systems.

3.4.2 Target Systems

Two medium-sized applications were the targetesystin this exploratory
study. The first one, IBATIS [120] is a Java-basgzen source framework for data
mapping. It was developed in 2002 and over 60 seleaare available at
SourceForge.nétind Apache.orgrepositories. The second is a Java Mobile apdicat
— MobileMedia — that manipulates music, photo amtee for mobile devices. As
different research groups have handled the apmitatin order to test them, this
dissertation only regards the manipulation with Meedia testing.

MobileMedia (MM) is a J2ME (Java To Platform Micixdition) application
that has been developed based on a previous seftpaduct line (SPL) called
MobilePhoto [96], which is a photo album (imagewee) appropriate for cellular

phones and personal digital organizers (PDAS). fEagiirements for this application

* http://sourceforge.net/project/showfiles.php?gradp61326
> http://archive.apache.org/dist/ibatis/binariedimva/

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

included several different features. MobileMediz baen developed by including new
mandatory, optional and alternative features, esiliustrated by the application feature

model in Figure 3.3.

o ——

) @
Album Photo
Management Management
d__'____,__~—~_ — TT—

. - ol L e
Create Delete . . Basic Photo Copy
Album ‘ Album ‘ Favourites Sorting Operations Photo

. ST
e« e) e« T e
Set View Create Delete Edit Photo View
Favourites || Favourites Photo Photo Lahel Photo

Figure 3.3MobileMedia feature model

Software product lines (SPLs) [123] represent amartant technology to
support software variations. Assets reuse and cyele reduction are some of the
benefits SPLs can provide to a project. The praddicim a product line are very
similar but differ from each other [124]. The baselcontains mandatory feature(s) and
every evolution or update of it introducing optitalernative features results in a new
product. The evolution of product lines imposesng&s from diverse nature, such as
the transformation of mandatory features into almr alternative ones and vice-versa
[51]. These changes imply new test definitions heak whether or not they impacted

other existing features or general software exjgeloéhavior.

The core features of MobileMedia are: create/delaedia (music, photo,
video), label media and view/play media. The aléue features relate to types of
media supported: music, photo and/or video. Thépal features are: count and sort
media, copy media, edit photo label and set faganedia. For the case study, it has

been used four Object-Oriented releases of Mobith&18PL, and in each release there

ESCOLA

POLITECNICA DE

PERNAMBUCC

was an incorporated changed scenario by the inttmduof a new feature. Table 3.1

summarizes the main changes for each product.

Table 3.1Summary of changes in MobileMedia SPL

Release

Description

01

MobilePhoto core with mandatory features.

Mandatory features plus Sorting and Edit Photo Lédsure

02 implementation.

03 Mandatory features, Sorting and Edit Photo Labaluiee plus Set and
View Favorite feature implementation.

04 Mandatory features, Sorting and Edit Photo Labaluiees, Set and View

Favorite feature plus Copy Photo feature implententa

As MobileMedia is an application for academic sésdithe releases used for this

experiment can be found at http://mobilemedia.wdirceforge.net/. The number
details regarding Total Lines of Code (TLOC), Tdtales of Bytecode (TLOB), total

number of methods and classes from the testedsedesxe illustrated on Table 3.2 and

can be observed as they reflect how large the egin is. The complexity and

inclusion analysis of the SPL and criteria havelresin considered for this scope.

Table 3.2MobileMedia SPL OO Releases’ details

TLOC TLOB Classes Methods
Release 01 1159 3058 24 122
Release 02 1316 3527 25 139
Release 03 1364 3728 25 142
Release 04 1559 4180 30 159

There was not much information regarding the Aasés of MM, nor how

they were implemented, aside the information thatdptional and alternative features

and the exception handling code were what have aspectized from the OO releases.

Further details from the implications of such lagk information are described in

Chapter 4 along with the definitions of the testecelements from the testware support,

and in Section 3.4.4, where the tool support arel ifsues with AO releases are

described.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

3.4.3 Testing Strategy

Since the goals were all related to code-basedignetrsuch as fault location,
relation between fault and aspects, etc. — thdegfyaadopted was structure-based
testing, focusing on code coverage. However, secistbn was not supported by a test
process, plan or previous studies, as this wadirsteone regarding testing within the
context of the AOSD testbed (Section 3.2). Thers m@testware support at all, besides
the experience of the software engineers with JUedting [121] and the little

documentation of the applications to be tested.

To achieve the determined goals, coverage-basedgegas then determined to
be applied, which relied on the claim that one cartrust a piece of code if it still
contains elements that have never been executa@sydesting [122]; structural-based
testing has been discussed in Section 2.3.2. Italss taken into consideration that
there is a larger currently available tooling supgdor code-based testing, once the
software engineers involved were more experienth software development rather
than software testing skilled. No other test teghes were discussed, nor was it ever
considered. Therefore, the testing strategy resumedlite unit tests that would execute

the pieces of code in order to cover it.

The only major decision regarding testing that Wwa$y analyzed in this case
study was the test exit criteria. To decide whiokiezage should be considered enough
to stop testing, the most experienced software neegs researched about other
experimental studies and had considered studig¢suse similar applications to the
target systems in this case study based on the iszethe executable lines of code.
However, the degree of coverage should be oneeddelieral criteria for deciding when
testing is complete [55]. The target systems weym fdifferent domains and contained
very different numbers of lines of code and clasass for example, can be observed
from Table 3.3. For instance, the first OO releaS@8ATIS had 10,270 lines of code
while MobileMedia first release had only 1,159. kvéuch a large difference expressed
in numbers, the same test exit criteria shouldoeoappropriate to fit both applications.

The purpose of exit criteria is to prevent a tasknf being considered completed when

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

there are still outstanding parts of the task, Whiave not been finished [6]. Still, to
consider structure-based testing for two so differsoftware systems had also to
consider how the concerns were implemented in A@ases and to apply a different
strategy accordingly and that has not been done. stiategy to fulfill AO releases
testing for both applications were establishedhassame from OO releases testing as

explained in this section, not considering the itletand risks of testing AO releases.

Table 3.3Numbers from OO Releases — iBATIS and MobileMedia
iBATIS MobileMedia

lease| 01 02 03 04 01 02 03 04

Lines of Code | 10,270 | 10,210 10,31 11,269 1,159 1,316 1,364 1,059

Classes 216 215 216 229 24 25 25 30

As it is further explained in the next section, Mebledia had to follow a
different test strategy than iBATIS, since JUnanfrework did not support the micro
edition (ME) extension for Java in which the appiion had been developed. The
required documentation of the application had tactected in order to prepare test
cases with steps to execute in a mobile simul#&aest case (TC) includes not only
input data, but also any condition and relevantgdare for the execution, and a way to
determine whether the program has failed or pasetest [131]. A TC specification is
a requirement that must be satisfied by a TC. Tiauilly, software testing validates
that specification was implemented as specified, gravious discussions on testing

scope expand that definition to whether user naeglsnet as well [10].

The definition of the TCs for this case study hasrbset based on analysis of
existing documentation about MobileMedia, featuteshavior and talks to developers.
All that was put on a template containing: des@iptpre-condition, steps and expected
results, as shows model in Table 3.4 an exampl&@est Case description for the
Favorites feature.

It has been stated an each expected result foy etep to be followed on the
test case. This would help finding where a defeatile be coming from; for example,

this test case may be blocked when step 2 cannexéeuted. Hence, the test is not

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

even allowed to push further and check whetheail$ for not, since step 3 is not even
reached. A test case would only fail when all tteps were executed and the results
were not the same as the ones expressed on thetexkpesults. When a test case
needed to be stopped in the middle of its execuiien step 2 blocks the rest of the

execution, then it was not a failure; it was blatkmtil it was possible to go further.

Table 3.4Test case example

Description Set a photo as favorite.
1. Application must be launched;
Pre-conditions 2.There must a photo available and stored on

phone's images folder.

1. The user creates a new album and inserts photo
in it with correct label and path;

2. Set an item as favorite;

3. View Favorites.

Steps

1. ltems must be inserted properly;

2. Item should be set flag Favorite as true;

3. The item just added as Favorite should be
shown.

Expected Results

This case study has considered the testing of rfeleases of Object-Oriented
MobileMedia software product line (R1, R2, R3 andl).RDue to optimization of test
execution, the test cases have been executed anaemcombining one test case to the
other, in a way that test cases from related feathiave been executed at once, (not
restarting the emulator, not restarting the appbod. For example, a test case to add a
photo and a test case to delete a photo were ranesogether. Thus, the number of
TCs executed for each release of the SPL has h@enized and reduced, compared to

if they were ran separately, as shown in Table 3.5.

Table 3.5Number of test cases executed on MobileMedia SPL

R1 R2 R3 R4
04 07 11 17

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

3.4.4 Tooling Support

As the case study was performed within acadenatd foy MSc and PhD
researchers, open source tools were the target tmdde considered for such. In case of
IBATIS application, the common JUnit framework tiite desired actions to write unit
tests, however for MM, the same framework did ngiport the micro edition (ME)
extension for Java in which the application hadnbeéeveloped. Thus, a different tool
needed to be used to execute the code from MobdeMeleases. Plus, when the unit
tests had been written, a coverage tool supportidvalso be necessary in order to
evaluate which parts of the code the tests wergene not covering and finally assess

the code coverage percentage.

As this dissertation is focused on MobileMediaitegtthis subsection describes
the strategy taken regarding the tool used for djpiglication’s testing. There are not
many tools available for testing J2ME applicatiespecially when it comes to open
source tools. Nevertheless, there was a tool #amed to support the desired testing
tasks. JaBUTIi (Java Bytecode Understanding andnfpdtLl27] is a tool developed in
academic field that provides different structuredsh testing criteria to analyze
coverage and other static metrics for further \@tfons on Java applications. The tool
considers the analysis of exception dependent acepéon independent point of view
for each criteria, so that makes a total of eigifteent techniques derived from
structure-based criteria are implemented by JaBahd can be applied to software
testing; in which four are data flow and four arentrol flow criteria: all-nodes-
exception-independent, all-nodes-exception-depdnden all-edges-exception-
independent, all-edges-exception-dependent, a#i-ageeption-independent, all-uses-
exception-dependent, all-potential-uses-exceptgpeddent and all-potential-uses-
exception-independent. The difference of JaBUTmfrother testing tools is that it
performs the static analysis directly on Java mde¢ not on Java source code. This
allows the application of supported criteria to +fommventional software, such as

mobile agents [128] and software components [129].

The main task executed by JaBUTi tool compreheotiss files (bytecode)

instrumentation and coverage data collection duexgcution trace. However, to test a

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

J2ME application using a device or an emulatooisantrivial task due to storage space,
memory and processing constraints. Thus, JaBUE asdient-server solution for this.
The testing server runs in a desktop machine anegponsible to receive tracing
information of client programs execution under amutator or mobile device. This is
possible due to a commands combination via DOS ptolore details on how this is

implemented can be obtained on tool’s user’'s majiza].

To enter a test case for this case study, one giey#cuted the midlet using
instrumented classes by the tool. The interfacth@fapplication was, then, opened and
ready to receive test data input, as observed guré&i3.4. By the end of each test case
execution, the execution trace was sent to thenteserver and analyzed by JaBUTi. A
new test case is considered every time the aplicas restarted, that is, closed and
opened again. The execution of the application passible due to the emulator from
WTK (Sun Java Wireless Toolkit) [130].

The functionalities implemented by JaBUTi providery useful information for
empirical studies, which allow enabling differenequirements and test case
combinations, making feasible the use of increnldatd strategies. In this case study,
there were test cases created based on functiemarements that served as start point
to evaluate coverage of MobileMedia Software Produme testing. It was possible to
evaluate critical parts of the code that needebdet@overed more urgently in order to
increase coverage. This is very valuable infornmatio a test project, when time and
resource restrictions are severe and what is nrdreat usually is required to be tested
first. The tool also displays different colors regenting weights that are associated to
test requirements, indicating which test requiretheh covered, would increase
coverage as much as possible. According to theideresl criterion, the tester can work
on testing code that has higher weights and camdlgtincrease coverage. The stronger
the color is, the heavier its weight represent, clwhcorresponds to an important
requirement to be covered. For better visualizatibi, Figure 3.5 shows a print screen
from JaBUTi tool showing a part of the bytecode fomageUtil class from
MobileMedia Object-Oriented Release 1. It showsdifierence of the colors (weights)
that are applied to the code, indicating how ailte specific part of the code may be for

testing coverage purposes. Testing critical partthe code, based on the indications

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

provided by the tool, increases the coverage faster tool, however, does not consider
complexity metrics or how critical a determinedtpairthe code can be to the project,
outside code perspective. The test engineer, basdis/her experience, may decide to
cover other test requirements that have been deghly complex and do not have high
weight, though. The test engineer may use the nmftion provided by the tool to help
improving the testing activity and, sometimes, ita fsource to increase code coverage
of a set of test cases in a faster way. For exartiptetest engineer is able to notice that
a test case that exercises the part of the codescharith red will increase the coverage,
regarding the test criteria set on the tool. Ondtieer hand, test cases that cover the
code marked with white or blue will not increases tbode coverage very much.
Therefore, based on the information provided byWRB it was possible to see the
difference of coverage results regarding the agpuliéeria.

Figure 3.4 Interface of MobileMedia Release 2

Although JaBUTi supported all the functionalitiedroduced by the different
OO versions of the product line, and seemed tothé case study’'s needs for
MobileMedia testing, it did not support the AO redes of MM. The criteria developed

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

by the tool did not support the increased compjegitmbined from AspectJ language
particularities and J2ME. JaBUTi developers havenbeontacted to try to solve such
issue, which has been identified as a setup isBoeever even using an AspectJ
compiler, as it has been suggested, and propettingdibraries and necessary setup,
the tool kept showing different kinds of errors.eDio the bad (or lack of) test planning
that should have identified that such tool was & wet ready to support all the
constraints the case study implicated, the testiatyvities were blocked. The tool

developers and the case study managers were cahtiachelp finding a solution for

such bottleneck. The days went by while the dewwt®gried to find time in their

planned activities to solve an issue from an unpdanactivity. Therefore, by the end of
the case study, the AO releases from MobileMediaewedeed not tested. Further
details from such bottleneck and the implicatiofnst are all described in Chapter 4

along with the definitions of the test core elersénvm the testware support.

Figure 3.5JaBUTi screen showing different colors for differareights associated to
test requirements for bytecode of MobileMedia SRlleRse 1

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

3.4.5 Bug Reporting

MobileMedia case study has taken place as a$tiraty along with iBATIS case
study, being handled by different test people (8atisn 3.4.6). A spreadsheet template
for reporting bugs found have been created andestgd to be used in both studies
(Appendix B).

Although the template had important fields to #led in case a bug was found,
it has been designed mostly to specify code basstthg) bugs, i.e., bugs from the unit
testing or component level. For example, if a robess bug had been observed in a
MobileMedia release test through the emulator (fate testing), it is possible that the
tester could be unable to identify the root causéhe code for such robustness issue.
And as MobileMedia testing activities were deteredirio be handled by the use of the
emulator, even with the support of JaBUTI, it wasneon for the tester to be unable to
locate the bugs’ root cause. And since there werelevelopers available to support
testers, the root cause analysis has, therefoes, leét aside. While for iBATIS, the bug
reporting template seemed to fit very properly, tfee only required testing in that case
was unit testing and there were developers sumgptesters with bugs’ root cause

analysis.

3.4.6 Test People

MobileMedia case study was handled in academiid Eetween two universities
at two different sites. The two different sites weery distant, i.e., different time zone
and thousands of kilometers from one to the otNewertheless, the communication
was handled over the web and through e-mails aeddles have not been assigned
formally. But it was possible to identify that tkewas one researcher managing the
activities and the testers executing test taskdewther performed support tasks, so the

roles could have been formally assigned as:

Test Manager — A (Site 1)

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

IBATIS Tester / Test Manager — B (Site 1)
Wild card role — C (Site 1)
MobileMedia Tester — D (Site 2)

The names of the ones involved have been presethatds why letters are then

here addressed in the case study roles.

Even still not addressing the roles and resporis#sispecifically here just yet
(it will be detailed in Section 4.6), it is pos®hio see that the responsible person, the
test manager to administrate planning, processsso@és was located at the same site as
the tester from the other application from the cstsely, as well as the wild card role.
The wild card role is non-specific role, undefinedle of a person who was not a
developer, not a tester, but has used and handtgrlé®edia application within other
contexts, so he was pointed out as a resourcentiactan case of need, but he was not
directly assigned to the case study. This rolebegn helpful throughout the study, but,
as expected, he was not available every needed tiorecould support with every
request of help. The MobileMedia tester was locatethe other (far) site and did not
participate on meetings or discussions regardirgplianning of the activities of the
case study. Even though it was poor, they havesonme meetings to decide what to do.
D has never joined any of these meetings and @estived the duties without space to
guestion. Such situation did not help when thevdigs started to take place and there
was no role to report bugs to. Therefore, the thayse been reported to the wild card
role, who informed the test managers of them, butccnot and did not have the time to

look into them in order to fix them.

3.5 Final Considerations

This Chapter has as main purpose to introduce dBe study that served as a
base to create the testing problems that motividtealevelopment of this dissertation.
The case study was part of an experiment that kasha of the tasks to test a J2ME

software product line (Java an Aspect]) releasdsd. dbjective was evaluating and

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

comparing AOP related faults and assess the eromepess of AOP mechanisms.
Therefore, the chapter has firstly introduced tbatext of the case study, providing
information on the empirical studies regarding wafe maintenance, and within such
context, it introduces the state of art of AO safitevmaintenance, evolution and testing

that is important to understand in which conteet¢hse study is applied.

The case study was inserted within a much broaolgegt involving an AOSD
testbed (Section 3.2), which is why details of hbe testbed is composed are given in
this chapter. Furthermore, a piece of the testbeshposition, the benchmarking
framework, is also detailed in Section 3.3, so cae better understand how the case
study became a cause of a problem that the tessupport in this dissertation suggests
to solve. Details on how the case study has beesnsiedeveloped have been explained
in Section 3.4 and in its subsections; but, dtilither explanations of the issues are also
described in Chapter 4, in which the test elemeaoisposing the testware are cited and
examples of the issues experienced in this casky site described along to give clear
examples of the need of the testware support elesrard provide confidence of the
effectiveness of the testware support, within thetext here described.

To conclude this chapter it is important to yet tr@mthat, in a general way,
testing tasks become even more critical when so&wazaries more than usual.
Considering complexity increase for software tegtirom the case study perspective
described in Section 3.4, J2ME application shalltddeen a closer look, since it has
memory restrictions and capability particularitiébe wide variety of Java technology-
enabled devices implies in each device runningfferént implementation of CLDC
(Connected Limited Device Configuration) and MIDRIopile Information Device
Profile) [125]. Many developers who work in Javafieicro edition products have been
initially trained to develop desktop software. Thisesses the little existing experience

regarding mobile software, hence, mobile softwastig [126].

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Chapter 4

Testware Support

Lehman [92] affirmed that a software system musihayin order to become
more satisfactory. Evolving a software system is ardy about adapting the source
code. Software is multidimensional and the prockeekind the development and
maintenance of it involves different relations amoother artifacts, such as [93]:

specifications, constraints, documentation, tests.

Some authors and studies defend the idea thatsmgretesting [12, 20, 114,
119] and software testability analysis [14, 19] am®ugh to address the test directions
to look up to when evolving or maintaining a softevadystem. Others have aimed to
provide a characterization schema for softwarengdechniques [56, 57], tools [58]
and/or framework [59, 60, 136], where test engisexuld define data models or be
assisted when selecting a test technique. Howéwese studies are not general enough
to be used as a whole test element within a soéweaolution benchmarking, nor are
adequate to specifically support an AO softwarenteamiance benchmarking framework,
as the one described in Section 3.3. In Chaptérhs been mentioned that the idea of
benchmarking has been used to support decisionghich software engineering
techniques to use when dealing with its evolutidime proposed Benchmarking
Framework (BF) presented in Section 3.3 intendadgsist AO software engineering
empirical studies by defining appropriate guidedint® assess the AO software

characteristics.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

In order to support maintenance decisions, a satisfy testware support
available eases software evolution by offering fetganet against unwanted change.
Therefore, this chapter presents an important irton of this dissertation: it
introduces the testware support with test core etgsto be taken into consideration
and applied when maintaining or evolving a softwaystem, within the context of AO
software maintenance presented in Chapter 3. Tiectee elements address topics in
test process flow in each subsection where theyistezl as questions and/or items to
purport the capabilities of a software project agatesting process flow to conduct the
project into the right test process flow. Such edata help supporting aspect-oriented
software maintenance, providing the minimum testwiaformation required within a
software project or case study in order to makeemneasonable decisions regarding its

maintainability and evolution.

The testware support can be defined as follows:

Set of test elements and attributes that are abledéntify specific test
characteristics of different applications or soft@dest projects, so that it
is feasible to evaluate them under software manetas’ perspective and,

therefore, address the most adequate test protm®ssd fit.

This dissertation defends the idea that the existeh the testware support in the
BF is able to express an adequate test structurtidoapplications to be evaluated and
compared with regard to the test attributes reldtethe used software development
techniques, under the maintenance and evolutiant pbview. The extension of the BF
considering the testware support and the evaluatiosuch insertion are presented in

the next chapters.
The testware support provides:

Quality assessment of the current state of theveodt system;
Identification of test factors and/or risks in dt®@re project;
Decision making support on what regards to testiiigin the context of

software maintenance or evolution process.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Thus, the testware elements will be able to guetearchers and professionals
interested in testing perspectives when selectorgparing or adapting a software
system and its maintenance scenarios making thene amequate to reach specific
objectives and determined goals of experimentsaee Gtudies related to AO software
maintainability. The testware support can be useidéntify test factors and guide the

testing activities planning according to the idiedi test attributes.

The definition of the criteria and elements thainpose the testware support is
not an easy task, for they have to be general pedfs at the same time. They should
be general enough to identify test characteristi are mostly common to be
considered in every software project or case sadiressing testing, within the context
of AO software maintenance; and they should alsspezific to comply with the test
elements that may/may not be feasible in each rdifte software project being
evaluated. Yet another factor that makes this defimnot an easy task is the quick
appearance of new techniques, which hinders therierilist to be statically defined;
therefore, it should be dynamic to adapt imposeelded changes. The list of test
criteria, known as the testware support provideth westware elements, has been
structured to enable its extension in further gsdn which it can be addressed and

applied.

Provided with an appropriate testware support,favaoe project or case study
is more likely to:

Identify and address potential risks, so that tliey not become a
bottleneck;

Prioritize tasks according to its importance ansbamted risk;

Plan the necessary resource in advance, so thaeske are executed
smoothly;

Address the required test tasks and allocate enmsgiurces to them;

Define the minimum test criteria required for itsais and objectives.

The whole testware element is composed by diffepanrts: the first topics
presented in Section 4.1, in which the most geratabutes are addressed in questions

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

and tables; a test strategy described in Secti@nimtroducing the main topics to
consider when planning a test strategy; Section ptesents the test environment
element addressing topics on this subject; relevdotmation regarding test tools to be
taken into consideration in a software projectasatibed in Section 4.4; the test people
composing a test team and the roles’ definitioresd@scribed in Section 4.5; Section
4.6 introduces Aspect-Oriented topics to be adddesgthin such context and, finally,
in Section 4.7, the final considerations about ¢hapter are presented. Every section
represents an element of the testware supportrd-#a illustrates the testware support
and its elements and represents a general vievowfthis structure is composed and
organized, so that it is easier to understand thegss of the test elements address; the
figure also shows the benefits as a result of gaittpeand making use of the elements
that can be achieved in a software project or sas#y.

First \
Basics
Test Test
Strategy People
Test >
Environment AO
Attributes
Test
Tools

Figure 4.1 Testware Support

The elements are shown in boxes and the reasorthelyyare not connected is
because they do not compose a process, but theysupgprt a process flow in which
they are not dependable one on another. A casg st make use of some of the

elements, but not all, according to its goals. Hasvethe reason why the “First Basics”

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

box is on top and not in line together with theesthon purpose is because the first
basics are quite indispensable to projects condemmeaddressing or assessing test
attributes, for they represent the very first issties to filter and surface the basics of
testing that may not be identified and / or identifie test needs. The other three
elements below it are usually the most common topecaddress in a software test
project, so they behave smoothly at the same stegdrom the other inside the testware
support, with no definitive priorities among thebut it is important to stress that they
are equally relevant. The other two from the nettimn are test elements that usually
come in second plan, despite addressing fundameéopats in software testing.
Together, all these elements in a common and properhave the power to provide
successful outcome to a software project or casdysds it is described in the box on
the right.

4.1 First Basics

There are infinite possible ways to be used to tegtiece of software. As
mentioned earlier on this dissertation, testingivdags are important to support
software quality assurance, but when there areesb grocess flow definition in a
software project, there are no defined strategiesyistematically evaluate a target
system. A definition of quality can change accogtiinto user and project goals, so
unless it has been previously set, the test engineeuld be unable to reach it without
knowing it.

Before the software system is being developed dorbeits maintenance or
evolution, it needs to be defined the purpose siintg. Since there are different forms
to test an application, it is required to know wisaimportant to test, what is relevant,
what may cause issues to the project if it failbatvmay bring impact to the system.
When these questions are answered properly, thempissible to define the required
test system — testware, test environment, andpregiess — to a specific project and

determine test efforts.

ESCOLA
POLITECNICA DE
PERNAMBUCC

This section lists an assessment questionnairequiéistions to first indicate the
capabilities of a software project against testimgjcs to conduct the project into the
right test process flow. The questions are baseaarious contributions [2, 3, 4, 5, 6,
7, 10, 55, 68, 70, 95, 108, 124, 131, 132, 146,] ih@t have determined the
specifications and concepts for test activities test elements, have recommended
requirements and specifications for identifying aedolving software problems in its
life cycle and have had a well acceptance in thersanity to address test topics. The
guestions are categorized in different modulesljgrated in Figure 4.2, and have the
goal to address general test items to strict tegics in different scenes from the

software project, such as: initial basics, gen#spics, items in test planning and test

process.
Assess Assess Assess Assess
general general Assess general test
test items items testware items concerns
within |:> towards |:> “towards |:> towards |:> towards
software test initial test test test
project process p][%cess planning planning
W

Figure 4.2Modules of testing first basics assessment questitaire

The questions are gathered in groups of five; facheone, a ‘yes’ or ‘no’
response can be applied. For a successful outcbthe testware support, the meanings

of the answers have been defined as follows:

Yes — There has been a smooth understanding dktheand the answer
complies with definition and skill support, and angcessary measure,
such as training, skills, experience or self-stadgporting the test item

in a positive sense.

No — There have not been definitions, understandingkill support to
address such item, nor its concept or definitiotinivia software project,
case study or organization; or the definitionsiacemplete in a negative

sense that such item cannot be formally verified.

ESCOLA

POLITECN

ICA DE

PERNAMBUCC

On Table 4.1, the questions address the test itgntgpics to consider when

preparing for a software testing project or caséysinvolving tests. In many questions,

test people, i.e., the people composing the tashtsuch as tester and test manager are

mentioned. The definitions of the test people alédsrare detailed in Section 4.6.

Table 4.1Test items to address in software project

Are the objectives and requirements defined?

Are the requirements testable?

Are there time and resources available allotediévelopment and testing

~J

Has the test process been defined?

ol AW NP

Are the testers familiar with the development mdtilogies and thg

)%

required testware to test them?

These five questions from Table 4.1 consider tts fiems to look ahead when

starting a software project and testing is a dem#&onddentify the testing competencies

into more details, different items need to be as=kas state the questions on Table 4.2.

Knowing the answer to these five questions enalihes software project

managers, stakeholders and testers to know hothéatesting project can be on what

regards to software testing initial planning, amevimuch further it has to go in order to

have a satisfactory answer. For instance, if tlssvanto all these five questions is “no”,

then there are many actions to take place andgtbjsct certainly will need a lot more

time to reach a satisfactory testing process thentbat has answered “yes” to at least

half of them.

Table 4.2ltems to address initial test topics

Is there a policy regarding software testing?

Is there a software testing strategy?

Are there trained resources to allocate on soéwesting?

Are there available tools to support a testingtsgy?

Q| WIN| -

Has the test object been under a testing prdefese?

If the organization in which the software projexinserted already has a defined

policy regarding software testing and has a tessitrgtegy, then it is important to

known whether such existing strategy embraces ¢lsessary items to satisfy the use of

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

a testing process. Hence, the questions on TaBlehdve been created as general

considerations to help identify and address thastef the software test process.

It is no use for an organization to have a tescgand for a test project to have
a test strategy when there is no one following rititodoes not provide enough
information for a desired outcome because it isdawed or it does not fit the
circumstances or many other possible reasons.etgtocess should be able to clearly
identify what are the steps to take in order to enakfective testing since the very
beginning of the software project. From the defm$ to plan test activities and
available testware for test case execution andamresults reporting: all regarding
testing tasks must be stated within a feasible gestess. When a project is able to
positively answer the questions from Table 4.3mians that there is a safe test
procedure taking place; it may be time to evaluaktails of them. On the other hand, if
the testing process fails to provide knowledge dfetler it is enough to surface
satisfactory test results, then it needs to goudfnoa whole new evaluation and

restructuring process.

Table 4.3General items to address test process

1 Do testers follow the test process to plan theingsphase, prepare test
environment, design and execute test cases and tepbresults?

5 Does the test process cover all the necessaryitedito perform effective
testing?

3 Is the test process sufficient to adapt to céifiétest strategies?

4 Are there risks defined and prioritized and potrdependencies able to pe
identified?

5 Are the project and test roles defined as well @sedule, resources and
budget?

The first things to look at, in a software projeict,order to know if the basic
testware and test process flow are available dreatkon Tables 4.1, 4.2 and 4.3. After
answering these fifteen questions, a project manisgable to know what actions to
take next. The following actions, of course, dependthe needs of the project and

depend on how developed and suitable its testeglyais at the moment, therefore

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

adaptations may be necessary. Still, it is possibledrive attention to the items

addressed on Table 4.4 towards test planning, dkgarthe type of software under test.

Table 4.4 expresses the questions regarding getogiias when test planning,
l.e., more in a test management level rather thaa ({lower) tester level. The answers
from Table 4.4 will be of paramount importance t@qeed to further details when
planning software testing in a project. If, fortersce, the test activities are scheduled
out of synchronization with the development scheditlmay be difficult for testers to
contact developers in case a bug needs deep igasti and repair. The test objectives
are fundamental to know what is the purpose oingst piece of software, what are the
goals aimed to be achieved. To identify the comdsaand risks that may impact the
activities at some point of the project is also ampnt for they have the power of

putting the schedule behind or block test actisitie

Table 4.4General items to address test planning

Have the risks associated with the software utestibeen identified?

Have the test objectives been defined?

~

Have the test activities been scheduled accotdinigvelopment schedule’

Have the test constraints been identified?

b WIN| -

Have the test metrics been defined?

In the case study presented in Section 3.4, fomela if the questionnaire
presented above had been applied, many test iisaesccurred in the MobileMedia
testing activities could have been avoided, suclthasplanning in accordance with
development schedule, for example. If the questitora Table 4.4 had been addressed
during test planning, the risk of the tool not soipevery release from the software
product line and the AO releases could have betstigel and mitigated accordingly so
that it would not become a bottleneck and blockhierr testing in the project.

More detailed items on what regards testing topiben test planning can be

found on what has been defined on Table 4.5.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Table 4.5Test topics to address test planning

Have the entry/exit criteria been defined?

Have the test techniques to be used been defined?

Are the testers familiar with the test technigieebe used?

Has the number of necessary test cycles been d&fidas the test schedule

considered all cycles?

gl b~ |[WIN|F

Has the bug report and analysis system beeneadiéfin

Table 4.5 assesses capabilities of the test aetvihat need to be satisfied in
order to proceed with a satisfactory test plannifige entry and exit criteria define
when to start and stop testing. Such decisions aBlgoftware project goals and test
objectives. If the chosen techniques to be used Boftware project are related to
structure based techniques, then code coveragsialesiare usually the best metric
used to define when testing has reached a spgaficentage that indicates sufficient

coverage of branches, statements, etc.

In the case study presented in Section 3.4, thee dast exit criterion was
defined for both applications under test. Such sieni turned out to be unsuccessful
since the applications were different from eacheptim many aspects (such as size,
domain) and the test techniques applied could mmtged. The test techniques needed
to have been evaluated considering the variabléshenrisks that could affect the tests’
performance, as it indeed happened, not only beddestechnique was not suitable for
both applications under analysis but because itneagvaluated the constraints in such

project nor if the test process covered a plantiadt(not) identified such constraints.

Yet the test planning does not succeed if the restee not familiar with the
techniques to be used. Testers must be willingmegared to familiarize themselves
with the respective application domain and to aegtie necessary knowledge [55],
however time may be a constraint and there mightoroenough time to train testers.
Therefore, an experienced tester plays a very itaporole, for he/she is responsible
for the creation and maintenance of test specifinaf must know appropriate test

methods and executes the test cases according tesihschedule and test specification.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Yet not even the most expert would succeed in gegravhere many test cycles are

necessary and the test schedule is insufficierthiem.

In the case study from Section 3.4, MobileMedia wasoftware product line
that was already developed when it was introduodtd case study. On the other hand,
IBATIS had some releases but in the case studyesmw extensions were developed
as the tests had been performed, plus iBATIS teas all located at one site, while
MobileMedia team had the tester located at a diffeffar site from where the case
study was being managed and there were no devsloeking at the same time as the
tester, so that was a constraint that has not beesidered either and has affected the
performance of the activities, as it has been expthin Section 3.4 and will be

mentioned in the next sections.

Bugs found must be reported to developers overparresystem, whether a
database with forms or a controlled system of gisiee@ets and their versions. This
system should be able to register bug’'s locati@nabior, steps for reproduction and
the most of available information so that the depels can reproduce it and quickly
identify its root cause and provide fix. Such factaddressed in Question number 5
from Table 4.5) has also not been well addressetarcase study, i.e., there was bug
report template (Appendix B), but the bugs foundviobileMedia were reported to the
project managers at a different site, but there meadeveloper taking care of such bugs,
because there was no developer working for Mobildiglat that moment, as described
in Subsection 3.4.6. Hence, there was no one reggerio receive, address and fix the

bugs and work along with the tester on it.

When the test items addressed on Table 4.5 arersiodd and properly
addressed in a software project, it means thaptbject is ready to proceed to start its
testing tasks, such as test case design, executioort and analysis. As of this point, a
test manager (test people is discussed in Sect&nmay be required to handle further
details on the test strategy, as they get more mpuch as test environment, test
tools, test case design. Test management is rabpofar the administration of the test

process, the test infrastructure, and testware &gular control is necessary to verify

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

if planning and project progress are in line. Tinigy result in the need for updates and

adjustments to plans to keep the test process wodénol.

In the case study, as there had been no test ptanthie manager did not do
follow such responsibilities and was unable to hadsolve the test issues that came
along the way for he was not experienced in testgss or projects, so the decisions

and actions to take relied on the tester herself.

As illustrated in Figure 2.1, testing can and sHoadcur throughout the phases
of a project. The tables presented in this sectidaress the test basics that should be
considered in a project scope so that further det@in be identified. Table 4.6 has

gathered examples of test activities to be perfdroheing a project’s phases.

Table 4.6Examples of test activities during the phasessfaware project

Requirements phase activities
Determine test strategy
Determine adequacy of requirements
Generate functional test conditions

Design phase activities
Determine consistency of design with requirements
Determine adequacy of design
Generate structural and functional test conditions

Program phase activities
Determine consistency with design
Determine adequacy of implementation
Generate structural and functional test conditiongrograms/units

Test phase activities
Determine adequacy of the test plan
Test application system

Operations phase activities
Place tested system into production

Maintenance phase activities
Modify and retest

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

This dissertation addresses further test topicgxatained in the next sections:
test strategy, test environment, tools, test factmd risks, test people and the AO

attributes.

4.2 Test Strategy

Since exhaustive testing is impossible [55], ptiesi must be set. Depending on
the risks involved, different test techniques aggt exit criteria must be specified when
establishing a test strategy. Prioritizing test&lfethe most critical software components
to be tested first, when there are time or resoootestraints, which is very common in

software test projects.

The test strategy defines the test design techsituée used. The test basis
needs to be checked to see if all required docusraetdetailed and accurate enough to
be able to derive the test techniques in agreemihtthe test strategy. In some cases,
this check is done during test analysis only, biitis the case that the documentation is
already available before starting such phase,nthm done while developing the test
strategy. In any case, the specification of thd tdgect determines its expected
behavior, and the tester (or test designer) use® itlerive the prerequisites and

requirements of the test cases.

In a global view, the test strategy drives therdeén and elaboration of the test
plan addressing concerns such as the estimatiadheotest effort, organization and
coordination of the different test levels. The dayaattributes of the software under test
and the sequence of activities that need to beopeed are also all responsibilities
associated to the test strategy. It should alsabie to correlate each different software

feature to be tested with methods for adequatmtesi that specific feature.

In our case study, there was no priority set raggrdshich features should have
been tested first in MobileMedia, nor it has beetedted and identified that the AO
releases from it needed to be prioritized. The pdshning was informal and poor,

without many important factors that should haverbdiscussed before even starting

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

test activities. There was no control of the tesivdies from the management side. The
test manager was located in a different site angl mvach more focused on iBATIS

tests, rather than in MobileMedia. MobileMedia ¢esteeded to plan his/her own test
tasks as the project was already happening alotly ma sequence definition of test
execution, aside of the software product line statgs and the features introduced in
each release. The schedule was prepared week lkyasdhe week as coming to an end
and the next one coming needed to be planned,wasitan ad hoc schedule. Since it
was a project within academia, the people involwede not 100% focused on this case
study, this was also not taken into consideratiodh ia has affected the schedule when,
for example, there was a week coming and the tesidto be away for a conference or
something else. When something like that occurttesl test tasks were simply on hold,
regardless the impacts and dependencies from them.

Based on the experience from the case study anedbas software testing
literature, it is possible to define a Test Plamlradsing the necessary aspects to be
taken into consideration in more details. Such Han is part of the test strategy,
addressed as an element from the testware sufj@tTest Plan is described in Table
4.7

Table 4.7Standard Test Plan

1. General Information

1.1Summary — Summarize the functions of the software and téwts to be
performed.

1.2Environment and Pretest Background— Summarize the history of the project.
Identify the user organization where the testinth @ performed. Describe any
prior testing and note results that may affect tdssing.

1.3 Test Objectives— State the objectives to be accomplished bynigsti

1.4 Expected Behavior— State the expected behavior for this kind ofvearfe.

1.5References — List applicable references, such as previouslbliphed
documents on the project, documentation concenalaged projects.

2. Plan
2.1 Software Description— Provide a chart and briefly describe the inpotgputs
and functions of the software being tested as mdraf reference for test
descriptions.
2.2 Test Team— State who is on the test team and their teggrasent(s).
2.3 Milestones— List the locations, milestones events and datetesting.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

2.4Budgets — List the funds allocated to test by task andckpeint.
2.5Testing

2.5.1 Schedule— Show the detailed schedule of dates and eventhé testing
at this location. Such events may include famiation, training, data
as well as the volume and frequency of the inpesdRrces allocated for
tests should be shown.

2.5.2 Requirements — State the resource requirement, including: eqgaig,
software, personnel.

2.5.3 Testing Materials — List the materials needed for the test, suctyatem
documentation, software to be tested, test inpess,documentation, test
tools.

2.5.4 Test Training — Describe the plan for providing training in e of the
software being tested. Specify the types of tr@nipersonnel to b
trained, and the training staff.

[}

3. Specifications

3.1Business Functions— List the business functional requirement essablil by
earlier documentation.

3.2 Structural Functions — List the detailed structured functions to bereised
during the overall test.

3.3 Test/Function Relationships— List the tests to be performed on the software
and relate them to the functions in items 3.2.

3.4Test Progression- Describe the manner in which progression is nfiae one
test to another so that the entire test cycle mspdeted.

4. Methods and Constraints

4.1 Methodology — Describe the general method or strategy ofdbeng.

4.2 Test Tools— Specify the type of test tools to be used.

4.3 Extent — Indicate the extent of the testing, such ad trtpartial.

4.4Data Recording— Discuss the method to be used for recordingdberesults
and other information about the testing.

4.5 Constraints — Indicate anticipated limitations on the test duéest conditions,
such as interfaces, equipment, personnel, datasbase

5. Evaluation

5.1 Criteria — Describe the rules to be used to evaluate éssits, such as range |of
data values used, combinations of input types usaakimum number of
allowable interrupts or halts.

5.2Data Reduction— Describe the techniques to be used for manipgldhe test
data into a form suitable for evaluation, such asual or automated methodls,
to allow comparison of the results that should bedpced to those that are
produced.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

The standard Test Plan presented in Table 4.7andrshould be extended and
adapted to specific concerns from software projectse generalized. In the case of the
case study presented in Section 3.4, such planwogid have enabled the early
identification of constraints and would have fordée identification and analysis of
important test factors such as methodology andgstdolcase of AO specifications, item
3.2 should identify the structural functions anehit 3.3 should be able to relate them

with testing.

4.3 Test Environment

Project managers are responsible to help the testager in creating an
environment in which testing a piece of softwareei$ective and efficient. The
management controls all the attributes of the emvirent and approves the tools to use.
Tooling support is further discussed in Section. 4This section addresses the
importance of having an efficient test environmbased on the experience learned
from the case study presented in 3.4 and basedhah ean be learned from software

testing literature.

Sometimes during testing in different levels (comgat, integration system), a
test drivef is required when the testing deals with low letedt objects that need
developers’ support, because to write test driyenegramming skills and knowledge of
the component under test is necessary. This ismdstly the developers themselves do
the component testing [5]. Also the same test dsiveay be used in different testing
levels. However a unit test, for instance, requiddferent configuration of the test

environment than a production acceptance test.

Other times it is necessary to install softwardhardware components in order

to test the test objects and it can very complexingiall and configure the test

® Test driver: a software component or test tod tbplaces a program that takes care of the
control and/or the calling of a component or sysfgn

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

environment for a tester to handle. In such inganthere are two alternatives [94]:
either having the necessary level of system adin@tisn support available, or having
the expertise available on call from the proje@me information systems, technical
support, or another appropriate group.

Every test environment has different needs, depgndn the software under
test. A suitable test environment is required &sting a test object. Every program that
should be present on the available hardware inrdodein the software under test needs
setup and it all represents a critical succes®fdot the software project.

In the case study presented in Section 3.4, wtsdhhere it was able to learn
from, the environment became a bottleneck. Firgtlipthere had been no definitions of
it and the test team was spread out, i.e., as iegolan Section 3.4, the team had been
divided according to the assignment: the ones sgipbto work with iBATIS and the
ones supposed to work with MobileMedia. But theingsin MobileMedia was assigned
to a person in a different site from the most of tlest of the team, besides the
application had already been developed, the deeegdopere not available to work with
the testing team along a suitable test proceds tigtitest manager (from the different
site) did not support the MobileMedia tester ont tésfinitions and the necessary
environment was not previously identified or settl&econd of all, the tool support
(which is further discussed in Section 4.4) resllbe a serious bottleneck due to
incompatibilities with the application, especialyith the AO releases. It was not
identified in advance that the application embrated different paradigms to be
considered when test planning — especially becéus® has been no planning, but
there has been no discussion about it at all. Wtheas time to test AO releases, then it
was detected that the test environment set foinge€O releases was insufficient. To
stop a test project at this point and start lookimganother alternative breaks all the
rules of the project regarding people assignmesaisedules, deadlines, deliveries, etc.
Finally, if the test environment had been previgukioked upon, analyzed and
discussed, the chances of happening such a battleveuld decrease and if it still did
happen, it would be properly addressed and thes riSlection 4.5) would have been

identified. Therefore, this dissertation providesble 4.8 gathering the most important

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

requirements with which a test environment must mgnto guarantee reliable test

execution.

Table 4.8Requirements for environment

A manageable environment is required to test thiedigject undef

1 | Manageable . .
9 the same conditions every time.

A test environment must be easy to adapt. This coaylict with
the previous requirement, but deciding which oneega
precedence depends on the aim of the test anchtee @f the tes
process.

==

2 | Flexible

—

The test environment must be able to keep its awditly even if

3 | Continuous . . L .
there are disturbing situations in it.

The testing activities may deal with privileged alair private
4 | Safe tools. Therefore, the test environment must be safeugh to
protect its testware.

The test environment should be, as much as possibteralized
5 | Centralized |in one test team and in a single physical spacfegably not far
from developers.

The first and second requirements stated in TalBerday conflict, but, as
mentioned, to decide which one takes place willetelpon test goals. For instance,
adjustments may be necessary when analyzing dejedtsplementing a new version
of the software system; hence, if this is done itest environment of one project in
which the impacts have been considered, flexibdhpuld be the requirement to adopt.

On the other hand, if this happens on a shared@mient, manageability is preferred.

The consequences of a failure of a test environmséould be limited in a
software test project. The continuous requiremeldiresses the importance of making
regular backups so that they can be restoredgiiired. The environment should be

able to support different releases of the softwader test.

In the case study from Section 3.4, the environmeguaired different tools and
specific configurations. Such needs should have laglelressed as requirements in test
environment configuration. To help identify whah#iof test environment is the best fit
in a software project, it needs to be identifiedtfithe test objectives (as previously
discussed), the context and the type of the sofivegstem under test. In case of the

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

case study, the context was software maintenamcé, should have been possible to
analyze previous test activities applied in thevgafe systems, but unfortunately that

was not the case.

4.4 Test Tools

A tool can be defined as “anything that serves ameans to get something
done.” [10]. It is important to recognize that itust be determined first what that
something is before acquiring a tool. There are ynampporting tools in use for
software testing. It is possible to distinguishviesgn different tool classes depending on
their intended use, such as, for instance, toolteii management and control, tools for

test specification, tools for static, dynamic awdfunctional testing [5].

Testware often involves one or more test tooler&hs a vast list of kinds of
tools and intended use but not all available taoésapplied in a single project. The test
manager should know available tool types in ordelog able to decide if and when to
use a tool efficiently in a project. It is importahat tools are integrated into software

tester’'s work processes. The use of tools showedys be mandatory.

In this section a generic categorization of theldased by testers is presented,
but it does not discuss specific vendor tools. &heme too many operating platforms
and too many vendor tools to effectively identifydadescribe the availability of tools in
this dissertation. Therefore, Table 4.9 presenlistawith kinds of tools that should
cover a wide range of test activities. Some teasogare manual, some are automated;
some perform static tests, other dynamic; someuatalthe system structure, and

others, the system function.

Table 4.9List of test tools

A method of dividing the software system into pe¢segments

1 Boundary | so that testing can occur within the boundarietho$e segments
value analysis

2 Capture / A technique that enables the captudataf and results of testing,

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

playback

and then play it back for future tests.

Cause-effect

Attempts to show the effect of each test event ggsed. The

14

3 . purpose is to categorize tests by the effect thitoecur as a
graphing .
result of testing.
4 Checklist A series of p'roblng guestions designed to revigwealetermined
area or function.
5 Code Identifies differences between two versions ofsame program.
comparison
. Utilizes the diagnostics produced by a compilerdgnostic
Compiler- . :) . i
6 .| routines added to a compiler to identify progranfedes during
based analysis o
the compilation of the program.
, . Verifies the correctness of many aspects of thetesysby
Confirmation / . . : -
7 L contacting third parties, such as users, or exaigiaidocument to
examination : L
verify that it exists.
Requires the development of a graphic representatib a
Control flow . 2 . .
8) program to analyze the branch logic within the paogto identify
analysis :
logic problems.
Involves developing a set of statements or hypethéisat define
9 Correctness | the correctness of processing. These hypothesdbandested to
proof determine whether the application system perforrosgssing in
accordance with these statements.
Data The documentation tool for recording data elemesmsl the
10 L attributes of the data elements that can produsé data tg
dictionary : , .
validate the system’s data edits.
11 Data flow | A method of ensuring that the data used by therprochas been
analysis properly defined, and that the defined data is erigpused.
12 Defect Captures, administrates and evaluates incidentt®epo
management
Design-based| Recognizes that functions within a software syséeennecessary
13 functional | to support the requirements.
testing
14 Design Ensures compliance to the design methodology ofiewney
reviews conducted during the software development process.
. A procedure that predetermines a disaster as a fuadiesting the
15 Disaster test
recovery process.
Uses the experience or judgment of people to prediat the
16 | Error guessing most probable errors will be and then test to enghat the
software system can handle those conditions.
Graphically represents the software system anda/fiware flow
17 Flowchart | in order to evaluate the completeness of the rements, design,
or program specifications.
A highly structured step-by-step review of the wdedables
18 Inspections | produced by each phase of the software developlifemycle in
order to identify potential defects.
19 Instrumentatio| The use of monitors and/or counters to determieefibguency
n with which predetermined events occur.
20 Mapping A process that analyzes which parts clofiware system are

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

exercised during the test and how frequently edatemment of
routine in a piece of software is executed.

21

Modeling

A method of simulating the functioning of the sadtw system
and/or its environment to determine if the desigec#ications
will achieve system objectives.

22

Peer review

A review process that uses peers to review thaecaspf the
software development life cycle with which they angost
familiar.

23

Ratios /
relationships

Quantitative analysis that enables testers to dcawclusions
about some aspect of the software to validate éasanablenes
of the software.

24

Risk matrix

Test the adequacy of controls through the idemwtiioe of risks
and the controls implemented in each part of tHeveoe systen
to reduce those risks to a level acceptable tasee.

25

Snapshot

A method of printing the status of computer memaly
predetermined points during processing. Computemong can
be printed when specific instructions are executedvhen datg
with specific attributes are processed.

3

26

Symbolic
execution

Permits the testing of programs without test datee symbolic
execution of a program results in an expressiondiua be used t
evaluate the completeness of the programming logic.

27

System logs

Uses information collected during the operationaotomputer
system to analyze how well the system performed.

28

Test data

System transactions that are created for the parpbgesting the
software system.

29

Test data
generator

Software systems that can be used to automatigalierate tes
data for test purposes. Frequently, these gensratguire only
parameters of the data element values in ordeetengte large
amount of test transactions.

—

D

30

Test scripts

A sequential series of actions that a user of donaated systen
would enter to validate the correctness of softvpgioeessing.

—

31

Tracing

A representation of the paths followed by compyiergrams as

they process data or the paths followed in a da@abalocate on
or more pieces of data used to produce a logicebrde for
processing.

D

32

Use cases

Test transactions that focus on how users willthsesoftware in
an operational environment.

33

Walkthroughs

A process that asks the programmer or analyst faex the
software system to a test team, typically by usirgmulation of
the execution of the software system. The objecifethe
walkthrough is to provide a basis for questioniygthe test tean

-

to identify defects.

and required specialized use. Many represent #ie of the art and are in areas where
research is continuing. As better tools are dewdpr testing during the requirements

Many of these tools have not been widely used {iL@ to high cost of their use

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

and design phases of software testing, an incri@agetomatic analysis is possible. In
addition, more sophisticated analysis tools arendeapplied to the code during
construction. More complete control and automabérihe actual execution of tests,
both in assistance in generating the test casesratite management of the testing

process and result, are also taking place.

An integral part of this process is the selectidérthe appropriate testing tool.

Table 4.10 lists the steps involved in selectirggghoper testing tool.

Table 4.10Steps to consider when selecting a test tool

1 Match the tool to its use

2 Select a tool appropriate to its life cycle phase
3 Match the tool to the tester’s skill level

4 Select an affordable tool

The better a tool is suited to accomplish its tdblke more efficient the test
process will be. The wrong tool not only decreabesefficiency of testing, but it may
not permit testers to achieve their objectives. dhgctive for using a tool should be

integrated into the process in which the tool ibédncorporated.

A test tool introduces an automated instrument phavides support to one or
more test activities. The introduction of test foohn have various advantages. Table
4.11 presents some of the advantages describe@viops research [96] which do not

apply to the entire list of tool types presented able 4.9.

In one of the advantages, the ‘higher testing tyialthe human factor is
mentioned. It is certain that a test task thatlmamautomated and run faster with the use
of a tool will certainly decrease the risk of egdhat may be inserted by humans.
However, it is important to point out that test aoaition using a test tool is once
programmed by a human and if an error is insetied,tthe following activities will be
impacted. The point here is the automation of #skg that can be repetitive and the
tool can increase the quality of these tasks bygldi much faster while the tester can

do something else, increasing the quality of tis&gand the productivity of the testers.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Table 4.11Advantages of using test tools

By using a test tool for routine test work, thed¢eshras much more time
for other tasks. In particular, with tools for antated test execution,|a
Increase of | sizeable quantity of tests can be executed ‘unrapadt, which mean
productivity | that much more thorough testing can be done irmifft fields and th
test environment can be used more efficiently.

DN

The use of test tools to support a structuredagegtoach is an emphatic
Higher step towards a higher testing quality and qualifyjvgare. The reason is
testing the consistent execution of an activity that isparped by the tool. A
quality tool imposes a standard work method, eliminatirggithman factor.

=

The execution of routine tasks can be boring. Whepetitive tasks ca
Work be automated, it increases the work enjoyment ef tdst team in
satisfaction | addition to increasing reliability.

Some tests cannot be simulated fully when done alBnuOne
example is the execution of stress tests. The giepat of test tools i
virtually indispensible here.

Extension of
test options

\"2)

The test tools can trace defects that are verycditfto detect manually. In the
case study, it was practically impossible to gotigh the tests without a tool. Since the
application was already full developed and thereuldobe no support from
development side, unit testing was discarded dsinedgester was not familiar with the
application and since it was complex and largeyauld take a very long time for the
familiarization process. Plus, to unit test sucpligation in such conditions by a single
tester does not sound like a successful test Tdskefore, the tests with the use of an
emulator provided by the use of JaBUTi tool weresilole to get started. They did not
finish, but they did indeed start. One of the reasof not finishing and not being able
to go further, was when the project needed to disting the AO releases of
MobileMedia. The tool did not support Aspectd inmpéntations, although the tool
developers affirmed it was just a matter of confagon, they themselves were also not
able to make such configuration, therefore thartgstould not proceed due to the tool
support. In what regards to AOP, the number of laki tools is strongly reduced,
especially when it comes to open source tools. ;Tthes scope became very limited.
Such limitation should have been identified duriest planning when analyzing tooling

support for such application and its particulasitie

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

The activities in the test process supported satbol and how this will be set
up depend on the tool policy pursued in the orgdion. In the case study, as it was an
academic study, there was no budget to buy licetmad available on the market that
could help with our issues; hence it was necessapursue an open source tool that
would handle the different variables managed in dpplication, such as support to
J2ME, AO software and the configuration to set aBUTi with the test server and

other requirements as described in Section 3.4.

Typically, software testing must be achieved withibudget or time span. The
choice for the test tool to be used in a softwamegt relies on different reasons, but
some general questions should not be left asideedB@&n this, Table 4.12 presents
guestions addressing aspects to consider whertiagle¢lse best tool according to the
software project’s conditions and needs. Such ¢uesty would have helped in the
case study from Section 3.4 identify points of @nes that should have been detected

in advance before becoming an issue later on.

With the steps listed in Table 4.10 and the quastexidressed in Table 4.12, the
test manager should be able to clarify issuesdbialid not be visible at that point of the
project, if the questioning would not have been enatherefore, he/she is able to be
more prepared if the questions are addressed awkeaed properly according to his/her
software project conditions and needs to face wbatd become a difficult issue to
solve or a bottleneck later on when the test dawvare in a tight schedule.

In the case study, if it has been early detectatlttte tool needed adjustments to
handle the AO MobileMedia releases, a lot of tinmuld certainly have been saved, for
when the issue had been observed, many reseammdit®ol supporters needed to be
contacted to help solving the problem and providimg necessary tool updates, but as

previously explained, that was not possible tosfinivith a successful outcome.

Table 4.12Items addressing concerns when selecting test tools

1 Are test tools selected in a logical manner?

2 Can testers use test tools only after they haweived adequate training fin
how to use them?

3 Is the tool usage specified in the test plaridse a tool manual?

_ ESCOLA
POLITECNICA DE

PERNAMBUCC
4 Has a process for obtaining assistance in usisgtools been established,
and does it provide testers with the needed instmal information?
5 Have the dependencies to use the tool been fidenéind mitigated in order
not to become a bottleneck?

Test tools, by nature, cannot solve process-relptetllems and they do not
work by themselves. Thus, it is important to adgtd®e tool expertise levels of the ones
involved to use them. Based on the definitions @vus study [55] and previous
discussions about it [5, 6, 10, 95, 132], the rawfetool expertise used in this

dissertation in this matter is explained below:

High: The tool master. He has cutting-edge experegarding the tool

usage and is able to provide support.

Medium: The tool integrator. His method is methadliand deliberate.
He can plan, organize, and document the tool’sodhiction into more

details.

Low: The tool beginner. He is convinced of the t@wid is able to
recognize potential problems and positive aspedtsthe tool's

operational use.

4.5 Test People

To build software tester competency it is necessargather different aspects
and characteristics that represent in the endstelés. In most environments, the more
experience a tester has, the less a degree mattemthers, the degree is critical
regardless of experience [132]. The “perfect” membka test team has excellent
knowledge and comprehensive experience in sevenalachs, but only very rarely
people like that are found. In the context of thssertation, regardless the degree of the
people involved in testing activities, it is impamt that the test team member possess
excellent organizational skills and extraordinattgation to detail, among other things.

Below are some important character traits for tetg55]:

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

The ability to familiarize himself quickly with cootex domains and

applications;

The ability to detect defects;

The ability to cope with and voice criticism adetphg

The ability to distinguish essentials from nonesiséand the courage to
leave out what is less important;

Discipline, exactitude, patience, perseverancestfation tolerance,

determination;

The ability to work in a team and ability to comnzate.

Although the ability to work in a team and to commuate are listed last, both
qualities are highly important. Because testing isamwork, only those who are able
to work in a team and communicate with colleagued eustomers alike will have
lasting success in their work as testers [55]. Basewhat the author from the previous
sentence has stated, the case study from Sectdoha8. low chances to be successful
then, for testing did not mean teamwork, and tlséets available were not experienced
enough to be assigned to the responsibility ofintgssuch complex software product
line, especially without the support of developars test process. The team roles from
the project have not been assigned and the “tesages” was not well experienced to
exercise such role. Table 4.14 lists the rolesrasdonsibilities that should be exercised

within a software project involving test tasks.

Table 4.13Test Team Roles

The test manager leads the test team. He is ragpohsr the creatiorn
of the test schedule and its technical and on-itm@ementation. He
reports test status and test results to the propactager or leader. The
test manager is experienced in test planning, ¢estrol, and tes|
process. He has knowledge and practical experiengeneral method
of software testing.

Test manage

-
—F

[

The test designer is responsible for the creatif@hraaintenance of test
specifications. His role involves identifying thepaopriate test methods
and the definition of a suitable test environmet. supports the test
manager in the creation of the test plan and wstdule. He requires
know-how in the areas of software testing, testiigation techniques|,
and general software engineering. He must be abldamiliarize

Test designer

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

himself quickly with complex application domainsequirements
documents, functional specifications and system topypes.
Furthermore, he must be able to comprehend thdai@umand expecte
behavior of the system under test. Using this mdion, he derive
appropriate test cases and documents them in sucy dhat they ar¢
fully traceable.

Ww— U)X

The test administrator is responsible for the iteian, operation and
maintenance of the test environment. Among othgpamrsibilities, this

Test involves installing and setting up the system safwv (operating
administrator| systems, database systems, application server)}allimg and
configuring the test object, installing and settuny the test tools, and
creating, managing and restoring system configomati

A\1”4

The tester is responsible for the execution of thsts and thg
documentation of the test results. He executetestecases according to

Tester the test schedule and test specification. If hecasta deviation from the
expected system behavior, he writes an inciderarteffhe necessany
qualifications for this job are test fundamentdlg,basics, ability to
operate applied test tools, and a basic understgradithe test objects.
Their duty is to support the “core” roles mentiorambve in technically

Experts

sophisticated matters or in problem solving.

Ideally, a specially trained member of the teanreges each of these roles. If
in smaller teams several roles must be combinedant, the following combinations
are best suited: test manager/test designer, ésggreer/tester, tester/test administrator
[55].

The term “tester” is also used as a generic temalfaf the roles listed in Table

4.14, as it has been mentioned in the contextisfdissertation.

In the case study presented in Section 3.4, no tezsh roles have been
identified. The terms used in this dissertationardgg “test manager” and “tester” are
related to the experienced researcher responsiblendnage the case study on what
regards to goals and decisions, in spite of thk tdceffectiveness regarding software
testing, and the tester is related to the persom wdis responsible to perform designer
and administrator tasks. Thus, it is easy no natiee the case study was not well

structured with the proper test roles to reachcaessful test result.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

The test roles need to be well identified in ortteaddress the responsibilities
according to the knowledge of the ones involvedbldat.15 provides the basics of
software testing principles and tasks to be mat@sedompetencies from the test team.
Such practice may help identify how capable and p=ient the test team is and,

therefore, provide the expected results from aawit is able to perform.

Table 4.14Software testing principles and tasks against coemoy

Fully Partially | Not
competent| competent| competent

Testing techniques
Understanding of the various approaches used
in testing and the methods for designing and
conducting tests.

Levels of testing
Identifying testing levels.

Testing different types of software
3 | The changes in the approach to testing when
testing different development approaches.

Vocabulary
The technical terms to describe various test

4 techniques, tools, principles, concepts and
activities.
Test process

5 An overview of the processes that testers|use

to perform a specific test activity, policies,
standards, procedures, tools.

Test planning
Assessing requirements, design, execution,
6 | reports, risks, test methods, environment,
schedule, objectives, criteria, test scope, [test
team.

4.6 Aspect-Oriented Attributes

The previous sections have identified the concewita regard to software
testing to build the testware support addressiffiigrént test items that together help

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

defining what is relevant and may cause issuesdoftavare maintenance project. The
testware support has also received inputs and ibations from the case study
presented in Section 3.4 and its lessons learngiiard throughout every aspect from
the previous sections. The case study serves asis &nd starting point to verify and
compare the current situation of the existing tasénand test direction (or lack of it) in
and the desired assessment that should have tékem pefore the case study start, as

discussed in Chapter 6.

This section lists attributes that are charactdrite be specific and directly
related to the main characteristics of softwaraesys developed using AO techniques.
These attributes have been addressed in the daimiof the BF [42] to assess specific
AO characteristics related to code concerns. Ithheen added to the structure of the
testware support, in case the testware supposed separately from the BF and the use
of such attributes is necessary. As it is preseime@hapter 5, the testware support
proposes to be an extension to the BF to consad¢rdirection in such context, and the
evaluation of it is presented in Chapter 6, butg&a6 also shows the evaluation of the
single use of the testware support. Thus, it athdresses the AO attributes as Table
4.16 presents the characteristics derived from défnitions of the AO attributes
defined in the BF [42] that need to be taken aesldsok when the test object in a

software test project regards an Aspect-Orientétvace system.

As it has been explained in the definitions of ¢hestributes [42], the
Crosscutting Concern (CC) Classification attribpitevides a classification of CC types
according to different dimensions based on a remtesve subset of the
aforementioned existing classifications. The fidenension of the BF classification
categorizes the concern as being Functional or fNoational. A functional concern
relates to business functionality, whereas a naotfanal concern relates to the quality
of the services provided by the system (e.g. sggugliability, distribution, etc.). Both
functional and non-functional concerns can further classified as either being
Homogeneous or Heterogeneous. A homogeneous coextnmnds program at multiple
join points by adding the same code at each joimtpd heterogeneous concern
extends multiple join points but with different pes of code at each join point. The

final dimension of the classification identifiesaiftoncern affects a single component or

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

multiple components, by either being an Intra-Congrt or Inter- Component concern.
In this case, the meaning of the term “componeegiethds on how one examines the
system. It might pertain to a class, an aspecistaltlted object, a package or even an

architecture-level component.

Table 4.16A0 attributes to address in software test project

Functional / Non-functional
Classification of Homogeneous / Heterogeneous
crosscutting concerns | Intra-component / Inter-component

Invocation based

Interaction and
composition of
crosscutting concerns

Tangled code in component level
Tangled code in operational level
Overlapping

Crosscutting concerns scope

AO languages constructions

Concerns in a system may be composed in a variétyways. These
compositions cause interactions between concerrgt timay affect system
maintainability. Therefore, it has been importaat understand and classify these
different types of composition. The Concern Compasiattribute specifies the ways in
which concerns can be combined, according to aifileation employed in some well-
known empirical studies [49, 148]. The simplestoof composition is Invocation-
Based Composition. This arises if two concernsa@d C2, have no classes or aspects
in common, i.e., they only communicate via methaliisc Component-Level Interlacing
occurs if multiple concerns have one or more corepts (classes or aspects) but no
operation (i.e. method, advice, etc.) in commonaAssult, the concerns are interlaced
and tangled at the component level only. In coht@peration-Level Interlacing occurs
if multiple concerns have one or more operationsammon. In this case, concerns are
interlaced at the operation level. Finally, Ovedeyy identifies points where multiple
concerns share one or more statements, operatiorroponents. In contrast to
interlacing interactions, which have disjoint conmyarts, overlapping concerns share
elements (i.e. an entire component operation otersiant contributes to multiple

concerns).

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

The Aspect Scope attribute identifies the stagavtdth a particular concern
emerges in an application. For example, the exmephiandling concern has been
observed to emerge at a number of different devedop stages (e.g. requirements,
architecture, detailed design and implementatiBmjally, it is important to identify the
various language features used to implement acpéati concern. The AO Language
Constructs attribute identifies the language eldmesed to implement a crosscutting
concern, such as intertype declarations, diffekerds of pointcuts and advice, bindings
[100], etc. This information may be crucial whercideng if an application should be
considered or not because an application that dgesr a large number of language
constructs is likely to be a benchmark. Furthermtirese language constructs can also
be classified into static (e.g. intertype declamad) or dynamic (e.e. cflow pointcut
designator), according to the time when they arellea by the compiler (compile-time,
load-time, run-time). This is useful, for instante,evaluate the influence that certain
language constructs have on specific applicaticaradieristics, such as product line

variabilities.

The other general attributes addressed in the BF(Bubsection 5.1.2) are also
important to consider when the software projectase study is inserted in the context
of software maintenance and assessment of suchatbastics, but the testware support
can also be of help and use outside such contesdnlbe used, for instance, in general

software development as well.

The criteria presented in Table 4.16 are discussadl evaluated into more
details on the definition of the BF [42] and haweb based on previous works and
researches that had a good level of acceptanceftiwase engineering, as previously
explained. Every attribute represents the respectrerk that guided its definition.
Thus, it is possible to summarize here that thesdiaation of crosscutting concerns
into different aspects is a much discussed sulijeptevious studies [42]. In order to
exercise different resources from the AO languages necessary for the software
system to have a broad and diverse set of crossgubncerns and to analyze them
under different perspectives. Thus, the classifcaits achieved in an orthogonal form,
i.e., a single concern may be classified in eaah anthe categories defined on Table
4.16.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Chapter 5 presents the extension of such benchngafkhmework addressing
the AO software system’s concerns to consider tisertion of the testware support.
More details of the BF are there presented as Whk. evaluation of such insertion is
then presented in Chapter 6.

4.7 Final Considerations

The previous sections have presented the elentlkeatscompose the testware
support, which is the main contribution of this s#igation. A satisfactory testware
support eases software evolution by offering atgafet against unwanted change. As
the test elements composing the testware are @teanples of the issues experienced
in the case study introduced in Section 3.4 arerdes] along to give clear examples of
the need of the testware support elements andgeaanfidence of the effectiveness of
the testware support, within the context here diesdr The test core elements address
test issues to assess the capabilities of a s@&twesject towards a proper testing
direction to be conducted in it. Such elements hthe aim to support software
maintenance, providing the minimum testware infdramarequired within a software
project or case study in order to make more reddendecisions regarding its

maintainability and evolution.

The testware support does not intend to substidutiest maturity analysis,
supported by the TMM, explained in Section 2.3t3slimportant to understand and
consider the difference between them in the contdxthis dissertation. The test
maturity analysis verifies the test process in gganization and evaluates it in order to
provide the required information so that the tesicpss can evolve to a more mature
model, provided with more test knowledge and edfititest process. The testware
support, on the other hand, has the goal to anahed¢estware elements in a software
test project — including its process, but not esihg its maturity — and provide the
necessary testware information, i.e., test elementse addressed in such project, as

described in this chapter. Both initiatives can ahduld be used as complementary of

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

each other in order to reach even more effectisekieowledge and test procedures in a

software project.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Chapter 5

Benchmarking Framework Extension

Chapter 3 has introduced the background of thisediation’s context. Section
3.3 has presented the Benchmarking Framework (BE) provided with criteria and
attributes to evaluate AO software maintainabilitpere is no driven test issues within
the BF though. Therefore, this dissertation has lwkseloped starting from the issues
that a case study (Section 3.4) originated andvatattl the research in order to build a
testware support that would fit and help situatisnsh as this case study and other
studies or software project to address test issitbin the context here presented. The
context involves a testbed, as presented in Se8tnwhich has the goal of facilitating
proponents of AO and non-AO approaches to compagdecantrast their approaches
with others in a more effective fashion. As parttlod testbed composition, the BF is
introduced to support AOSD techniques assessmeifiact, the performed studies had
given more attention to maintainability assessmbut,the BF can also be used in a

wider sense.

As suggested on the definitions of the BF [42],hstramework is the starting
point to other studies making use of such structurés criteria validation. Besides,
further and more ambitious works can and shoulétiended from such framework,
continuing its potential benefits. Therefore, tti@pter introduces an extension derived
from the creation of the testware support (Chapjdo be inserted in such structure in
Section 5.2, but before, in Section 5.1, more tetdout the BF.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

5.1 Original Definitions of the Benchmarking

Framework

As it has been explained in Section 3.3, the Beractkimg Framework has been
proposed in order to guide researchers and p@a®its in selecting or adapting
applications and their releases that best fit sigeexperimental maintainability goals. It
can also be used to support the design, replicaimmhevaluation of empirical studies.
The effectiveness of the framework has been ewadugd2] from two different
perspectives: (i) as a guide to determine whetlmeragplication is an appropriate
benchmark; and (ii) as an aid to designers of estudn AO software maintainability.

The set of characteristics and attributes preserthé BF have been chosen
based on the existing experience in conducting Afbverre maintenance studies from
the BF creator and related researchers. They urdified a recurring set of relevant
attributes that were useful to assess the mairt#ityaof AO techniques. As it has been
explained in Section 3.3, the BF is structured etiog to two major components:
product attributes and maintenance scenarios, waddhess complementary assessment
issues relevant to AO software maintenance. And ubage process (Figure 3.2)

presents the framework components and its workflow.

5.1.1 Process

The framework has a group of potential stakeholdatsencompasses a process
that transforms inputs into outputs; the latter rabsp serve as feedback to improve the
set of framework attributes. Figure 3.2 shows aeswtic representation of the
framework workflow. The users or framework stakeleot have been classified into
two categories: the designer of empirical studiesA® software maintainability, and
the benchmark designer. The first group is intexksh conducting a maintainability
study involving one or more AO techniques. In tkase, the input is the set of
experimental requirements and the output is th@irgonfiguration of the experiment.
In contrast, the second group includes people wiamge or add new artifacts to the
benchmark application. This group needs to anabpplications and maintenance

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

scenarios to determine if they are suitable to aohd variety of studies. The output of
this process is one or more applications and chaogearios that are appropriate to

benchmark AO techniques.

5.1.2 Attributes of AO Software Products

The several characteristics identified in the BFnions study [42] regarding
the AO software product (target system) are heesgited. The attributes guide the
various decisions on the design or assessmentnofidate benchmark application for
maintainability studies. It has been consideredidewange of possible characteristics
that a candidate application might exhibit, such itas domain, the development
techniques that were employed in its constructeomd the types of the crosscutting
concerns (CC) that appear in its implementationis limportant to stress that it is
impossible to define a set of characteristics dqgtlies to every possible empirical
study or application domain. Therefore, the proddss& of application characteristics
can and should be constantly evolved and extendedndre closely meet the
stakeholder’s goals, according to the BF authokexbeless, the attributes described in
this section were found to be relevant in manyedéht empirical studies [42, 49, 51,

148] with different goals and targeting differegstems.

In general, it has been stated that the stakelstitenot need to consider all the
framework attributes. Instead, they should focusaaepresentative subset that covers
their experimental objectives. To ease this idematiion process and improve the
organization of the different framework attributélse Product Attributes have been
divided into two groups: General Attributes, whiehcompass common application
characteristics, and AO Attributes (Section 4.7)jolk consist of specific characteristics
of AO applications. Figure 5.1 [149] provides areowew of the product attributes

discussed in the rest of this section.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Figure 5.1 Schematic overview of the BF’'s product attributes

General Attributes. A variety of general application attributes mbst
considered by framework users, suctsgstem Name, System Domain
andPackaging The domain of a system is often an important etsme
consider, so as to ensure that the system exhdutae expected
properties (e.g. embedded systems are often oba@uree-constrained
nature). Related to the System Domain, the Pac@agjtnibute specifies
the technologies and programming languages useah iapplication, in
addition to development frameworks and target etats. When
considering an AO application for use in an emplristudy, it is
important to consider the development artifactsy.(erequirements
specification, architecture documentation, and thesign diagrams)
available to ensure the goals of the study carebbzed. The software
Life-Cycle Documentation attribute lists all the documentation artifacts
available for assessment. In addition to listing ttocumentation, the
Development Techniqueghat have been used to create the system (e.g.
design patterns, application toolkits, etc.) shoaldo be described.
Different techniques can influence the quality leé final product and it
is therefore important to take this into accountewhselecting an
application. More details about the framework htiteés are available in
[42].

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Aspect-Specific Attributes The definitions of these attributes are
introduced in the definition of the BF [42], andethhave also been
presented in Section 4.7, when the testware suppnoduces the AO

Attributes as an element to consider within itsicture.

5.1.3 Maintenance Scenarios

The framework for empirical studies in software ma@nance [42] has also
included a catalogue of scenarios that are reptatses of real software changes. This
is necessary to ensure the framework can evaluatgiety of recurring maintenance
issues. These scenarios aim to support decisionsothf benchmark designers and
empirical study designers. An overview of the mamaince scenarios attributes of the
BF is illustrated in Figure 5.2 [149] and the dttiies are discussed as follows.

Figure 5.2 Schematic overview of the BF's maintenance scesattributes

The Scenario Description attribute provides the name and description of the
scenario. It is also necessary to specify@hange Type This involves classifying the
change according to the effect it has on the bppkcation. It has been considered that
changes can be of one amongst three types: cerecdaptive, or perfective [42].

Moreover, they can be behavior-modifying or behepi@serving.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

The Nature of the Changehas also been considered, as it indicates howem gi
change modified a development artifact. A change twolve the addition (e.g.
introduction of a new method), subtraction (deletaf an attribute), or alteration (to
modify an existing element) of functionality. Fihalit has been stated that it is
necessary to actually document the changes thahade. This involves specifying the
Changes at the Requirements Level, Changes at then&lysisandDesign Leve] and
Changes to the Implementation attributes. The obsupgrformed in the requirements
can influence artifacts at later development stagdsiost all changes made to the
analysis and design artifacts are critical duen&sé artifacts being the core of software
development activities. Analysis and design charegeslikely to affect the rest of the

application and can, consequently, impact softwaodularity.

5.2 The Test Attributes

Rather than a single component or element to etes into the BF process, as
illustrated in Figure 3.2, the testware suppodritogonal. Nevertheless, to be inserted
as such, the use of it can be driven by test ategto be addressed, as detailed in test
elements (Chapter 4). The resumed definitions ef atiributes listed below include
examples not necessarily regarding the same casly st application. Hence, the

criteria presented are more representative.

As explained in Chapter 4, the definition of thetesta and elements that
compose the testware support is not an easy tasle they have to be general and
specific at the same time. They should be genex@lgh to identify test characteristics
that are mostly common to be considered in eveffwaoe project or case study
concerned with testing, and they should also beiipeto comply with the test
concerns that may/may not be feasible in each rdifte software project being
evaluated. Still the quick appearance of new teypes is another factor that makes this
definition not an easy one. Hence, the listed gatare not statically defined; they
should be dynamic to adapt imposed needed changes.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

The criteria have been defined based in previoaudies [2, 3, 4, 5, 6, 7, 10, 55,
68, 70, 95, 108, 124, 131, 132, 146, 147] that Heeen able to identify and solve issues
from software development and maintenance, adeaigssnd discussing relevant test
topics and directions into software projects. Tisrrature has determined the test
basics, specifications and concepts for test aiesvziand test elements to address in a
software test project. Research has recommendedregtents and specifications for
identifying and resolving software problems inlits cycle. The studies here referenced
that guided the definitions of the test elementCimpter 4, and therefore the test
attributes to consider into the BF, have had a wetleptance in the community to

address test directions.

5.2.1 First Basics

As it has been discussed in Section 4.1, therenéirgte possible ways to test a
piece of software. The first basics regarding tgstvithin a software project or case
study are the first things that are essential émiifly the existing test capabilities in it
and they enable the detection of missing test cosdbat should exist, according to the
project goals. Therefore, there are important aites that can surface such
information, as described below.

Test policy — identifies whether the software project is pdad with a
test policy with relevant test information objeely (YES/NO). The
existence of a test policy eases the test acsyigece the organization
has previously defined test directions and has sexperience with it,

which can be useful for current project. Example:
Test policy: YES.

Test objective— states the purpose of testing so that it isrdleavery

party involved. Example:

Test objective: evaluate adequacy of functionaunesments to

software system behavior.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Test strategy— informs the test strategy to be followed in pineject so

that it is clear throughout the whole project depehent. Example:

Test strategy: test the most critical featureshef $oftware system

first.

Test process- identifies whether the software project is pded with a
test process with relevant test information obyedyi (YES/NO). The

test process should be able to guide the testittesivExample:
Test process: NO

Test history - identifies whether the application under tess lmeen
tested before and there is a test history availabith relevant
information that can be applied to the current tdgéctive. An objective

statement (YES/NO) is encouraged. Example:
Test history: YES.

Test criteria — identifies the test criteria that have beencetk as the
ones to address. Example:

Test criteria: structure-based criteria and codevemage.

Functional and structural test conditions — determines the major
functional and structural test conditions that \gillide testing activities.
Such attributes have been derived from business@uadtural functions
from item 3 (Specifications) in the Standard TdanRTable 4.7). These
attributes can be used in a lower level test cardiinalysis to improve
the accuracy of details to be concerned when téshnmg and

addressing testing techniques. There are no ligitoskible answers to
these attributes in Chapter 4, for they depend hen doftware under
evaluation, so the examples here shown should @ainderstood as a

limitation. Example:

Functional test condition: interface testing, ingletmain testing.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Structural test condition: data flow testing.

Test environment — describes the constraints and minimum
requirements of environment to adequately functigniwhich can be

associated to the project’s success. Example:

Test environment: Two client-server machines cordiion with
WTK 2.5.2 installed.

Test tools — identifies the test tools necessary to perfoequired test

activities properly. Example:
Test tools: Test Link version 1.7.4.

Test people— identifies whether the software project is pded with
necessary test personnel to perform the requiretl aetivities. An
objective statement (YES/NO) is encouraged. Example

Test people: YES.

5.2.2 Test Strategy

It is nearly impossible to thorough test a sofevaystem, for there are infinite

combinations that can be applied towards test dx@rulhus, relevant attributes need

to be taken a closer look and assessed to buildd@&guate test strategy covering

essential information to the ones involved.

Test plan - identifies whether the software project is pdmd with a test
plan addressing the necessary aspects to be taleenadnsideration. An
objective statement (YES/NO) is encouraged. Example

Test plan: NO.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Milestones — Defines important and strategic locations aneéney
throughout testing activities. The milestones Wwélp identify when one

test activity is completed or ready to begin. Exbanp

Milestones: Full bug reporting at the end of tegtiof each
release from software product line; new featureiviey every

other week.

Test schedule- determines the test schedule for test activasssgning

every test person to specific tasks. Example:

Test schedule: Feature 1 — Tester A and B — Frogustuld' to
September®i

Test requirements — states the resources available to assess testing
activities against schedule and test objectivesatéilrer requirement not
stated in such attribute is not available withire thoftware project.

Example:
Test requirements: specifications / feature mogersonnel.

Test techniques— lists the test techniques to be applied in dstirig

activities. Example:

Test techniques: equivalence partitioning and evgitoy testing.

5.2.3 Test Environment

Every software project has different needs for &stironment, and it depends
on the software under test. A suitable test enwremt is required and fundamental to
smoothly test a test object. Every program thatukhde installed on the available
hardware in order to run the software under tesidseprevious setup; the software
systems and other tools necessary to continuoutheusoftware under test: all is part of

the test environment and represents a criticalesscfactor for the software project.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

The restrictions and constraints of testing emrnent are to be early identified
so that it does not become a bottleneck in a soétwmoject or case study. The

attributes are detailed below.

Requirements — identifies the requirements a test environmemnstm
comply with to provide reliable test activities.ofRr the definitions in
Table 4.8, the requirements can be identified rarege of five different

conditions. Example
Requirements: manageable, safe and centralized.

Dependencies— describes the dependencies associated to the tes
environment, so that they can be addressed and beocbme a

configuration issue or bottleneck. Example:

Dependencies: the test environment relies on JDR1® and

Apache server running and port 80 open.

5.2.4 Test Tools

The fact that testing is a time-consuming andlgaattivity is no news in the
community. Tools have the advantage to increagergproductivity, when combined
to a structured test approach. In a properly ctlettqrocess, tools can certainly add a
lot of value to a software project or case studyithWhe increase of software
complexity, tooling support is somewhat indispemhsab testing activities. Therefore, it

is important to address the proper concerns inrdodehoose and use the right ones.

The attributes related to test tools have the gmadentify the aspects that can
contribute to a successful tool performance in #iwswe project or case study, as
described below.

Type of tool — identifies the type of the tool according to [Eald.9.

Example:

Type of tool: control flow analysis and peer review

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Tool name- informs the name of the tool to be used. Example
Tool name: Selenium.

Tool version— informs the version of the tool to be used. Eglam
Tool version: 3.2 (beta).

Tool support — identifies whether there is tool support avddain case
of need. Whether by developers support or manta§ important to

identify it so that it can be reached if necessrample:

Tool support: users manual and developers suppait
developers’ site at Computing Department of Unikgrsof

Pernambuco.

Tool expertise — identifies the level of expertise of the tesople
involved in knowledge on the tool to be used. Tdw expertise range is
defined in Section 4.4, in which: high, medium, loweven none can be

the answers, in a general way. Example:
Tool expertise: medium.

Tool dependencies- states the dependencies that the tool is truiywo
to run. Such dependencies need to be addressgurepated along with

test environment dependencies and setup. Example:

Tool dependencies: the tool only works with JBesges.

5.2.5 Test People

Section 4.5 has presented the general roles mxisti a test team from a
software test project. The attributes below shoviiatwneeds to be addressed in this

regard within the testware support to be inseneitié BF.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Test roles — identifies the test roles within a test teamairsoftware
project or case study. The roles are defined inleldbl3. Each role

needs to be addresses to one or more persons. Examp

Test roles: Test manager — John Smith / Test designMary
Stuart and Joe Jacob / Test administrator — JoeBacTester —

Joseph Ryan, Joan Marcs and John White.

Training — identifies whether is necessary or not to prewviining to

the test team. Example:
Training: YES

Competency— Identifies the competency of the test team abogrto

the items introduced in Table 4.14. Example:

Competency: Testing techniques — fully competen¢vels of
testing — fully competent / Testing different typéstesting —
partially competent / Vocabulary — fully competéiest process

— fully competent / Test planning — fully competent

5.3 Final Considerations

This chapter has presented the extension of tieBearking Framework [42]
to consider the elements of the testware suppdihete here as attributes to be
addressed in such structure to assess test diredti@ software project or case study.

Table 5.1 presents the summarized attributes discuis this chapter as general
test attributes to be considered as test elemeritsnwthe testware support — as
introduced in Chapter 4 — to be inserted in the BF.

Such attributes associated with the general andrél@ted attributes (Section

4.6) presented and explained in the BF [42] compbseBF and testware support

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

insertion, providing a more confident and thorowgtalysis of the software and the

current software project or case study capabiliiessexplained on the definitions of the

BF [42], the main purposes of it are that the redesr or the practitioner is able to

identify a representative application to his stuwiyhelp plan and create experiments,

within the context of software maintenance. In fdbe performed studies had given

more attention to maintainability assessment, hatBF can also be used in a wider

sense.

Table 5.1Test attributes

First Basics

Test policy

Test objective

Test strategy

Test process

Test history

Test criteria

Functional and structural test condition

UJ

Test environment

Test tools

Test people

Test strategy

Test plan

Milestones

Test schedule

Test requirements

Test techniques

Test environment

Requirements

Dependencies

Test tools

Type of tool

Tool name

Tool version

Tool support

Tool expertise

Tool dependencies

Test people

Test roles

Training

Competency

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Thus, provided with more information now regaglitests, the researcher or

practitioner using the BF will be able to:

Increase the scope of the study considering thmgegrocess;

With the increase of the scope, will be providedhvthe necessary
testware support to address the test elements;

Assess the most adequate test criteria and teserts accordingly;

Have a broader view of the context.

The use of elements from the testware support sdrshould also be associated
with the maintenance scenario attributes [42],eadtof only addressing regression
testing to them, as it could commonly be done. Als® elements from the testware
support can and should also be used in differesgsssnent, other than maintainability,

for the BF can and should be used also in a wigleses

Such extension here presented is the first studyribotion extending the BF
and the testware support is the first initiativgargling testing within the context of the
testbed (Section 3.2) and the BF (Section 3.3)s rhiiative enriches the content of the
BF for it proposes testware support to considdstesthin a software project or case
study. It also provides means to turn broader ibw wf researchers and practitioners
who is interested in selecting, adapting or evajinmaintaining their software
applications or planning or creating an experimetance, it supports decision making
and enables faster and more confident empiricaluatians and assessments in

software engineering and software test engineering.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Chapter 6

Evaluation

The evaluation of test criteria is of great impoda to software engineering for
it allows the comparison of their features and fiendetween each other and the
analysis of examples and models to which they wdddt fit. Hence, it allows the
establishment of the best test strategies accotdiriige project, considering costs and
efficacy [133]. Based on and motivated by such psegs, this chapter presents the
evaluation of the proposed elements of the testwapport and discusses the obtained
results. The evaluation is divided into two differeviews: (i) the testware support

evaluation and (ii) the Benchmarking Framework egien evaluation.

6.1 Testware Support Evaluation

The testware support evaluation has the goal tesaswhether the proposed
benefits can be achieved when the criteria defaredapplied, i.e., the test elements are
addressed as they should and whether this canvaatageous to a software project or
case study. Throughout such evaluation, it is pbsdior a software project or case
study to surface the existing test elements andctigfaps in process that need to be
fulfilled, which may influence on decision makingtiin the context of where it is

inserted.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

The testware support evaluation was performed bpglya@m the concept
associated to the test elements on two differepliGgiions. One of the applications, as
mentioned in Section 3.4.2, was the starting pointhe testware support study. It
served as a basis in an empirical study to evakmate proneness in AOP mechanisms,
in which testing was required to be performed Ihdré were no test directions or
process to address test issues that should hawvepb@dously identified in such a case
study in order to reach the expected results. Aftercreation of the testware support
with test elements to support and address testisges and directions in a software
development process study, such as maintenancevautien study, the same
application has been used to evaluate its fit éoptoposed testware support. The other
application was used as a target to evaluation aralysis purposes only and was
chosen based on recent empirical studies.

MobileMedia (MM) [96] and HealthWatcher (HW) [99Fe the two different
applications used on this evaluation. The evalnatd both applications has been
performed by a Test Manager, who is usually the ma@sponsible for this kind of
analysis in a software project. The evaluationhef testware support is able to extend
its focus on the testing perspective to a muchdepaontext (as explained in Chapter
3) to help determining if the applications may ts®diin empirical studies to provide
patterns on the comparison and evaluation (bendtinggrof AO techniques and to
help identifying representative software systemse#tware support provided with test
core elements to address testing issues has theogpevide a safer evaluation of an
application within such context, since it is comsidg now a whole new software

process that should run closely to developmentnhteaance and evolution.

The applications used on this evaluation have lged in previous experiments
[51, 96, 96, 98, 99], hence they had already be¢ensively analyzed to be used in
different contexts. Still, two different researctogps (SPGand AOSE) are focused
on several studies to evaluate different aspectsuch applications, such as their
maintainability. Tables 6.1 and 6.2 show both aggtions in numbers of code elements,

So it can be observed the size of each systemuseck

http://www.cin.ufpe.br/spg
8 http://www.comp.lancs.ac.uk/computing/aod

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

The two applications are also composed by divehsgacteristics, which make
them able to represent AO software systems evolufdoth applications have been
developed in Java and AspectJ languages and therifferent versions available of
them, in which each one of them exercises diffekemtis of changes that range from
one version to another. The applications are frafferént domains and have been
originally developed by different research groudsV is a web information system,
based in classical n-tier architecture model [184]ile MM is a software product line,
based in MVC architecture model [135], to manipaildata running in mobile devices.
Besides the applications share the concept of miaatility and reuse through non-
functional requirements control, they have différenoncepts of portability,
performance, privacy, usability and others [96, 98]. The applications have been
projected and developed without any access tortfegnnation and goals proposed in

this dissertation.

The criteria defined in the testware support thfothe existing test elements in
it were used and observed with the goal of evalgaiti they were indeed effective in
the analysis and adaptation of the applicationsthanl change scenarios, based on the
objectives of the planned case study or softwamgept. Thus, the evaluation was
conducted based on the elements defined in ChdpfEne objective in the evaluation
study with both applications was to include theradd of test issues to expand the
scope when assessing applications’ characteristtbén software maintenance context,

in order to provide more confidence and decisiokingasupport in such study.

Table 6.1Details of OO releases of MM and HW

Release | ClassesMethods Interfaces Interface
methods
MMOO_01| 24 122 - -
MMOO_02| 25 139 - -
MMOO_03| 25 142 - -
MMOO_04| 30 159 - -
HWOO_01| 88 370 11 73
HWOO_02| 92 375 12 73
HWOO_03| 104 510 12 73
HWOO_04| 106 520 14 21

ESCOLA
POLITECNICA DE
PERNAMBUCC
Table 6.2Details of AO releases of MM and HW

Release | Aspects Pointcuts | Advices

MMAO-01 4 22 20
MMAO-02 4 22 25
MMAO-03 7 35 33
MMAO-04 10 36 34
HWAO-01 11 2 16
HWAOQO-02 13 3 18
HWAOQO-03 17 3 33
HWAOQO-04 19 4 37

6.1.1 MobileMedia

The evaluation of the testware support against Mdtedia application is here
presented with the test elements assessed thrbagtefinitions from Chapter 4 and the
data from the application and case study in whiclwas inserted, as previously
explained. To ease identification of items and @aldssessing test elements and test
directions, the case study regarding the use ofilelidledia application is here called as

“MobileMedia case study”.
First Basics

The first basics are the first points of interiesivhat regards to testing that need
to be addressed in order to identify existing tempabilities through test elements
assessed and the initial test needs that have takba a closer look. Thus, Tables 6.3
and 6.4 have been applied to question the first@ms against MobileMedia case study

capabilities.

_ ESCOLA
POLITECNICA DE

PERNAMBUCC
Table 6.3Evaluating test items to address in MobileMediaecaady
1 Are the objectives and requirements defined?
No.
5 Are the requirements testable?
No.
3 Are there time and resources available allottedi&elopment and testing
No.
4 Has the test process been defined?
No.
Are the testers familiar with the development mdtilogies and the
5 required testware to test them?
No.
Table 6.4Evaluating items to address initial test directions
1 Is there a policy regarding software testing?
No.
5 Is there a software testing strategy?
Yes
3 Are there trained resources to allocate on softwestng?
Yes
4 Are there available tools to support a testingtetyg?
No.
5 Has the test object been under a testing procéssBe
No.

As it is possible to observe, the answers to thestjons from the tables above
regarding the evaluation of test items and iniisit direction were not positive within
the MobileMedia case study. Thus, such study waekd to start defining the basics of
testing in order to be able to positively assessthowing items to address. The basics
of testing would, then, be to define the questioiteths, such as to define the test
objective, requirements, resources, test procedssaron. The next tables to continue
addressing test items and test directions (Tal83e 43 and 4.5) will not be applied,
since to go further with the evaluation, it is resagy to address the previous items first.
The elements from the testware support assist @mefinitions of the test strategy, as

explained next.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Test strategy

Here, a desirable test plan for MobileMedia cdadysis shown in Table 6.5 as a
proper plan to address the necessary aspects saleoin more details. The test people
from the test team have had their names changpsegerve the identity of the ones
involved.

Table 6.5MobileMedia case study Test Plan

1. General Information
1.1Summary — The application is a software product line contamifour different
AO and OO releases, in which each release containse complex featurgs
than its previous. For details on the featuresapke see the feature model. The
tests to be performed can be code based testingnéarfiace testing.
1.2Environment and Pretest Background — Such application has never gone
under testing before, it is a complex and largeliagion. The organization in

which the study is being developed is academic.

1.3 Test Objectives— Analyze code covered by testing.

1.4 Expected Behavior— The application should manipulate media files pripby
adding, removing and editing files. For specifihaeior at each feature level
please see the feature model available.

1.5References- Feature model, features’ description file.

2. Plan
2.1 Software Description— As this application is a software product line,esific
chart would be necessary for each release regarthiegspecific features’ inputs
from that release. For example

MobileMedia OO Release 2

Sorting ® Try different orders

Edit Photo Label | ® Try different labels

Others ® Reach exceptions and test exception
handling.

® Compilation without optional features.
® Access main variables and test
initialization

2.2Test Team—Test manager — A
Test designer — B
Tester—C,Dand E
2.3 Milestones—Full bug reporting at the end of testing of eaclease
New feature delivery every other week as of Jul{f antil

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

December 29, holidays excluded.
2.4Budgets—None.
2.5Testing
2.5.1 Schedule

Plan
Training
Tests
Analysis
Evaluation

2.5.2 Requirements— A desktop computer to each test person involvestense

must have test tools installed and required soféwar run the test tools

running as well. Testers must have access to fegtuspecification
requirements documents and feature model documents.

2.5.3 Testing Materials — Four AO and OO versions of MobileMedia software

product line, JaBUTi tool, code coverage tool, tdetumentation (teg
cases).
2.5.4 Test Training — Two experienced users of the application underwealbt

provide training on how to use the application ahdw it has been

incrementally developed release by release. Phestésters should als

receive training on how to manipulate the test soat defined in test

schedule.

. Specifications

3.1Business Functions- Interface testing as per test case description si@ps;
input domain testing.

3.2 Structural Functions — Data flow testing. In Aspect-Oriented releasestfiest
base code and then aspectized code and observhexlaebug is observed whé
introducing the aspects in the base code.

—+

2N

3.3Test/Function Relationships— For functional testing, a table is here attached

(Appendix A)to address the functional test cases as per fumatidescriptions
For structural testing, unit test is applied alotig code.

. Methods and Constraints

4.1 Methodology — To follow functional and structure-based testing.

4.2 Test Tools — Capture/playback, code comparison, data flow ansjydefect
management, walkthroughs.

4.3Extent — At least 80% of the code need to be tested by rideoé the testing
activities.

4.4 Data Recording— A bug tracking system will be used to record bugsmd and
relevant datg Appendix B).

4.5 Constraints — The test server from JaBUTi tool has a limitatidriB#B of datal

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

transfer. There is only one JaBUTi developer avaédao solve eventual issues
that may come up with the tool.

5. Evaluation

5.1Criteria — The analysis is based on code coverage analysisAgDid related
faults assessment.

5.2Data Reduction — The functional tests performed throughout the ajapion’s
interface s can and should make use of a automatal i.e., capture/replay
tool that records the steps of the tests executede release that can be applied
to the following releases, so that the tester doashave to do it manually aﬁ
over again. Also code comparison tools can be ligefidentify and compare
the differences between two versions of the apmicai.e., the piece of code
introduced by the addition of an optional or altative feature.

Test environment

The test environment element needs to be addresked test planning to
consider relevant information regarding the enwinent where the testing should occur.
Considering the requirements defined in Table /8 what has been discussed in
Section 4.3, in MobileMedia case study, the envitent has different needs because it
had to handle different releases in a product liteveloped in different programming
languages. Already considering tooling usage, lotiteo much, (test tool is discussed
next), the environment needed to conform the toplpsrt for both Aspect] and Java
releases and the features implemented in eachseclBasides, the test server required
connection between JaBUTi tool and the mobile etoulshus, the environment needed
support from wireless toolkit application and ctiserver configuration management.
Besides other tooling support — in case of the matmg tool and others — the test
environment required exclusive machines to theetesto that he/she could save, use
and reuse information from previous releases t&is, a test administrator would be
the right role to address the requirements for anageable, continuous, safe and

centralized test environment in this case study.
Test tools

Continuing the discussing regarding test envirammioling support represent
a great part of the configuration needs for a progpst environment. First, the concerns

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

addressed in Table 4.12 are associated to MobileMeake study’s conditions when

selecting test tools and Table 6.6 represents sualuation.

Table 6.6ltems addressing issues when selecting test tools

1 Are test tools selected in a logical manner?

No.

Can testers use test tools only after they haveived adequate training n
2 how to use them?

Yes
3 Is the tool usage specified in the test plan?dsetla tool manual?

Yes

Has a process for obtaining assistance in usirngtaets been established,
4 and does it provide testers with the needed instmal information?

Yes

Have the dependencies to use the tool been iceh@ind mitigated in order
5 not to become a bottleneck?

Yes

In the ideal case, the case study would identif 9aBUTi tool does not attend
the requirements to test AO releases as it doels @D releases. Hence, the tool
developers are previously contacted in order ta plad deliver such an update on time.
Also, the tool dependencies on the test servettadaximum of 3MB of data transfer
between it and the emulator to gather test traeewdion. Such dependency needs to be
identified, so that long test executions that resumore than 3MB data transfer does

not become an issue.

The automating tool to record test executionsughothe simulator interface
also needs to be identified and provided with nemgsinformation in order to use it.
The use of it can and should reduce and optimigeeiecuting time of manual tests —

common tests of the base code, present in evazgge] no matter the added feature.
Test People

The test team is an essential subject within #ee study to address people to
appropriate test roles. The roles can be assoartbdesting competencies, as defined
in Table 4.14, to identify how competent the mersbef the test team are when

evaluated in testing principles, as shows Tablei®.the case for MobileMedia case

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

study, in a general way. Such evaluation helps titjgmg and addressing the
appropriate tasks to appropriate personnel, whidandamental to a smooth flow in a

case study like this.

Table 6.7Evaluating software testing principles and taskasresg competency in
MobileMedia case study

Fully Partially | Not
competent| competent| competent
Testing techniques Test
Understanding of the various approaches uskebst
1. . S . manager /
in testing and the methods for designing adésigner
; Testers
conducting tests.
Levels of testing Test Test
2 Identifying testing levels designer manager /
' Testers
Test
Testing different types of software manager /
3 | The changes in the approach to testing when Test
testing different development approaches. designer /
Testers
Vocabulary Test
The technical terms to describe various test . Test
4) - designer /
techniques, tools, principles, concepts and manager
L Testers
activities.
Test process Test
An overview of the processes that testers |uBest
5 . . - . manager /
to perform a specific test activity, policigsjesigner
Testers
standards, procedures, tools.
Test planning
Assessing requirements, design, gxecutlolnést Test
6 | reports, risks, test methods, enwronmerg]t . Testers
. S esigner | manager
schedule, objectives, criteria, test scope, [test
team.

Aspect-Oriented attributes

The criteria defined in the BF [42] list importah© attributes to be addressed.
Table 6.8 shows the application of such in MobilelMecase study, presenting the

existence of such attributes or not.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Table 6.8Addressing AO attributes in MobileMedia

Functional Yes

Non-functional Yes

Classification of Homogeneous Yes

crosscutting concerns | Heterogeneous Yes

Intra-component Yes

Inter-component Yes

. Invocation based Yes

Interaction and .

" Tangled code in component level Yes

composition of Tangled code in operational level Yes
crosscutting concerns g . b

Overlapping Yes

6.1.2 HealthWatcher

This subsection presents the evaluation of thewssst support against
HealthWatcher application with the test elementessed through the definitions from
Chapter 4. As mentioned, this application is a vieformation system with four
different releases (implemented in OO and AO laggsa in which each release
contains applied changes to the previous one, masbeaobserved in Table 6.9 a
summary of the changes described at a more dev&dpgel. This application was
used in this dissertation as a target to evaluadiah analysis purposes only and was
chosen based on recent empirical studies. The ldata presented within the test
elements being addressed flow along towards regcthie goal of identifying and
assessing the test elements in the software systpnovide the best test direction to fit
software system’s purposes. Hence, as of the coralegady here presented, the
evaluation introduced next is inserted within tludtware maintainability evaluation
benchmarking framework. To ease identification t&ims and tables assessing test
elements and test directions, the study regardiegise of HealthWathcer application is

here called as “HealthWatcher study”.

Table 6.9HealthWatcher releases’ scenarios of changes

Release Description
01 Factor out multiple Servlets to improve exteitigjb
02 Ensure the complaint state cannot be updatesl dosed.
03 Encapsulate update operations to improve maetbéity.
04 Improve the encapsulation of the distributionaayn.

_ ESCOLA
POLITECNICA DE

PERNAMBUCC
First Basics
Table 6.10Evaluating test items to address in HealthWatchetys

1 Are the objectives and requirements defined?

Yes
5 Are the requirements testable?

Yes
3 Are there time and resources available allottediévelopment and testingf

Yes
4 Has the test process been defined?

No.

Are the testers familiar with the development mdtilogies and the
5 required testware to test them?

No.

Table 6.11Evaluating items to address initial test directions

1 Is there a policy regarding software testing?
No.

2 Is there a software testing strategy?
Yes

3 Are there trained resources to allocate on softweseng?
Yes

4 Are there available tools to support a testingtstyg?
Yes

5 Has the test object been under a testing procéssele
No.

It is possible to observe that although Health\Wattcis provided with
requirements and test strategy, there is no testeps defined for it to follow. Hence,
the items to assess test process from Table 4.8atrapplicable, since the answers to
all five questions would be, therefore, negativee hext tables presented in the first
concerns of the testware support concerns testnipigh which is also still not
applicable to HealthWatcher case at this point.usTtihe responsible manager would
have to define into more details the existing stggtand assemble the test process and
test planning. The tesware support assists suchtis as follows.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Test strategy

Here, a desirable test plan for HealthWatcherystsghown in Table 6.12 as a
proper plan to address the necessary aspects sadeomn more details. The names of
the members of the test team have been changeckserpe the identity of the ones

involved.

Table 6.12HealthWatcher study Test Plan

1. General Information

1.1Summary — The application is a web information system contajnfour
different AO and OO releases, in which each relaadbe result of applying
number of heterogeneous types of changes to theopseone. The tests to be
performed can be code based testing and testirmy ¢itr the browser.

1.2 Environment and Pretest Background— Such application has gone under unit
testing before, but only at one release for a csisgly. The history of sugh
testing is unclear. The organization in which thady is being developed (s
academic.

1.3Test Objectives— Analyze code covered by testing and if behaviort rttee
specifications.

1.4Expected Behavior— The purpose of the system is to collect and coribre
complaints and notifications, also providing imgort information to the people
about the Health System. Allow exchange of infaonawith the SSVS system
(Sanitary Surveillance System). This exchange fiwdtly be only to query
sanitary licenses and on another time — when SQV& theployed the Complaint
Control module — it will be given the automatic rgntof the Sanitary
Surveillance complaint nature.

1.5References- HealthWatcher Use Cases document.

[

2. Plan
2.1 Software Description— The frame of reference for the functions to bectbsd
based on use cases’ definitions
HW System Overview
Query Query Health Guide
information The citizen might query:
Which health units take care of a specific spegia
Which are the specialties of a health unit.

t

Query Diverse Information
The citizen might query:

Information about the complaint made by the
citizen:
Complaint specification.
Situation (OPENED, SUSPENDED, pr

POLITE

ESCOLA
CNICA DE

PERNAMBUCC

CLOSED).

Technical analysis.

Analysis date.

Employee that made the analysis.

Information about diseases:
Description.
Symptoms.

Duration.

Inputs and pre-conditions:

The data to be queried must be registered

on the system

Outputs and post-conditions:
The query result to the citizen

Specify
complaint

Animal Complaint — DVA
Animals apprehension.

Control of vectors (rodents, scorpion
bats, etc.)
Diseases related to mosquitos (deng
filariose).

Animals maltreatment.

Food Complaint - DVISA

Cases where it is suspicious the ingest
of infected food.

Diverse Complaint - DVISA

Cases related to several reasons, which
not mentioned above (restaurants w

hygiene problems, leaking sewerage,
suspicious water transporting trucks, etc.).

The three kinds of complaints have the following
information in common:

Complaint data: description (mandatory) a
observations (optional);

Complainer data: name, street, complemg
district, city, state/province, zip code, telephg
number and e-mail. All these information &
optional;

S,

ue

on

are
ith

d

—

Nt
ne
\re

Complaint state (mandatory), which might

)[SH

ESCOLA

POLITECNICA DE
PERNAMBUCC

OPENED, SUSPENDED or CLOSED. In the
event of a registration, its state must |be

OPENED,;

The system must register the complaint

registration date.

Inputs and pre-conditions
None

Outputs and post-conditions
The complaint saved on the system

Update
complaint

Inputs and pre-conditions

The complaint must be registered and

have the OPENED state.
Logged employee.

Outputs and post-conditions

Complaint updated and with stare

CLOSED.

2.2 Test Team—Test manager — Al
Test administrator — B1
Tester — C1, C2 and C3

2.3Milestones— The milestones are the end of each main flow &stites of each

functionality. At every milestone, test reports atelivered to assess tegst

activities.
2.4Budgets—None.
2.5Testing

2.5.1 Schedule

Plan

Training

Tests

Analysis

Evaluation

2.5.2 Requirements— A desktop computer to each test person involvestels
must have test tools installed and required sofémar run the test tool
running as well. Testers must have access to usescaocumer
specification to understand the specified behawiarder to test design.

—~ N

2.5.3 Testing Materials — Four AO and OO versions of HealthWatcher system,
code coverage tool, test documentation (test cases)

2.5.4 Test Training — Testers will be provided with training on unit iegtand

code coverage tools usage.

3. Specifications

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

3.1Business Funclons — Interface testing through browser as per test dase
description and steps; input/output testing.

3.2 Structural Functions — Unit testing. In Aspect-Oriented releases, first tease
code and then aspectized code and observe whetlheigas observed when
introducing the aspects in the base code.

3.3Test/Function Relationships— For functional testing, a table is here attached
(Appendix C)to example the functional test cases as per fumatidescriptions
For structural testing, unit test is applied alotige code.

4. Methods and Constraints

4.1 Methodology — To follow functional and structure-based testing.

4.2 Test Tools— Code comparison, defect management.

4.3Extent — At least 80% of the code need to be tested by rideoé the testing
activities.

4.4 Data Recording— A bug tracking system will be used to record bugsd and
relevant datg Appendix B).

4.5 Constraints — The system should have an easy to use GUI, bedansght be
used by any person who has access to the intefhetsystem should have an
on-line HELP to be consulted by any person thas uise

5. Evaluation

5.1Criteria — The analysis is based on code coverage analysisAsDid related
faults assessment.

5.2 Data Reduction—Not Applicable.

Test environment

As explained when addressing MM test environméament, it needs to be
addressed when test planning to consider relevafdrmation regarding the
environment where the testing should occur. Théeayshould be available 24 hours a
day, 7 days a week. Because of the nature of naglze critical system, the system
might stay off until any fault is fixed. Thereforthe system should use a security
protocol to send data over the internet. To hawesx to the complaint registration
features, the use must be allowed by the accegsotsnb-system. Plus, the hardware
and software to be used for the system to work leen previously defined by

developers as follows:

Software: one license for the Microsoft Windows tlee workstation

Hardware: One computer with: Pentium IIl proces@&6 MB of RAM
memory, net card 3Com 10/100. This equipment dhalused by the
attendant as a workstation.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

After learning such conditions and based on tiqgirements presented in Table
4.8, the test environment for HW should, then, @nageable, safe and centralized, as

the most important characteristics.
Test tools

Tooling support represents great importance itinigsactivities to make them
become faster and more efficient, at most timescadse of HW study, the only tool
support to address in testing activities is theecodverage tool. Thus, the concerns
addressed in Table 4.12 are assessed to HW stoalytstions when selecting test tools

and Table 6.13 represents such evaluation.

Table 6.13Items addressing issues when selecting test tools

Are test tools selected in a logical manner?
Yes

Can testers use test tools only after they haveived adequate training in
2 how to use them?

Yes
3 Is the tool usage specified in the test plan?dsetla tool manual?

Yes

Has a process for obtaining assistance in usirngtaets been established,
4 and does it provide testers with the needed instmal information?

No.

Have the dependencies to use the tool been iceh@ind mitigated in order
5 not to become a bottleneck?
Yes

In the HW study case, the only tool support is ¢bhde coverage tool to assess
how much of the code has been covered by the estt.tThe tests through browser are
executed manually. Therefore, in the test plaspécifies the tool to be used. As it is an
academic study and there is no budget availab&ejdbl used is an open source tool
free of cost. However, it has not been identifidtethher the tool supports AspectJ code
to assess such code coverage, nor if the unituéiétseed a different framework, rather
than JUnit.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Test People

The test roles attributed to test people with appate test activities have to be
associated against the individuals’ competencigbaoessential test tasks are identified
and assigned to the most appropriate person. Tles end people assignment and

evaluation for HW study are shown in Table 6.14pasdefinitions in Section 4.6.

Table 6.14Evaluating software testing principles and tasksraj competency in

HealthWatcher study
Fully Partially | Not
competent| competent| competent
Testing techniques Test
Understanding of the various approaches used Test
1. . A manager / .
in testing and the methods for designing and admin.
> Testers
conducting tests.
> Levels of testing Test / Test
Identifying testing levels Manager’| admin
' Testers '
Test
Testing different types of software manager /
: , Test
3 | The changes in the approach to testing when Test .
: . . admin.
testing different development approaches. designer /
Testers
Vocabulary Test
The technical terms to describe various test manager /
4 . - Testers
techniques, tools, principles, concepts and Test
activities. admin.
Test process Test
An overview of the processes that testers use Test
5 - e o manager / .
to perform a specific test activity, policies, admin.
Testers
standards, procedures, tools.
Test planning
Assessing requirements, design, execution Testers /
. : Test
6 | reports, risks, test methods, environment, Test
ro o manager .
schedule, objectives, criteria, test scope, test admin.
team.

Aspect-Oriented attributes

Important AO attributes are listed in the critedefined in the BF [42]. Such
attributes are the ones to be addressed in ordeassess AO related required

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

information in the study. Table 6.15 shows the magpibon of such attributes in
HealthWatcher study.

Table 6.15Addressing AO attributes in HealthWatcher

Functional No

Non-functional Yes

Classification of Homogeneous Yes

crosscutting concerns | Heterogeneous Yes

Intra-component Yes

Inter-component Yes

: Invocation based Yes

Interaction and -

. Tangled code in component level Yes

composition of Tangled code in operational level Yes
crosscutting concerns gred c P

Overlapping Yes

6.1.3 Discussion over Testware Support Evaluation

Subsections 6.1.1 and 6.1.2 have presented theamdeapplication of the
proposed testware support against two differentwsoé systems. Such application
provides more consistency on the discussion oftlauation. First, it is important to
remember that the testware support provides thessacy elements and test issues to
address in order to lay out a proper test direcioa software project. The elements
provided in Chapter 4 have been used with the twdiss of the two applications to
surface the existing test information and identigt necessary achievable test topics.
These goals have the aim to enlarge software greigions and scope and supplying it

with more confidence towards decision making.

The existing test information identified in bottudies (Subsection 6.1.1. and
6.1.2) enables test managers, designers and tesiewsing aware of what are the test
elements the project currently has, what can besdeith them and how to do it
according to the needs and to what they repre3éwt.test people may also become
aware of, according to what test information theyéy what is the information and

elements they still need in order to achieve teedbjective in the software project.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Despite this discussion and the benefits may seengeneral at this point, the
connection of the elements is related to each grgjgecifically. It has been possible to
surface and identify useful information in the tvgtudies though. In case of
MobileMedia case study, the testware support h#sased important information (and
lack of it) that had not been identified befores@Eatudy Section 3.4). Such information
could have helped on the issues that occurred ghiait the case study, or even better,
could have avoided bottlenecks, wrong decisionsimgaknd unsuccessful results. It
has been possible to observe through the testwapog evaluation that the case study
had no test process nor policy defined, and itbheeh executed without assistance and
planning. Such lack of coordination could hardladeto successful results. If the
testware support had been used to identify suclessghe case study could have taken

a different test direction instead in time.

The evaluation with the other study regarding heot application
(HealthWatcher) allowed the observation that tlséware support has also provided the
identification of relevant test data and informatibat can be applied into the right test
topic (environment, tool, planning) and clarify ttest activities, milestones, process in
a smooth and organized way. The identified charaties support building the right
test process provided with the right assessedstestegy, test environment and test

tools.

Thus, the outcome of such evaluations indicates tie use of the testware
support can be beneficial in software projects thaboncerned with test directions and
properly addressing the test elements. Such becgifitbe even more important when
the software project concerns critical levels dtware life cycle, like its maintenance
or evolution phase. When a piece of software hagmieeen under test before and it
needs to evolve, some minimum quality and religbthat the software system indeed
does what it is supposed to do needs to be assasskor (re)assured. Without any
prior test activity or history, such confidencenerdly achievable. Or even worse, with
prior test activity or history, but inappropriatees or not suitable to the new scenarios,
the software system may be evolved or maintainealiih an inadequate path, which
can lead to serious damaged and unsuccessful oaticoits life cycle. The test strategy

and test criteria to be applied in a piece of safevneed to be evaluated each time it

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

goes under changes. The existing testware of aatproject may not be suitable to
the new scenario. In other words, the software Wi can be inadequate in what
regards to test issues, or be provided with thelegaate testware, and this may be
harmful to the software in the future. Therefoestivare support comes to play a very
important role to assess its testware and providans to reach a proper test direction
in a process flow, so that the software system eamlve, provided with proper

information that has been evaluated.

The use of the testware support is fundamentahvimid misunderstandings
during software assessment, since it documenttettelements. It is essential to help
standardizing the terms used in analysis, reptioafind evaluation of studies that
concern this subject and rely on initiatives, likés testware support, to progress on

consistent and reliable information.

The testware support may guide researchers andtitimaers to analyze
software test projects and software test case edutti analyze test characteristics

inherent and / or assessed from software systewesds many different purposes.

The next section evaluates the BF extension predent Chapter 5 with the

addition of the testware support, and discussdsenefits.

6.2 Benchmarking Framework Extension
Evaluation

As explained in the introduction of the BF [42]ettefinition of the criteria that
compose the BF is not an easy task, for they habe tgeneral and specific at the same
time. They should be: (i) general enough to idgrdifferent characteristics of the same
application and, (ii) specific to comply with apgdtions of different domains that use
AO techniques. Yet another factor that makes tlindion not an easy task is the
quick appearance of new AO techniques, which hmdee criteria list to be statically

defined; therefore, it should be dynamic to adagiased needed changes.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

The list of test criteria, as known as the testwsupport addressing the test
elements have been created and inserted to theCB&pfer 5) so that testing, in a
general way, is inserted within the context presemf the BF regarding the empirical
studies on software maintenance. The insertiohetdstware support in the BF has the
goal to increase the scope of the software assessnad consider test issues,
providing means to achieve more confident and oldiacenes and paths to evolve and

maintain software, as it has been explained preWaua this chapter.

This section presents the evaluation of the tegbates to consider within the
BF extension. Such evaluation has followed the stmeeadopted in the evaluation of
the BF in its original study [42]. Besides the goalescribed above regarding the
expected achievements with the BF extension, tratuation aims to provide means to
assess whether the use of the BF extension in periexent, software project or case
study can indeed be beneficial, i.e., its use imathgeous than what it would be if it
had not make use of such structure. The test attisbaddressed in the BF extension
aim to surface and provide further relevant infaiiorato a project that is important and
can help on the outcome in the manners discuss#ukeiprevious chapters, but such

need is unknown until it appears.

The evaluation has been applied into the two studiglained in the previous
section, provided with two applications (MobileMadand HealthWatcher). As the
attributes exhibited in the extension are a sunwedriway to present the analysis
assessed through the thorough use of the testwppoi, the evaluation here presents
Tables 6.16 and 6.17 assessing the test elemestsisded in Section 6.1, as per

definitions from Table 5.1, in Chapter 5.

The test attributes introduced in Chapter 5 ae#tension to the Benchmarking
Framework structure to now consider test issuagftware maintenance and evaluation
studies and research have been assessed for tieoedif applications above. The
evaluation assesses the important test elemeritsutace test information, or the lack
of it, providing the necessary knowledge for awafe project or case study to pursue
and follow the right path in what regards to sofvéesting. Considering the testing

process and elements in such BF broadens the \fiegsearchers or practitioners that

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

are assessing software systems to evolve. It asodes means to assure a higher level
of quality and confidence in the related studidsisTonly confirms the benefits of the
testware support discussed in Section 6.1 and espanch benefits towards the BF

extension.

Together with the general software attributes argpe&t-Oriented attributes
presented in the definitions of the BF [42], thst tattributes, here assessed, contribute
to the evaluation of the representativeness ofiegtpns, because it enlarges the scope
to a different process that may impact on otheateel criteria. Thus, the extension
enables the evaluation of applications in a morgepth and embracing fashion of what
may impact the case study or software project.eesing its confidence. Besides, the
attributes also contribute to guiding, selectingd aanalyzing software systems to
experimental studies, for it enables the considaratf further characteristics inherent

to the project, that were unknown, without the ofthe testware support.

Table 6.16MobileMedia case study test attributes

Test policy No
Test objective Analyze code covered by testing
Code based testing and interface testing with
Test strategy full bug reporting at the end of testing each
release
Test process No
Test history No
Functional and structural based testing (data
Test criteria flow testing). Analysis based on code coverage
First Basics and AOP related faults.

Interface testing as per test case description and
steps; input domain testing. Data flow testing, In
AO releases, first test base code and then
aspectized code and observe whether a bug is

Functional and
structural test

conditions observed when introducing the aspects in the
base code.

Test environment | No definitions

Test tools JaBUTi tool, code corage tool, automating tool

Test people Yes

_ ESCOLA
POLITECNICA DE

PERNA

MBUCC

=

Test plan No
Full bug reporting at the end of testing of eacl

Test Milestones release. New featu_re delivery every other wee
strategy as of July 20th until .quember 2ch

Test schedule See schedule table in item 2.5.1 in Table 6.5

Test requirements | Feature model

Test techniques Functional and structure-based testing
Test Requirements Manageable, continuous, safe and centralizec

environment

=2

Dependencies

Tools, wireless toolkit, client-server
configuration management, test server

Capture/playback, code comparison, data floy

or

and

Type of tool analysis, defect management, walkthroughs
Tool name JaBUTi, Automate5, Cobertura
Test tools Tool version 1, 5, any — respectively
Tool support User's manual
Tool expertise Low
Tool dependencies | No definitions
Test manager — A
Test roles Test designer — B
Test people Tester— C,Dand E
Training Yes
Competency See table 6.5
Table 6.17HealthWatcher case study test attributes
Test policy No
I Analyze code covered by testing and if behavi
Test objective meet the specifications
Test strategy Code based testing and interface testing through
browser
Test process No
Test history Yes
Functional and structural based testing.
Test criteria Analysis is based on code coverage analysis
First Basics AOP related faults assessment

Functional and
structural test
conditions

Interface testing through browser as per test

case description and steps; input/output testing.
Unit testing. In AO releases, first test base cofe
and then aspectized code and observe whether a

bug is observed when introducing the aspects
the base code

Test environment

in

Software: one license for the Microsoft Windaws

for the workstation.
Hardware: One computer with: Pentium IlI
processor, 256 MB of RAM memory, net card

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

3Com 10/100. This equipment shall be used by
the attendant as a workstation.

Test tools Code comparison tool
Test people Yes
Test plan No

The milestones are the end of each main flow
test activities of each functionality. At every

Test Milestones milestone, test reports are delivered to assess$
strategy test activities
Test schedule See schedule table in item 2.5.1 in Table 6.12

Test requirements | Use cases
Test techniques Functional and structure-based testing

Test Requirements Manageable, safe and centralized
environment | Dependencies Other information services
Type of tool Code comparison, defect management
Tool name Cobertura, spreadsheets
Test tools Tool version any
Tool support User’s manual
Tool expertise Medium

Tool dependencies No definitions

Test manager — Al

Test roles Test administrator — B1
Test people Tester — C1, C2 and C3

Training Yes

Competency See table 6.12

6.3 Final Considerations

This chapter has presented the evaluation of tbpoged testware support and
the evaluation of the Benchmarking Framework [42kBsion with the insertion of the
testware support in it. The evaluation relied ono twdifferent applications,
HealthWatcher and MobileMedia, which, because okirthdifferences and
particularities, have contributed to increase thpresentativeness of such assessment
and provided more consistences to the resultsadt been a positive and beneficial
outcome to make use of the testware support, pieémthis dissertation. The use of it
has surfaced important and relevant test informaftiom test elements that need to be
considered in order to provide and pursue a prtgsrdirection in a software project or

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

case study. The benefits become even more impostaen looking at the perspective
that to evolve a piece of software, the quality aadfidence are essential aspects to be
considered in order to reach and develop propeluggn or maintenance scenarios.
Without test support, such confidence and religbii hardly achievable, for a software
system’s test conditions or assessments are unknbiws throws a software to a very
vulnerable situation and this is unlikely accepted the software engineering

community.

Thus, the testware support elements introducehlisndissertation contributes to
the improvement of studies in this regard plannargl elaboration, analysis and
replication, in the context in which the BF haspwsed to assist. Further details on
beneficial implications of the testware support &sdnsertion in the BF are presented
in the next chapter, the conclusions.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Chapter 7

Conclusions

As it has been introduced in Chapter 1, softwasérg plays an essential role to
uncover and correct as many of the potential erasrpossible in a piece of software.
However, when the test issues worked in a projeciase study are not provided with
the proper way in techniques, tools and test enwment to make them right, test
objectives become hard to achieve. If the testwagesoftware project is not addressed
adequately, it may be difficult critical for thiysfem to evolve or maintain, since its
quality will be provided with inappropriate elemgnand incorrect or incomplete
information and assessment. Motivated by a cas#y ghat has taken place without a
proper test direction to follow in a process fldhis work presented in this dissertation
has developed a structure to serve as a guidedressitest issues through test attributes
in such situations, as known as the testware stppbe context in which the case
study has taken place regards software evolutiah raintenance case studies, and
focus on Aspect-Oriented (AO) software systems. &meronment in which the case
study was applied has been introduced in Chapgerd3t concerned a Testbed [105], a
systematic structure to provide end-to-end comparizetween techniques, approaches,
metrics, empirical studies, artifacts and applaad] essential framework to stimulate
the research, contributions and use of its benefitthin software engineering
community. A specific part of the Testbed, the Benarking Framework (BF), has
been developed [42] to support the maintainabibiysessment of AO software
development (AOSD) techniques through a definitmnan idealized scheme for
benchmarking applications to evaluate AO attribwmtathin the maintenance context.
The framework guides researchers and practitianesslecting or adapting applications

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

and their maintenance scenarios that best fit Bpemiperimental goals as well as it
supports the design replication and evaluation rapigcal studies, as it has been
previously explained. Such framework, however, md address any test issues within
this context. A study handling a software systesseasing its characteristics and
disregarding any information related to testingvatgs or test attributes, quality and
confidence could easily be addressing an improp&ntenance scenario, once such

scenario has not been tested or evaluated.

When a maintenance scenario is taken into congider® evolve or maintain a
piece of software, it is important to assess whrethis indeed specified as it should. If
there is a bug in it, it may not be known and mawply further complications and
damages in software life span. Based on such praposnd motivated by the case
study executed without much of testing knowleddes tdissertation presents the
testware support addressing test core elemente tiaken into consideration in case
studies and software projects and its insertiohiwithe BF. The BF extension now
considering testware support addresses test adsplas presented in Chapter 5.
Chapter 6 has introduced the results of this workluation within two different
perspectives: the testware support evaluatiorf i@l the BF extension considering the
test attributes as a support to consider test idesvand learn from what they can
provide along the software project. The benefitseeHaeen observed in both evaluations
for the elements have surfaced relevant and impbrtdormation that can make the
difference. The avoided problems can also avoithéurdamages, provide confidence
and enlarge the scope when assessing AO or noneff@ase attributes in a software

maintenance or evolution case study.

The next section discusses the relevance of suthtive and related work,
Section 7.2 presents the final considerations albingtchapter and dissertation and,
finally, Section 7.3 discusses the future workduling the line of the testware support

and the context here presented.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

7.1 Related Work

When discussing software testing in the contextsoftware evolution or
maintenance, it is mostly related to regressioningsand regression test selection
technique [23, 24, 25, 27, 85, 86, 88, 89, 91]. ©twsting the whole software is
practically not feasible and testing is an expensask, test cases prioritization and best
technigues matched with project goals are thenopedd. However, further interests
have taken place in this regard and some studiés 1%, 16, 17, 18, 103] have
researched about a software system testability, the degree to which a system or
component facilitates the establishment of tesega and the performance of tests to
determine whether those criteria have been meth $search is important to reduce
testing cost and time and increase software mantmnrate of success, once testing
effort can be reduced and optimized with testabiéwvels. Still, some studies [7, 8, 9,
12, 20, 21, 22, 56, 57, 60, 70, 73, 90, 104, 1@8, 129, 133, 136] have taken place to
experiment test techniques and prove their suitgbtio specific contexts and
requirements, address a specific model to a spddaifd of software, application or case
study, others [84] have focused on identifying chej@mcies that could decrease quality
and hinder proper test activities, while other atdh58, 59, 60, 136] have even built
testing framework with specific tools for specifioograms. However when focusing on
empirical studies context, there are many works g9 31, 32, 33, 34, 35, 36, 37, 38,
94, 111, 113] that presents relevant aspects tdaken into consideration when
evaluating methods, presenting empirical evidedgussing existing ways to purport
software methodologies or providing new technigqués the community but does not
consider the testing world in it. Some works intaafe evolution [42, 115, 116, 117,
118] even address attributes and discuss relevaspgctives in this matter, but very
few works [9] extend the subject with regard totites in the evolutionary context.
Thus, because no authors have provided a testwgmposd that would be nearly
applicable to the context here inserted, nonessugised into more details or compared.
Some are described in the state of art (ChaptéuR}heir comparison to the subject
from this dissertation is not pertinent, since therk here presented, besides being
focused in software maintenance and AOP, its usppsopriate to a wider sense. And
in a wider sense, since this work has gatherediegisgaformation in the testing world

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

that would best fit its purposes, i.e., there arenaw testing concepts, its comparison to

the existing testware is also not applicable.

Benchmarking as a way to assess software chaatsris still a recent subject
within the community with not so many works [42, 58] available. Yet, testing is not
present in this research. There is no testwarestipfong the software evolution in any

of these works, which can lead to the issues redeahd discussed in this dissertation.

The lack of planning necessary resources to dewahop/ or maintain or evolve
software systems can be pointed out as one ofdheus reasons from unsuccessful
results, software crisis and lack of directionsassist towards a proper path [133]. A
proper path, in this context, is the one to leathtoexpected software project’s results,
confidence and successful outcome. The test aesviplanning should be part of
system’s global planning, whether in developmergjnt@nance or evolution, in any
phase of the software life cycle, the lack of aacadhte test direction can lead to serious
issues to be faced by researchers and practiticagerns has been discussed in this

dissertation.

7.2 Final Considerations

This dissertation has discussed the importanceshadage of testware support
in the field of software engineering, more speaificin AOSD. The testware support
provides test elements to be considered with retgatdsting in a software project, so
that the researcher or practitioner has the meanexpand its scope, vision and
capabilities towards decision making. The expangiomes from the context of the
Benchmarking Framework [42] here discussed. Theriim of the testware support in
such context can only provide benefits and contellio a more confident and further
acquainted and explored scenario, rather maintensecenario, evolution or application
assessment. However, to manipulate the test elemsome expertise is required and
test resource is necessary so that its proposeefitsecan indeed be achieved, as

assessed and demonstrated in Chapter 6.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

The results shown in Chapter 6 are of extreme itapoe for software
engineering field for this is the first initiatii® extend the BF structure and the first
contribution regarding testing within the Testb&04]. The benefits of the BF can be
summed up as facilitating the execution of empirisaudies and accelerating the
collaborative progress of the software engineefielyl, in a general way. Looking
closer at it, it constitutes a significant progremsards the creation of a comprehensive
methodology for designing and assessing AO softwsechmarks. It provides a
systematic approach to the design of AOSD mainkaliba studies and it guides the
selection, design or adaption of representativdvewp applications and releases to be
used in such studies and their replications. Rmélihelps the community to accelerate
the improvement of software engineering body ofwdedge and better support for
judgment of industrial decision makers. Extendinghs advantages, the testware
support provides means to surface existing testnmition and testware in a software
project and identifies the lack of other elementthie testware that need to be addressed
in order to build an adequate test strategy, fadldwy a test process, test planning and
so on. Such testware support helps the researtheaddress and follow through a
proper test direction in a case study that regtesisng. Considering testing elements
within the BF structure, as mentioned, enables itiygrovement of confidence and
quality level of the information available to resg®ers and practitioners that are
responsible for decision making and software charetics assessment.

Hence, despite being great advance, in the pergpetft software testing, there
is still a lot to improve and progress. The eleradmandled in the testware support are
the basics of software testing, as it has beeniqusly stated in this dissertation. The
basic testware in order to assess the minimumnrdtion in order to achieve a proper
test direction with a proper test process and st is here presented and discussed.
However, there are still many important subjectt tire not here discussed which can

and should be further investigated, as it is disedsn the next and last section.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

7.3 Future Work

As it has been introduced in Section 7.2, thewsst support provides the
“basics” to address basic software test elementgdoh an adequate test direction to
follow in a test process, with appropriate own f@sicess, planning, environment and
other decisions. However, there are still many o#spects that can and should be

considered in future studies.

This work is only the first initiative to addres=sst concerns within the BF and
Testbed world. It can and should serve as a stgpiiint to develop and address further

concerns, such as test metrics, test case desgimrtoritization, risks and others.

Further empirical research considering tests cansaould take place to provide
more confident means to address testing in thisezbrand show, by each study, the

importance and relevance of concerning test elesriarthis context.

Further research should also take place to ewalimtdifferent manners the
proposed testware support and the BF extensionBFfes a very new and important
contribution within empirical studies community aitdhas not yet been continually
used and tested. Such use is important to assebsnefits and representativeness by
different kinds of applications and studies. Foilogvthis line, the testware support can
and should also be used, tested and extensivedgsess, so that it helps supplying the
lack of test directions in software developmentjmemance and evolution empirical

studies and projects.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

References

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Lenski, G. Power and Privilege: A Theory of Stiaation. McGraw-Hill, 1966.

ISO/IEC 9126-1:2001 Standard. Software EngineerirRyoduct quality — Part

1: Quality model, Quality characteristics and shlracteristics.

Myers, G. J. The Art of Software Testing. Secondi&a John Wiley & Sons
Inc., 2004.

Harrold, M. J. Testing: A roadmap. 22" International Conference on Software

Engineering — Future of Software Engineering Tr2800, p. 61-72.

Spillner A., Linz, T. and Schaefer, H. Software firgg Foundations. Dpunkt-
verlag, 2006.

Graham, D., Van Veenendaal, E., Evans, |. and Bl&k Foundations of
Software Testing, ISTQB Certification. Thomson, 200

Maldonado, J. C., Vincenzi, A. M. R., Barbosa, E, Souza, S. R. S. and
Delamaro, M. E. Aspectos tedricos e empiricos ddetale cobertura de
software. Relatorio Técnico 31, Instituto de Ci@sciMatematicas e de
Computagéo — ICMC-USP, 1998.

Hutchins, M., Foster, H., Goradia, T. and Ostramd,Experiments on the
Effectiveness of Dataflow- and Controlflow-BasedsTddequacy Criteria. In
Proceedings of the 6International Conference on Software Engineering.
Number 16 in ICSHEEE, 1994, p. 191-200.

Harman, M. and McMin, P. A Theoretical & Empiridahalysis of Evolutionary
Testing and Hill Climbing for Structural Test Dageneration. Innternational

Symposium on Software Testing and Analy€97.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Perry, W. E. Effective Methods for Software TestiAthird Edition. Wiley,
2006.

Pressman, R. S. Engenharia de Software. Translafi@oftware Engineering:
A Practitioner’'s Approach. Third Edition. Makron &cs, 1995.

Agrawal, H. et al. Mining Systems Tests to Aid 3afte Maintenance. IEEE
Computer Society Press. Volume 31, Issue 7, p.3%4-998.

Tichy, W. F. Should Computer Scientists Experimbidre? IEEE Computer
Society Press. Volume 31, Issue 5, p. 32-40, 1998.

Gupta, S. C. and Sinha, M. K. Impact of Softwarstdhility Considerations on
Software Development Life Cycle. IRroceedings of the First International
Conference on Software Testing, Reliability and luAssurancepp.105-110,

1994.

Jimenez, G., Taj, S. and Weaver, J. Design forabégy. In Proceedings of the
9" Annual NCIIA Conferenc€005.

Jungmayr, S. Design for Testability. Rnoceedings of CONQUEST 2QQiages
57-64, 2002.

Pettichord, B. Design for Testability. IRroceedings of Pacific Northwest
Software Quality Conference (PNSQ®&haheim, California, 2002.

Eickelman, N. S. and Richardson, D. J. What Makee Software Architecture
More Testable Than Another? IRroceedings of the Second International
Software Architecture Workshop (ISAW42). 65-67, 1996.

Kolb, R. and Muthig, D. Making testing product l;nenore efficient by
improving the testability of product line architects. InProceedings of the
ISSTA 2006 Workshop on Role of Software Architectwr Testing and
AnalysisROSATEA '06. ACM, pp. 22-27, 2006.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Kung, D., Gao, J., Hsia, P., Toyoshima, Y., Chen,Kdm, Y., and Song, Y.
Developing an object-oriented software testing amaintenance environment.
Commun. ACM8, 1995.

Fayad, M.E. Object-oriented software engineeringbms and perspectives.
Ph.D dissertation, University of Minnesota, 1994.

Binder, R. Object-oriented software testi@mmunACM 37, 1994.

Agrawal, H., Horgan, J., Krauser, E. and London,Irferemental regression
testing. InProceedings of the Conference on Software Maintemd&EE, pp.
348-357, 1993.

Rothermel, G. and Harrold, M. J. A safe, efficieefgression test selection
techniqgue ACM Trans. Softw. Eng. Method®olume 6, Issue 2, pp. 173-210,
1997.

Graves, T. L., Harrold, M. J., Kim, J., Porter,ahd Rothermel, G. An empirical
study of regression test selection techniqg@&dV Trans. Softw. Eng. Methodol.
Volume 10, Issue 2, pp. 184-208, 2001.

Beizer, B. Software Testing Techniques. Van Nosti@einhold, 1990.

Martinig, F. Software testing: Poor consideratidresting Tech. Newsletter,
1996.

Jedlitschka, A., Ciolkowski, M. Reporting Experinten in Software
Engineering. In14" International Software Engineering Research Nelwor
Annual Meeting ISERN2OO6.

Sjoberg, D. I., Dyba, T., and Jorgensen, M. Thaufeubf Empirical Methods in
Software Engineering Research. B©07 Future of Software Engineering
International Conference on Software EngineerililEE Computer Society, pp.
358-378, 2007.

Ciolkowski, M. and Minch, J. Accumulation and prs¢ion of empirical

evidence: problems and challenges.Pimceedings of the 2005 Workshop on

[31]

[32]

[33]

[34]

[35]

[36]

[37]

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Realising Evidence-Based Software EngineeigBSE '05. ACM, pp. 1-3,
2005.

Vegas, S., Juristo, N., Moreno, A., Solari, M., dredelier, P. Analysis of the
influence of communication between researchersxperanent replication. In
Proceedings of the 2006 ACM/IEEE international Sgsmm on Empirical
Software EngineerinSESE '06. ACM, pp. 28-37, 2006.

Zannier, C., Melnik, G., and Maurer, F. On the ssscof empirical studies in
the international conference on software engingetmProceedings of the 28th
international Conference on Software Engineeri@BE '06. ACM, pp. 341-
350, 2006.

Jedlitschka, A. and Ciolkowski, M. Towards EvidemeeSoftware Engineering.
In Proceedings of the 2004 international SymposiumEanpirical Software
EngineeringlEEE Computer Society, pp. 261-270, 2004.

Redwine, T. and Riddle, E. Software Technology Matian. InProceedings of
the 8" international Conference on Software Engineerif§EE Computer
Society, pp. 189-200, 1985.

Kitchenham, B., Al-Khilidar, H., Babar, M. A., BetrM., Cox, K., Keung, J.,
Kurniawati, F., Staples, M., Zhang, H. and Zhu,Bvaluating guidelines for
reporting empirical software engineering studieEmpirical Software
Engineering Volume 13, Issue 1, pp. 97-121, 2008.

Shull, F., Mendoncca, M. G., Basili, V., Carver,Maldonado, J. C., Fabbri, S.,
Travassos, G. H. and Ferreira, M. C. Knowledge-8gdssues in Experimental
Software Engineeringempirical Software Engineering/olume 9, Issue 1-2,
pp. 111-137, 2004.

Kitchenham, A., Pfleeger, L., Pickard, M., Jones, Wbaglin, C., El Emam, K.
and Rosenberg, J. Preliminary guidelines for eroglirresearch in software
engineering. IEEE Transactions on Software EngingeWVolume 28, R. 8, pp.
721 -734, 2002.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Singer, J. Association (APA) Style Guidelines topB® Experimental Results.
In Proceedings of Workshop on Empirical Studies iv&oe Maintenancepp.
71-75, 1999.

Lemos, O. Teste de programas orientados a aspechasabordagem estrutural
para AspectJ. MSc dissertation. ICMS-USP, 2005.

Watt, David. Programming Language Design Concéfitey, 2004.

Gradecki, J. D.; Gradecki, J.; Lesiecki, N. MastgrAspectJ: Aspect-Oriented
Programming in Java. Wiley, 2003.

Moura, M. Um Benchmarking Framework para Avaliag@oManutenibilidade
de Software Orientado a Aspectos. MSc dissertab&C-UPE, 2008.

McDaniel, R. and McGregor, J. Testing polymorphiteractions between
classes. Technical Report TR-94-103, Clemson Usitygrl994.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda,l©pes, C., Loingtier, J.J.
and Irwin, J. Aspect-oriented programmingPlroceedings of the 1European

Conference on Object-Oriented Programmit§97.

Murphy, C., Walker, J., Baniassad, L., Robillard, Pai, A. and Kersten, A.
2001. Does aspect-oriented programming wdddimun ACM Volume 44,
Issue 10, pp. 75-77, 2001.

Coady, Y., Kiczales, G., Feeley, M., Hutchinson, d&d Ong, S. Structuring
operating system aspects: using AOP to improve @&ctare modularity.
CommunACM Volume 44, Issue 10, pp. 79-82, 2001.

Coady, M. Y. Improving Evolvability of Operating Sgms with Aspectc.
Doctoral Thesis. UMI Order Number: AAINQ86004., Thaiversity of British
Columbia (Canada).

Papapetrou, O. and Papadopoulos, G. A. Aspect tedeArogramming for a
component-based real life application: a case stindyroceedings of the 2004
ACM Symposium on Applied Computi®g\C '04. ACM, pp. 1554-1558, 2004.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Cacho, N. et al. Composing Design Patterns: A $ddia Study of Aspect-
Oriented Programming. AOSD 06, 2006.

Kruger, H., Mathew, R. and Meisinger, M. From scesto aspects: exploring
product lines. InProceedings of the Fourth international Workshop on
Scenarios and State Machines: Models, Algorithmd @ools SCESM '05.
ACM, pp. 1-6, 2005.

Figueiredo, E. et al. Evolving Software Product dsnwith Aspects: An
Empirical Study on Design Stability. ICSE '08, 2008

Kulesza, U., Sant’Anna, C., Garcia, A., Coelho,\®n Staa, A. and Lucena, C.
Quantifying the Effects of Aspect-Oriented Programgn A Maintenance
Study. InProceedings of the 5% |EEE international Conference on Software
MaintenancdCSM, 2006.

Demeyer, S., Mens, T. and Wermelinger, M. TowardSofiware Evolution
Benchmark. InProceedings of the"4international Workshop on Principles of
Software EvolutionWPSE '01. ACM, pp. 174-177, 2001.

Sim, S., Easterbrook, S. and Holt, R. Using Benacking to Advance
Research: A Challenge to Software EngineeringPtoceedings of the 35
international Conference on Software EngineeriliEE Computer Society, pp.
74-83, 2003.

Spillner, A., Rossner, T., Winter, M. and Linz, $oftware Testing Practice:

Test Management. Rockynook Computing, 2007.

Do, H., Elbaum, S. and Rothermel, G. Supportingtttied Experimentation
with Testing Techniques: An Infrastructure andRistential ImpactEmpirical
Software Engineeringssue 10, Volume 4, pp. 405-435, 2005.

Vegas, S. and Basili, V. A Characterisation Schefora Software Testing
TechniquesEmpirical Software Engineering/olume 10, Issue 4, pp. 437-466,
2005.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

[58] Eytani, Y., Havelund, K., Stoller, S. D. and Ur, Rwards a framework and a
benchmark for testing tools for multi-threaded pemgs: Research Articles.
Concurrency and Computation: Practice & Experien¢elume 19, Issue 3, pp.
267-279, 2007.

[59] Xie, J., Ye, X., Li, B. and Xie, F. A Configurableb Service Performance
Testing Framework. InProceedings of the 2008 “MOIEEE international
Conference on High Performance Computing and Conutations - Volume
00. HPCC. IEEE Computer Society, pp. 312-319, 2008.

[60] Masemola, S. S. and De Villiers, M. R. Towards anfework for usability
testing of interactive e-learning applications ognitive domains, illustrated by
a case study. IProceedings of the 2006 Annual Research Conferehdhe
South African institute of Computer Scientists aridrmation Technologists on
IT Research in Developing Countried. Bishop and D. Kourie, Eds. ACM
International Conference Proceeding Series, val. Sduth African Institute for
Computer Scientists and Information Technologigs,187-197, 2006.

[61] Sebesta, W. Robert. Concepts of Programming Laregudd Edition. Addison
Wesley, 2001.

[62] Winck, V. Diogo and Junior, G. V. AspectJ: Progrgém Orientada a Aspectos

com Java. Novatec, 2006.

[63] Gosling, J., Joy, B., Steele, G. and Bracha, G.Jewa Language Specification.
2" Edition. Addison Wesley, 2000.

[64] Soares, S. and Borba, P. Aspect] — Programacauamféeea aspectos em Java.
UFPE.

[65] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, Malm, J. and Griswold, W.
G. Getting started with AspectJ. Commun. ACM Volu## Issue 10, pp. 59-
65, 2001.

[66] Binder, R. V. Testing Object-Oriented Systems: Msd®atterns and Tools.
Version 1. Addison Wesley Longman, Inc., 1999.

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]
[77]

[78]

[79]

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Alexander, R. T., Bieman, J. M. and Andrews, A.TAwards the Systematic
Testing of Aspect-Oriented Programs. Technical Rep@olorado State
University, 2004.

Tian, J. Software Quality Engineering — Testing, al@dy Assurance and
Quantifiable Improvement. IEEE Wiley-Interscien2605.

Boehm, B. W. Software Engineering Economics. Pcerttiall, 1981.

Boehm, B. W. Guidelines for Verifying and ValidatiGoftware Requirements
and Design Specifications. Rroceedings of Euro IFIPpp. 711-719, 1979.

URL: http://www.v-modell-xt.de/

Swanson, E. B. and Dans, E. System Life Expectamzy the Maintenance
Effort: Exploring Their Equilibration. MIS Quartgrl volume 24, pp. 277-297,
2000.

Pol, M. and van Veenendaal, E. Structured Testihgnformation Systems.

Kluwer Bedrijfsinformatie: Deventer, The Netherland998.
Martin, J. Rapid Application Development. Macmilldr®91.

Gilb, T. Competitive Engineering: A Handbook for sggms & Software
Engineering Management using Planguage. Butterwdeinemann, Elsevier,
2005.

Beck, K. Extreme Programming. Addison-Wesley, 2000.
Canning, R. The Maintenance ‘Iceberg’. EDP Analysetume 10, n° 10, 1972.

Swanson, E. B. The Dimensions of Maintenance.Phoceedings of ™

International Conference on Software EngineerilitEE, pp. 492-497, 1976.

Kastner, C., Apel, S. and Batory, D. A Case Studglémenting Features using
Aspectd. In Proceedingsf International Software Product Line Conference
(SPLC), 2007.

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Désea, M., Costa Neto, A., Borba, P. and SoareSp8&cifying Design Rules in
Aspect-Oriented Systems. Broceedings of | Latin American Workshop on
Aspect-Oriented Software Development — LA-WASP’28fifated with SBES
2007, pp. 67-78, Brazil, 2007.

Ribeiro, M., Dosea, M., Bonifacio, R., Costa Neto, Borba, P. and Soares, S.
Analyzing Class and Crosscutting Modularity Withdigm Structures Matrixes.
In Proceedings of XXI Brazilian Symposium on Softwarggineering —
SBES’2007pp. 167-181, Brazil, 2007.

Garcia, A., Sant'/Anna, C., Figueiredo, E., Kulesza,Lucena, C. and von Staa,
A. Modularizing Design Patterns with Aspects: A Quiative Study. In
Proceedings of the™international Conference on Aspect-Oriented Saftwa
DevelopmenAOSD '05. ACM, pp. 3-14, 2005.

Baniassad, E. L., Murphy, G. C., Schwanninger, i€l Kircher, M. Managing
Crosscutting Concerns during Software Evolutionksag\n Inquisitive Study.
In Proceedings of the®linternational Conference on Aspect-Oriented Saféwa
DevelopmenAOSD '02. ACM, pp. 120-126, 2002.

Podgurski, A. and Clarke, L. The Implications ofogiam Dependences for
Software Testing, Debugging. Technical Report. Ubttder Number: UM-CS-
1989-043., University of Massachusetts, 1989.

Engstrom, E., Skoglund, M. and Runeson, P. Empiri€galuations of
Regression Test Selection Techniques: A Systeraigew. InProceedings of
the 29 ACM-IEEE international Symposium on Empirical $@fte Engineering
and MeasuremerESEM '08. ACM, pp. 22-31, 2008.

Rothermel, G., Elbaum, S., Malishevsky, A. G., Hhilri, P. and Qiu, X. On
Test Suite Composition and Cost-effective Regresdiesting. ACM Trans.
Software Engineering Methodologjéflume 13, Issue 3, pp. 277-331, 2004.

Eaddy, M., Zimmermann, T., Sherwood, K. D., Garg, Murphy, G. C,,
Nagappan, N. and Aho, A. V. Do Crosscutting ConsdéZause DefectdEEE
Transactions on Software Engineeridgplume 34, Issue, pp. 497-515, 2008.

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Xu, G. and Rountev, A. 2007. Regression Test Seledor AspectJ Software.
In Proceedings of the 3international Conference on Software Engineering
International Conference on Software EngineerigdcH Computer Society, pp.
65-74, 2007.

Zhao, J., Xie, T. and Li, N. Towards RegressiontTeslection for AspectJ
Programs. InProceedings of the "2 Workshop on Testing Aspect-Oriented
ProgramsWTAOP '06. ACM, pp. 21-26, 2006.

Xu, D. and Xu, W. 2006. State-based Incrementatiigsf Aspect-oriented
Programs. InProceedings of the "5 international Conference on Aspect-
Oriented Software Developmeh©OSD '06. ACM, pp. 180-189, 2006.

G. Xu. A Regression Tests Selection Technique fepekt-oriented Programs.
In Workshop on Testing Aspect-Oriented Prograpps 15—-20, 2006.

Lehman M. M. and Belady L. A., Program EvolutiorProcesses of Software
Change. Acad. Press, London, 1985.

Mens, T. and Demeyer, S. Software Evolution. Sgning008.

Black, R. Managing the Testing Process,: Pracflaals and Techniques for
Managing Hardware and Software Testing, SeconddadiWiley, 2002.

Koomen, T., Aalst, L. van der, Broekman, B. and afroM. Tmap Next for
result-driven testing. Sogeti. UTN Publishers, 2006

Young, T. Using AspectJ to Build a Software Produioe for Mobile Devices.
Master Dissertation, Computer Science, Universitgritish Columbia, Canada,
2005.

Greenwood, P. et al. On the Design of an End-to-B@SD Testbed for
Software Stability. Proceedings of International M&hop on Assessment of
Aspect-Oriented Technologies (ASAT.07), AOSD Coaifere, Canada, 2007.

Soares, S. An Aspect-Oriented Implementation Meth@kD thesis, UFPE,
Brazil, 2004.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

[99] Soares, S. et al. Implementing Distribution andsB&nce Aspects with
Aspectd. InProceedings of International Conference on Objeaieed
Programming Systems, Languages and Applications &2@Ppp. 174-190,
2002.

[100] Mezini, M. and Ostermann, K. Conquering Aspecth\Wiaesar. IiProceedings
of Aspect-Oriented Software Development Confer&@8D pp. 90-99, 2003.

[101]Zhao, J. Data-Flow Based Unit Testing of Aspece@ed Programs. In
Proceedings of the #7Annual IEEE International Computer Software and
Applications Conferenc&JSA, 2003.

[102] Xu, W.; Xu, D.; Goel, V. and Nygard, K. Aspect flagvaph for testing aspect-
oriented programs. IRroceedings of the™BIASTED International Conference
on Software Engineering and Applicatio2604.

[103] Ceccato, M.; Tonella, P. and Ricca, F. Is AOP cealsier or harder to test than
OOP code? Ind™ International Conference on Aspect-Oriented Saféwa
DevelopmenAOSD - Workshop on Testing Aspect Oriented PrograliSA,
2005.

[104]Zhou, Y.; Richardson, D. and Ziv, H. Towards a ficat approach to test
aspect-oriented software. IRroceedings of the 2004 Workshop on Testing
Component-based Systems TECR&.ObjectiveDays, 2004.

[105] Greenwood, P. et al. On the Contributions of an-tBrEnd AOSD Testbed. In
11" Workshop on Early Aspects - Aspect-Oriented Reqénts Engineering
and Architecture Design ICSBHSA, 2007

[106]Lima, G. M. P. S. and Travassos, G. H. Estratégia @ estes de Integracdo

aplicada a Software Orientado a Objetos. UFRJdRidaneiro, Brazil.

[107]Harrold, M. J. and Rothermel, G. Performing Datafldesting on Classes. In
Proceedings of the ACM SIGSOFT "94 Symposium onFthadations of
Software EngineerindACM, pp. 154-163, 1994.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

[108]Huynh, D. Software Testing Maturity Mod& (SW-TMM®M). University of
Maryland, 2002.

[109] Burnstein, I., T. Suwanassart, and C.R. Carlsoweldping a Testing Maturity
Model. Crosstalk, Software Technology Support Centll Air Force Base,
Utah; Part I: August 1996, pp. 21-24; Part |I: Sepber 1996, pp. 19-26.

[110]Paulk, M., C. Weber, B. Curtis, and M. Chrissis,eT@apability Maturity
Model: Guideline for Improving the Software Procesdddison-Wesley,
Reading, Mass., 1995.

[111]Banker, R. D., Datar, S. M. and Kemerer, C. F. é@ctAffecting Software
Maintenance Productivity: An Exploratory Study. Rroceedings of the 8
International Conference on Information SystemsSI®lp. 160-175, 1987.

[112]Martin, J. and McClure, C. L. Software Maintenandée Problems and Its
Solutions. Prentice Hall Professional TechnicaldRefice, 1983.

[113]Kemerer, C. F. Software Complexity and Software ifnance: A Survey of
Empirical Research. Annals of Software Enginee(ijgpp. 1-22, 1995.

[114]Banker, R. D., Datar, S. M., Kemerer, C. F. and igwB. Software Errors and
Software Maintenance Management. Inf. Technol. Madagement 3, 1-2, PP.
25-41, 2002.

[115]Barry, E., Slaughter, S. and Kemerer, C. F. An Eirgli Analysis of Software
Evolution Profiles and Outcomes. Iroceedings of the 30 International
Conference on Information Systemdssociation for Information Systems, pp.
453-458, 1999.

[116]Kemerer, C. F. and Slaughter, S. An Empirical Apgioto Studying Software
Evolution. IEEE Transactions on Software Enginegri@5, 4, pp. 493-509,
1999.

[117] Kajko-Mattson, M., Lewis, G. A. and Smith, D. B. Aamework for Roles for

Development, Evolution and Maintenance of SOA-BasBgstems. In

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Proceedings of the 39International Conference on Software Engineering
Workshops ICSEWEEE Computer Society, pp. 117, 2007.

[118] Goldschmidt, T., Reussner, R. and Winzen, J. A Casely Evaluation of
Maintainability and Performance of Persistence hegles. InProceedings of
the 30" International Conference on Software Engineeri@SE ACM, pp.
401-410, 2008.

[119]Rosenblum, D. S. Validation and Verification — Reggion Testing. Department
of Computer Science, University College London U2Q09.

[120]IBATIS Data Mapper — http://ibatis.apache.org/ (1332009)
[121] JUnit Testing Framework — http://www.junit.org/ (03/2009)

[122]Zhu, H., Hall, P. A. V. and May, J. H. R. Softwddmit Test Coverage and
Adequacy. ACM Computing Surveys 29 (4), pp. 3674207

[123]Pohl, K. et. al. Software Product Line EngineeriRgundations, Principles and

Techniques. Springer, 2005.

[124]McGregor, J.D. Testing in a Software Product LirSghool on Software
Engineering—Testing. Recife, Brazil, 2007.

[125]Li, S. and j. Knudsen. Beginning J2ME, Apress, 2005

[126] Report at the conference Quality Assurance: Managén& Technologies.
Ukraine, 2007.

[127]Vincenzi, A. M. et. al. JaBUTi — Java Bytecode Urstiending and Testing-
user’s guide-version 1.0, 2004

[128] Delamaro, M. E. and Vincenzi, A. M. R. Structurasiing of Mobile Agents. In
E. A. Nicolas Guelfi and G. Reggio, editors, Ilitdmational Workshop on
Scientific Engineering of Java Distributed Applicais (FIDJI’2003), Lecture

Notes on Computer Science. Springer, 2003.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

[129]Vincenzi, A. M. R., Maldonado, J. C., Wong, W. EdaDelamaro, M. E.
Coverage testing of Java programs and componeatsnal of Science of
Computer Programming, 56(1-2):211-230, Apr. 2005.

[130] Sun Java Wireless Toolkit for CLDC — http://javaasiom/products/sjwtoolkit/
(13/03/2009)

[131]Pezzé, M. et al. Software Testing and Analysis:c&ss, Principles and
Techniques. Bookman, 2008.

[132]McKay, J. Managing the Test People — A Guide toctal Technical
Management. Rocky Nook Computing, 2007.

[133] Maldonado, J.C.. Critérios potenciais usos: Umdrdmuicao teste estrutural de

software. PhD Thesis, Unicamp, Brazil, 1991.

[134]Buschmann, F. et al. Pattern-Oriented Software ifgcture: A System of
Patterns. John Wiley & Sons, 1996.

[135]Gamma, E. et al. Design Patterns: Elements of Réris@bject-Oriented
Software. Addison-Wesley, 1995.

[136]Spring, L. J., Harris, G. H., Forster, J. J., andrdgBel, H. A Proposed
Benchmark for Testing Implementations of CrosswBigzzle Algorithms. In
Proceedings of the 1992 ACM/SIGAPP Symposium oriefp@omputing:
Technological Challenges of the 1990 Berghel, E. Deaton, G. Hedrick, D.
Roach, and R. Wainwright, Eds. SAC '92. ACM, pp-194, 1992.

[137]Vincenzi, A. M. Orientacdo a Objeto: Definicdo, llmmentacdo e Andlise de
Recursos de Teste e Validacao. PhD Thesis, ICMC/B&#il, 2004.

[138] Darwin, C. The Origin of Species. P. F. Collier &r volume 11, Harvard
University, 1909.

[139] White, L. The Evolution of Culture: The DevelopmeftCivilization to the Fall
of Rome. University of Indiana. McGraw Hill, 1959.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

[140]Foley, R. and Lahr, M. M. On Stony Ground: Lithie@chnology, Human
Evolution and the Emergency of Culture. Evolutign@nthropology 12, pp.
109-12, 2003.

[141]Morgan, L. H. Ancient Society: Researchers in theek of Human Progress
from Savagery through Barbarism to Civilization. irsity of Virgina. H.
Hold and Company, 1907.

[142] Sahlins, M. D., Service, E. R. and Harding, T. Guoldtion and Culture.
University of Michigan Press, 1960.

[143] Toffler, A. Future Shock. University of MichiganaRdom House, volume 644,
1970.

[144] Naisbitt, J. Megatrends: Ten New Directions Transiag Our Lives. Warner
Books, ' Edition, 1982.

[145] The Free Dictionary by Farlex Copyright 2009 —
http://encyclopedia.thefreedictionary.com (22/06/20

[146] Stellman, A. and Greene, J. Applied Software PtoManagement. Addison
Wesley, 2005.

[147]Sharma, D. Ten Essentials Elements to Guarantean€etd Software Quality.
Article at Embedded.com — The Official Site of tBenbedded Development
Community, 2009 - http://www.embedded.com/desigBIRID002 (17/06/2009)

[148]Filho, F. C.et al. Exceptions and Aspects: the De&viin the Details. In
Proceedings of FSE, pp. 152-162, 2006.

[149]Moura, M., Garcia, A., Soares, S., Castor, F., Moot M. and Greenwood, P.
On Deriving Benchmarks for Aspect-Oriented Softwakdaintainability.
Submitted in XXIV Brazilian Symposium on DatabaseXXIll Brazilian

Symposium on Software Engineering, 2009.

ESCOLA

POLITECNICA DE

PERNAMBUCC

Appendix A

Here there are some examples of the test casa®dr® execute MobileMedia

releases. The complete set of the test cases italdeain a spreadsheet file at

http://www.cin.ufpe.br/~scbs/liana/.

"19pJ0 MBIA
01 Buiplodoe paziueblo
8Q MOoU p|noys

‘S9ly
ay Jo sabewl 1981100

1sl| swingfe ay}
uo pake|dsip pue
payeald aq pjnoys
wnqe mau ayl ‘g

‘wnge
p8123]9S 3y} Ul palols
si ojoyd mau ayl g

181] s,o1oyd ayl ‘g SMoys Buimalp '€ ‘pauasul ‘pauasul Hnsed
:Aljadoud umoys :Ajjadoud pabueyd | aq 0] uonewloul aQ 0] uoneuw.ojul PRI
aq p|noys sabewl| ‘'z | 99 p|noys s|ageT ‘g | sweu s,wngre yum |yred pue sweu s,0ioyd
:Ajiadoud panasul :Aiadoud pauasul pake|dsip aq pjnoys yum pake|dsip aq
aQ 1shw sway| ‘T aQ 1shw sway| ‘T U9910S Mau Y "T P|NOYS US3IIS Mau V T
‘pPanes pue
(,bud-awreu/sabewl/,
‘MaIA Aq | ‘pabueyo |age| pey se yred)
110S 0] uondo 199|8S '€ eyl Swall Yyl MaIA '€ ")l S9ARS palasul ag pjnoys yed
‘SWaYl dY1 MAIA "Z |‘swall Jo [age| 1p3 2 pue Bulylswos pue awreu ojoyd ay] ‘g sdais
‘yred pue |age|:yred pue |age| 1081102 | sadAl Jasn ayl ‘g :ojoyd e
291102 Yyum 11 ul sojoyd yum 11 ul sojoyd fwnge ojoyd mau e ppe 01 uondo ay) 109|9S
S1I8SUI pue wngje Mausiiasul pue wngje mau [91eald 01 uondo ayl | pue wngpe ajqe|reAe
© S91eaJd J9Sn 8yl ‘T [e So1eald Jasn ayl ‘T [S109]9s 1asn ayl ‘T | ue S1o9|as Jasn ayl ‘T
*1ap|o} sabewl *1ap|o) sabewl *1ap|o) sabewl
s,auoyd uo palois s,auoyd uo palois s,auoyd uo palois
pue a|gejieAe soloyd | pue ajgejreAe sojoyd pue a|ge|reAe ojoyd uonIpuod
aQ 1shw alayl ‘g aQ 1shw alay] ‘g B agIsnw alayl ‘g -ald
‘payouneg| ‘payoune| aq payouneg| ‘payouneg|
ag 1snw uonedlddy T | 1snw uonedlddy ‘T 89 1snw uoneolddy |ag isnw uonedlddy T
MB3IA uoneaid ‘sanquye 109100 | Uondudsed
Aq1si| s,000yd LOS | [8ge| s,wal ue Ipg | wngpe ooyd maN | yum oloyd e Buippy
wnqy oloyd [aqgeT aIneay
Bunios |]2ge 1p3 0l0Ud 8reaid oloyd 91812@ / PPV
Ze €e T € #01

ESCOLA

POLITECNICA DE

Appendix B

PERNAMBUCC

The bug report created by iBATIS/MobileMedia jogatse study test people.

IBATIS/MobileMedia Joint Case Study
Fault Description Sheet

1 Tester/Developer who has identified the
fault
2 Fault location
3 Fault description
4 Test case name
5 Test case file
5 Has this fault been previously reported Yes No
(e.g.in
a bug repository)?
6 If you answered “yes” in question 5, please provide details (e.g. fault repository, fault
identifier etc.)
7 Is the fault related to OO| |AO mechanism? Both
mechanism? ?
8 Please, provide more details (e.g. which mechanism, which way it is applied)
9 Is the fault related to CC-concern? Non-CC Both
concern? ?
10 Please, provide more details.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Appendix C

The example of a test case created in the HealittWiastudy. The other test

cases created can be found at http://www.cin.ufpesbbs/liana/.

Insert Complaint
1. Normal flow
Inputs

The system must be on air.

The user chooses the Insert a new complaint option and

describes the refered complaint (Animal, Food, or Other).
o The user fills all information on the form and asks for the

complaint to be inserted.

Results

o The complaint is inserted and its code is displayed so that
the user takes a note. No exception shall be thrown.

o In case the system is using the database, a query to it
must be done in order to confirm that the data typed on the
form were inserted (use the class util. ManageTables).

2. Alternative flow 1
Inputs

o The system must be on air.

o The user chooses the Insert a new complaint option and
chooses the kind of the refered complaint (Animal, Food,
or Other).

o The user fills only the the mandatory information (defined
by the use case) on the form and asks for the complaint to
be inserted.

_ ESCOLA
POLITECNICA DE
PERNAMBUCC

Results

(0]

(o]

The complaint is inserted and its code is displayed so that
the user takes a note. No exception shall be thrown.

In case the system is using the database, a query to it
must be done in order to confirm that the data typed on the
form were inserted (use the class util. ManageTables).

3. Alternative flow 2

Inputs

The system must be on air.

The user chooses the Insert a new complaint option and
chooses the kind of the refered complaint (Animal, Food,
or Other).

The user shall provide no information on the form and asks
for the complaint to be inserted.

If requested to, the user fills the information, but only the
information requested by the form.

The latter step is repeated as many times as the system
asks so that the information is filled.

Results

(0]

A message is displayed asking him/her to fill the
mandatory fields in blank, and the complaint is not
inserted.

The latter step is repeated until all mandatory information
is provided, when the complaint is inserted and its code is
displayed so that the user takes a note. No exception shall
be thrown.

In case the system is using the database, a query to it
must be done in order to confirm that the data typed on the
form were inserted (use the class util. ManageTables).

