
Paper II

*The PLUSS Approach - Domain Modeling with
Features, Use Cases and Use Case Realizations

Magnus Eriksson1, Jürgen Börstler2 and Kjell Borg1

1 Land Systems Hägglunds AB, SE-891 82 Örnsköldsvik, Sweden
{Magnus.Eriksson, Kjell.Borg}@baesystems.se

2 Dept. of Computing Science, Umeå University, SE-901 87 Umeå, Sweden
jubo@cs.umu.se

Abstract. This paper describes a product line use case modeling approach
tailored towards organizations developing and maintaining extremely long lived
software intensive systems. We refer to the approach as the PLUSS approach,
Product Line Use case modeling for Systems and Software engineering. An
industrial case study is presented where PLUSS is applied and evaluated in the
target domain. Based on the case study data we draw the conclusion that
PLUSS performs better than modeling according to the styles and guidelines
specified by the IBM-Rational Unified Process (RUP) in the current industrial
context.

* Proceedings of of the 9’th International Conference on Software Product Line, LNCS, Vol.

3714, Springer-Verlag, pp. 33-44

Paper II – The PLUSS Approach 55

1 Introduction

Software intensive defense systems, for example vehicles, are developed in short
series. They are always customized for different customer needs and they are
expected to have an extremely long life span, often 30 years or longer. For an
organization to be competitive in a market like this it is important to achieve high
levels of reuse and effective maintenance. An interesting approach to address issues
like these, which has gained considerable attention both by industry and academia
over the last few years, is known as software product line development. The basic
idea of this approach is to use domain knowledge to identify common parts within a
family of products and to separate them from the differences between the products.
The commonalties are then used to create a product platform that can be used as a
common baseline for all products within the product family.

For embedded software we believe it is important that product line concepts such
as domain modeling are also introduced into the systems engineering process, since
embedded software requirements are for the most part not posed by customers or end
users, but by systems engineering and the systems architecture. Due to earlier positive
single system experiences with use cases, we are therefore interested in identifying a
use case driven product line approach that can be applied by both our systems and
software engineering teams. Unfortunately, we see a number of problems with
existing approaches to product line use case modeling. To address issues in existing
approaches we have developed a domain modeling approach that utilizes features
[10], use cases and use case realizations [12]. For the remainder of this paper the
approach will be referred to as PLUSS (Product Line Use case modeling for Systems
and Software engineering).

The UML Use case meta-model [19] provides poor assistance in modeling
variability [16]. A number of suggestions addressing this issue are described in the
literature. Von der Maβen and Lichter suggest that the UML use case meta-model
should be extended by two new relationships, “Option” and “Alternative” [16].
Jacobson et al. suggest using the “generalization” and “extend” relationships to model
variability in UML use case diagrams [9]. We do however see a fundamental problem
with using use case diagrams for describing variants. Use case diagrams tend to get
cluttered to a degree where it is impossible to get an overview of the variants within a
family. It is furthermore not enough to only manage variability among whole use
cases. It must also be possible to specify variant behavior within use cases. There
have been some proposals on how to do this in the literature, for example the PLUC
notation [5] and RSEB parameters [9]. However, like the UML approaches above
these approaches do not have any means to provide a good overview of the variants
within a family. Most existing product line use case modeling approaches also lack
strong mechanisms to trace variant behavior to the system design and they are
document, not model driven. Using documents instead of a common model is a major
maintenance concern working on extremely long lived systems. Product instantiation
in a document driven approach typically involves copying documents and removing
variant information. This is not good from a long term maintenance perspective since
information is being duplicated.

56 Magnus Eriksson, Jürgen Börstler and Kjell Borg

Our approach is based on the work by Griss et al. on FeatuRSEB [8]. Like Griss et
al. we argue that feature models are better suited for domain modeling than UML use
case diagrams and that a feature model therefore should be used as the high level view
of a product family. In FeatuRSEB a feature model is added to the 4+1 view model
adopted by Jacobson et al. in RSEB [9]. The feature model in FeatuRSEB takes
“center stage” and provides a high-level view of the domain architecture and the
reusable assets in the product family. Even though a feature model is also used in our
approach to provide a high-level view of the variability within a product family, a
fundamental difference exists between PLUSS and FeatuRSEB. In PLUSS the
primary purpose of the feature model is not to take “center stage”, but rather to be a
tool for visualizing variants in our abstract product family use case model. We
maintain one complete use case model for the whole system family and we use the
feature model as a tool for instantiating that abstract family model into concrete
product use case models for each system built within the family.

The main contributions of this paper are: An improved approach to manage variant
behavior in use case models, stronger means to trace variant use case behavior to the
system design and stronger means to generate product use case models from a
common family model.

The remainder of the paper is organized as follows: Section 2 provides an
introduction to PLUSS feature modeling. Section 3 describes PLUSS Use case
modeling and how the PLUSS feature model relate to the use cases. Section 3 also
describes the PLUSS notation for describing variants in use case scenarios and how
product use case models are instantiated form a family model. Section 4 presents an
industrial case study in which the PLUSS approach is applied and evaluated in its
target domain. In section 5, we summarizes the paper and draw conclusions.

2 Feature Modeling

Kang et al. first proposed use of feature models in 1990 as part of the Feature
Oriented Domain Analysis (FODA) [10]. A feature is defined as a prominent or
distinctive user-visible aspect, quality or characteristic of a system in FODA. In
feature models, features are organized into trees of AND and OR nodes that represent
the commonalties and variations in the modeled domain. General features are located
at the top of the tree and more refined features are located below. Originally, FODA
described “Mandatory”, “Optional” and “Alternative” features that may have the
relations “requires” and “excludes” to other features. Mandatory features are available
in all systems built within a family. Optional features represent variability within a
family that may or may not be included in products. Alternative features represent an
“exactly-one-out-of-many” selection that has to be made among a set of features. A
“requires” relationship indicates that a feature depends on some other feature to make
sense in a system. An “excludes” relationship between two features indicates that both
features can not be included in the same system.

FODA has no defined mechanism to specify the relation “at-least-one-out-of-
many” [6]. Our experience has shown that this is an important shortcoming. We
address this issue by defining a new feature type called “Multiple Adaptor” in

Paper II – The PLUSS Approach 57

PLUSS. This feature type is similar to FODA’s alternative features, but instead of
representing the “exactly-one-out-of-many” relationship, it captures the missing
relationship. Its name follows the naming scheme proposed by Mannion et al. for the
equivalent relation in their work on reusable requirements [14]. We have also chosen
to rename alternative features to “Single Adaptor” features following the same
naming scheme. The feature modeling notation used in PLUSS is based on the FODA
notation but it has been slightly modified to better suit our modeling needs as shown
in Fig. 1. A filled black circle represents a mandatory feature and, as in the original
notation, a non-filled circle represents an optional feature. Single and multiple adaptor
features are represented by the letters ‘S’ and ‘M’ surrounded by a circle.

Domain

a

ab

aac
S

aaa
S

aab
S

ada

adaa

S
adb

S
adc

b

M
baa

M
bab

S
ba

S
bb

bac
M

bbb bbc
M

bba

<<excludes>>

<<requires>>

S Single AdaptorMandatory Optional M Multiple Adaptor Requires Excludes

ac bc

Domain

aa

abab

aacaac
S

aaa
S

aaa
S

aab
S

aab
S

ada
S

ada

adadaaaa

S
adb
S

adb
S

adc
S

adc

bb

M
baa
M

baa
M

bab
M

bab

S
ba
S
ba

S
bb
S

bb

bacbac
M

bbb
M

bbb bbcbbc
M

bba
M

bba

<<excludes>>

<<requires>>

S Single AdaptorS Single AdaptorMandatoryMandatory OptionalOptional M Multiple AdaptorM Multiple Adaptor RequiresRequires ExcludesExcludes

acac bcbc

Fig. 1: An example feature model in the PLUSS notation.

To further clarify the PLUSS notation, we have created a mapping between
PLUSS feature constructs and multiplicities [19] as shown in Fig. 2. As shown in Fig.
2 we have also identified a feature construct that should be avoided. Our experience
has shown that this construct, a set containing only optional feature leaf nodes,
encourages misuse of the refinement relation used for building the feature tree. This
construct typically appear when a set of multiple adaptor features is mistaken for a set
of optional features.

0..1 10..* 1..*Multiplicity:

Feature
construct:

Constructs to be avoided:

S S... MM ... S S... MM

S M

...

0..1 10..* 1..*Multiplicity:

Feature
construct:

Constructs to be avoided:

S S...S S... MM ... MM ... S S...S S... MM ... MM

S M

...

Fig. 2: Feature constructs vs. multiplicities, and constructs to be avoided in PLUSS.

One shortcoming of the PLUSS feature modeling notation, compared to for
example Czarnecki et al. more expressive Cardinality-based notation [2], is the
inability to model n..m multiplicity. Our experience has however shown that such
constructs are not needed to capture the different types of variability the can exist in
product family use case models. We therefore exclude cardinalities from our notation
for the purpose of improved readability.

3 Use Case Modeling

As we described in [4], we have chosen to adopt the so called “Black Box Flow of
Events” notation described in the Rational Unified Process for Systems Engineering

58 Magnus Eriksson, Jürgen Börstler and Kjell Borg

(RUP-SE) [17] shown in Fig. 3(a) for describing use case scenarios. This notation is
used for tabular descriptions of use case scenarios in natural language. We argue that
the notation has two major advantages over tradition natural language scenario
descriptions. It forces analysts to always think about interfaces since separate fields
exist for describing actor and system actions. It also provides a strong mechanism to
relate non-functional requirements to use cases using the “Blackbox Budgeted
Requirements” column.

A use case realization describes how a particular use case is realized within the
system design in terms of collaborating design elements [12]. As we described in [4],
we have chosen to describe use case realizations in natural language description based
on the RUP-SE “White Box Flow of Events” [17] shown in Fig. 3(b). We have
chosen natural language descriptions of use case scenarios and use case realizations
since the PLUSS approach must be applicable for both systems and software
engineering. This increases the number and diversity of stakeholders interested in the
models and thereby makes for example UML unsuitable for the purpose. Our natural
language descriptions can however be supplemented with UML diagrams as needed.

DesignElement_1…

…
…
…
…
…
…

Whitebox Action

DesignElement_2…
DesignElement_3…

It shall…

…
…
…
…
…
…

Whitebox
Budgeted Req.

…
…

1

2

3

Step

The Actor…

…

The use
case ends
when…

Actor Action

The System…

…

…

Blackbox
System Response

It shall…

…

…

Blackbox
Budgeted Req.

(a) (b)

DesignElement_1…

…
…
…
…
…
…

Whitebox Action

DesignElement_2…
DesignElement_3…

It shall…

…
…
…
…
…
…

Whitebox
Budgeted Req.

…
…

1

2

3

Step

The Actor…

…

The use
case ends
when…

Actor Action

The System…

…

…

Blackbox
System Response

It shall…

…

…

Blackbox
Budgeted Req.

(a) (b)

DesignElement_1…

…
…
…
…
…
…

Whitebox Action

DesignElement_2…
DesignElement_3…

It shall…

…
…
…
…
…
…

Whitebox
Budgeted Req.

…
…

1

2

3

Step

The Actor…

…

The use
case ends
when…

Actor Action

The System…

…

…

Blackbox
System Response

It shall…

…

…

Blackbox
Budgeted Req.

(a) (b)
Fig. 3: The (a) Blackbox flow of events used for describing use case scenarios, and

(b) the Whitebox flow of events used for describing use case realizations.

3.1 The PLUSS Approach to Modeling Variants in Use Case Models

As mentioned in section 1, the basic idea of PLUSS is to maintain one common and
complete use case model for whole product family. To do this, it must be possible to
manage variability in the model. We have identified four types of variants that can
exist in use case models for product families. The first type regards whole use case
that can vary between systems built within a product family. We model this by
relating one or more use cases with a feature of any type in the feature model. The
second type of variability regards the set of included use case scenarios within each
use case. We model this by relating one or more scenarios with a feature of any type
in the feature model. The third type regards the set of included steps in each use case
scenario. We model this by relating scenario steps with features of any type in the
feature model. The fourth and final type of variability regards cross-cutting aspects
that can affect several use cases on several levels. Cross-cutting aspects are modeled
as use case parameters in PLUSS, these parameters must be related to a set of single

Paper II – The PLUSS Approach 59

adaptor features in the feature model. Gomaa [7] proposed to model each feature as a
use case package. PLUSS extended this idea, saying that possibly a whole set of
features compose a use case package. This have the advantage of enabling us to also
visualize variants within use cases specifications using the feature model.

A meta-model for integration of features, use cases and use case realizations is
shown in Fig. 4. It describes how use cases, scenarios and scenario steps are included
by feature selections. This meta-model is an extension of the meta-model presented in
[4] that also show how these included use case scenario steps prescribes a certain set
of design element via use case realizations. Variant use case behavior is thereby
traced to the system design.

Feature

include

*

*

0..1

require

refine

*

exclude

Domain Model

*

*
*

1

Parameter

Global Parameter Local Parameter

1

Use Case

1..*

*

*

instantiate

1

Scenario

Step

include

*

include

* 0..1 *

Design Element

realize1..*

1..*

System Family2..*composed-of

1..*

1..* *
include

1..*

1

1..*

0..1

Use Case Realization
1

1

*
1..*

*

System

Feature

include

*

*

0..1

require

refine

*

exclude

Domain Model

*

*
*

1

Parameter

Global Parameter Local Parameter

1

Use Case

1..*

*

*

instantiate

1

Scenario

Step

include

*

include

* 0..1 *

Design Element

realize1..*

1..*

System Family2..*composed-of

1..*

1..* *
include

1..*

1

1..*

0..1

Use Case Realization
1

1

*
1..*

*

System
Fig. 4: The PLUSS Meta-model.

Change cases, first proposed by Ecklund et al. [3], are basically use case that
specifies anticipated changes to a system. Change cases also provide the relation
“impact link” that creates traceability to use cases whose implementations are affected
if the change case is implemented. In PLUSS, change cases are primarily used to
mark proposed, but not yet accepted functionality in a domain. New requirements are
first modeled as change cases, however once accepted for implementation in a system
within a family, these change cases are transformed to use cases.

3.2 The PLUSS Notation for Describing Variants in Use Case Specifications

As we described in [4], the step identifier of the blackbox flow of events notation
discussed in section 3 can be extended to describe variants in use case scenarios as
shown in Fig. 5. A step identified by a number describes a mandatory step in the
scenario, as it does in the original notation. Several steps identified with the same
number identify a number of mutually exclusive alternatives for one mandatory step
in the scenario. These steps must be related to a set of single adaptor features with a
mandatory parent in the feature model. Several steps identified with the same number
and a consecutive letter identify a number of alternatives for one mandatory step in
the scenario out of which at least one must be selected. These steps must be related to
a set of multiple adaptor features with a mandatory parent in the feature model. A step
identified by a number within parenthesis identifies an optional step in the scenario.
Optional steps must be related to an optional feature in the feature model. Several

60 Magnus Eriksson, Jürgen Börstler and Kjell Borg

steps identified with the same number within parenthesis and a consecutive letter
identify a number of alternatives for one optional step in the scenario out of which at
least one must be selected. These steps must be related to a set of multiple adaptor
features with an optional parent feature in the feature model. Several steps identified
with the same number within parenthesis identify a number of mutually exclusive
alternatives for one optional step in the scenario. These steps must be related to a set
of single adaptor features with an optional parent in the feature model.

Jacobson et al. introduced the concept of use case parameters as part of the RSEB
in [9]. Mannion et al. distinguished between local parameters and global parameters
in their work on reusable natural language requirements [14]. We find this distinction
useful also when working with use cases. In PLUSS, the scope of a local parameter is
the use case in which it resides and the scope of a global parameter is the whole
domain model. Like Mannion et al. we use the symbols ‘$’ and ‘@’ respectively to
denote local and global parameters as shown in step ‘(4)’ and ‘(5)b’ of Fig. 5.

Step Actor Action Blackbox
System Response

Blackbox
Budgeted Req.

Mandatory step

Optional step

Exactly one to be
selected for a
mandatory step

At least one to be
selected for a
mandatory step

Exactly one to be
selected for an
optional step

At least one to be
selected for an
optional step

1

2
3a
3b
3c
(4)
(5)a
(5)b
(5)c
(6)
(6)
(6)

2
2

The Actor…

…
…
…
…
…
…
…
…
…
…
…

…
…

The System…

…
…
…
…
… @PARAM_1 …
…
… $PARAM_2 …
…
…
…
…

…
…

It shall…

…
…
…
…
…
…
…
…
…
…
…

…
…

S S S

M M M

S S S

M M M

Step Actor Action Blackbox
System Response

Blackbox
Budgeted Req.

Mandatory step

Optional step

Exactly one to be
selected for a
mandatory step

At least one to be
selected for a
mandatory step

Exactly one to be
selected for an
optional step

At least one to be
selected for an
optional step

1

2
3a
3b
3c
(4)
(5)a
(5)b
(5)c
(6)
(6)
(6)

2
2

The Actor…

…
…
…
…
…
…
…
…
…
…
…

…
…

The System…

…
…
…
…
… @PARAM_1 …
…
… $PARAM_2 …
…
…
…
…

…
…

It shall…

…
…
…
…
…
…
…
…
…
…
…

…
…

S S SS S S

M M MM M M

S S SS S S

M M MM M M

Fig. 5: The PLUSS notation for describing variants in use case scenarios.

3.3 Product Instantiation in the PLUSS Approach

Although the actual organization may vary, typically, when a new product is going to
be added to a product family, initial requirements analysis is performed by a product
team. This analysis will result in a set of change requests (CR) regarding new
requirements (change cases) to be added to the domain model and regarding features
that should be included in the new system. The domain engineering team is then
responsible for performing change impact analyses on the change requests. A domain
engineering change control board (CCB) may then decide if the requested set of
requirements will be allowed in the product. Since a common use case model is
maintaining for a whole product family in PLUSS, product instantiation is then
basically done by adding any new requirements to the model and then using the
feature model to choose among its variants. The set of included features directly
correspond to a specific set of included use cases for the product. A product use case
model is then generated by applying a filter to the domain model sorting out features
not included in the current system. This will result in three types of reports: A “Use

Paper II – The PLUSS Approach 61

Case Model Survey” including all use cases included in the product, and “Use Case
Specifications”, and “Use Case Realizations” for all use case in the survey.

4 Case Study

The objective of this case study was to apply the PLUSS approach in the target
domain to evaluate its feasibility. The hypothesis to be tested in the method
evaluation and its null hypothesis were

H1: The PLUSS approach performs better than modeling according to the
company process baseline in a product line setting.

H0: The PLUSS approach performs equal to, or worse than the modeling
according to company process baseline.

A number of response variables relevant for measuring the performance of the
approach were identified as part of the case study design. Examples are: effort for
learning and understanding notations used; effort for long term maintainability of
specifications; and usefulness of the resulting models.

4.4 Study Context

The case study was preformed with the Swedish defense contractor Land Systems
Hägglunds. Land Systems Hägglunds is a leading manufacturer of combat vehicles,
all terrain vehicles and a supplier of various turret systems. The company process
baseline for software development, against which PLUSS was compared, is
development according to the IBM-Rational Unified Process (RUP) [12].

The PLUSS approach was applied on the Vehicle Information System (VIS). The
VIS subsystem is responsible for tasks such as displaying video, providing electronic
manuals, performing onboard system test and diagnostics, displaying logs, displaying
system status and reporting system alarms. The development of VIS has recently gone
from clone-and-own reuse [1], to adopting a software product line approach. The
transformation to software product line development was initiated by forming a
domain engineering team which is now responsible for development and maintenance
of the VIS core assets. At the time of the case study, the domain engineering team had
successfully delivered core assets to their first customer project and was in the process
of analyzing requirements for its second customer project.

The main CASE tools used for supporting the PLUSS approach were the
requirements management tool Telelogic DOORS and the UML modeling tool IBM-
Rational Rose. Rose was used for drawing feature graphs and UML Use case
diagrams. DOORS was used for managing the overall domain model. Each feature
was represented as an object in the database with a number of attributes; like feature
type, products including the feature and a use case diagram. Each use case was
represented as a module in DOORS. Scenario steps, both blackbox and whitebox,
were represented as objects in those modules. Traceability links were used to relate
features to use cases, scenarios and scenario steps according to the PLUSS meta-

62 Magnus Eriksson, Jürgen Börstler and Kjell Borg

model shown in Fig. 4. A small number of scripts were written in DOORS to aid the
modeling.

The domain modeling activity stared with a four hour introductory lecture on the
PLUSS approach to the domain engineering team. After the lecture, the domain team
had a four hour brainstorming session identifying and documenting features in the
feature model. After this session, the domain engineering team split-up and only the
product line analysis team continued the domain modeling for the reminder of the
study. The product line analysis team consisted of three people, out of which two
performed most of the modeling activities and the third mainly acted as a tool
specialist, responsible for customizing DOORS to better support PLUSS.

4.5 Method

The case study involved collecting data from four different types of sources. The first
type of data was collected by examining documentation [18]. Modeling artifacts from
the early phases of the project were inspected to verify that they where used in the
proper manner. The second type of data was collected by participant observation
[18]. The research team assumed a mentoring role for the product line analysis team
and could thereby get first hand information about any problems they ran into during
the modeling activities. The third type of data was collected through questionnaires
[11]. During the evaluation the product line analysis team filled out a questionnaire
describing their experiences applying the approach. The questionnaire was designed
to have both specific and open ended questions to also elicit unexpected types of
information. The final type of data was collected trough interviews [18]. A total
number of nine people, representing the domain engineering team, the product
development team, the systems engineering team and technical management were
interviewed to gather their views on the usefulness of the models and on possible pros
and cons with the PLUSS approach. Interviews began with a short introduction to the
research being performed. After the introduction, the VIS domain model and a
product instance of the model were shown and discussed with each interviewee.
Interviews proceeded in a semi-structured manner, trying to elicit as much
information as possible about opinions and impressions regarding PLUSS.

The different types of data collected were first analyzed individually to find
patterns and trends in the responses, then analyzed all together and conclusions were
drawn about the case study hypothesis.

4.6 Threats to Validity

To minimize threats to the study’s construct validity, the case study hypothesis and its
null hypothesis were stated as clearly and as early as possible in the case study design
to aid in identifying correct and relevant measures [11]. To minimize threats to the
study’s internal validity, the case study project was staffed using the organizations
normal staff-allocation procedures. Everyone involved in the case study had good
knowledge of modeling according to the company process baseline, against which the
PLUSS approach was compared [11]. Furthermore, interviewees were chosen in

Paper II – The PLUSS Approach 63

collaboration with the organization’s management to ensure that they properly
represented their group of stakeholders. To avoid Howthorne effect [15], attitudes
towards the company process baseline were collected from subjects and taken into
account during data analysis. It was also pointed out to subjects that no “correct”
answers existed, and that it was important that their answers correctly reflected their
view. One confounding factor that may have affected the internal validity of the study
is the close involvement of the research team with the product line analysis team. We
do however judge this risk to be minor since the domain analysis team performed the
actual modeling themselves and the mentoring activity mainly consisted of discussion
meetings where possible problems were raised and discussed. To minimize threats to
the study’s external validity, the case study was conducted in the target domain of
extremely long-lived software intensive systems and the pilot project was selected to
be of typical size and complexity for the organization [11]. To minimize threats to the
study’s conclusion validity, results were triangulated by collecting data with four
different methods from several different sources. Furthermore, results were discussed
with the teams to assure that their opinions were represented correctly [18].

4.7 Results

Document examination indicated that the team understood and was able to apply all
notations used after only the four hour introduction to the approach, even tough they
had no earlier experience of feature modeling.

Participant observation revealed two initial problems applying PLUSS. During the
first brainstorming session, the domain engineering team misused the feature model to
“invent” variability that would force a “beautiful implementation”, instead of focusing
on creating a reusable requirements model. This problem was however resolved when
the issue was discussed at the first mentoring meeting. The second problem regarded
maintaining correct abstraction level. Even tough the team was to model only a
certain subsystem (VIS), sometimes also system level functions appeared in the
models. This problem was however resolved when the research team introduced a
system context diagram [13] in the modeling process.

Questionnaires indicated that the product line analysis team gained a better
understanding of the domain during the modeling activity. The team felt that applying
PLUSS was an overall positive experience and that PLUSS has a number of positive
characteristics, for example its way of providing a total overview of the product
family and the possibility to maintain a common model for a whole family. A
problem pointed at in the open ended questions was that the domain analysis team felt
that DOORS and Rose were not integrated well enough, and that this resulted in time
consuming manual synchronization of the models. However, as shown in Fig. 6,
questionnaires indicated that the PLUSS approach performed better than the company
baseline in the VIS context.

64 Magnus Eriksson, Jürgen Börstler and Kjell Borg

Same as RUP
Worse than RUP

Much worse than RUP

Better than RUP
Much better than RUP

Basis for design

Product line overview

Reuse of other parts

Short te
rm product planning

Long term product planning

Useful
Not so useful

Not useful at all

Very useful
Extremely useful

Use Cases

Performing the activity

Feature models

Change Cases

Same as RUP
Worse than RUP

Much worse than RUP

Better than RUP
Much better than RUP

Basis for design

Product line overview

Reuse of other parts

Short te
rm product planning

Long term product planning

Useful
Not so useful

Not useful at all

Very useful
Extremely useful

Use Cases

Performing the activity

Feature models

Change Cases

Fig. 6: Overview of questionnaire results, (a) usefulness of concepts / performing the
modeling and (b) usefulness of resulting models compared to the company baseline.

Interviews with product line analysts indicted that the PLUSS approach provides a
better overview of the product line. The team also believed that the approach will
improve the overall quality of the models and ease their maintenance. Experience of
clone-and-own reuse [1] of use cases in earlier projects had pointed out a maintenance
problem which they believed PLUSS addresses. They could not identify any
scalability problems with the approach. However, they did believe that for it to work
well, smart decisions from technical management regarding scooping and a strong
configuration management function is needed. Analysts believed the initial extra
investment related to applying the PLUSS approach would be returned in terms of
reduced modeling costs already in the second or third project applying the approach.

Interviews with product line designers indicted that notations used were easy to
understand and that the resulting models provided a good overview of dependencies
within the model. They also felt that the approach made models more coherent and
easier to find information in. They believed that the PLUSS approach will
significantly increase the quality of specifications and ease their maintenance.
Designers felt that change cases “might be good to keep in mind”, but a “probability
of implementation” attribute would increase their usefulness. Designers could not
identify any scalability problems with the approach. However, they did believe it to
be important that technical management try to keep the number of variants down.

Interviews with the product development team indicated that the PLUSS approach
offered product line mechanisms significantly stronger than anything the RUP has to
offer. They believed that PLUSS will significantly reduce the effort needed for
requirements analysis and that it has potential to largely reduce the amount of
specification work. The team could not identify any scalability problems with the
approach. They did however see a risk that the number of features might explode if
too much new functionality is added in each project. They therefore believed a strong
management function is needed keep the number of variants down. They also
identified a risk that adding one or a few new features might create a dependency
explosion in the feature graph, since the model is closely related to business rules.
This thought could however not be further elaborated or illustrated by the team. The
team also identified a need for obsolete management of features to prevent the feature
tree from growing to infinity. The product development team believed the initial extra
investment related to applying the PLUSS approach would be returned in terms of
reduced modeling costs already in the second project applying the approach.

Interviews with the systems engineering team indicated that the notations used
were easy to understand also for personnel with a non-software background. They
liked the idea of a common model being a central source of information about a

Paper II – The PLUSS Approach 65

domain. They also found the use of change cases to tag unimplemented functionally
very useful since it provides a good overview of what is new and what has been done
before. They believed that the resulting models would be a good tool for early cost
estimates and that the approach would encourage and produce high levels of reuse.
The systems engineering team could not identify any problems with PLUSS. They did
however see a risk with the whole concept domain modeling and requirements reuse.
They believed that it might cause an organization to loose its visions and thereby
cause products to stop evolving. Systems engineering also expressed a need for
stronger means to document design rationale. This was however not seen as a
problem with PLUSS, but as an important supplement to be further investigated.

Interviews with Technical Management indicate that the PLUSS approach provides
significantly stronger support for product planning than traditional RUP. Management
liked the fact that it is a use case driven approach, and the idea of a central source of
information about a domain. Management also felt that feature models provided a
good overview of the requirements space for the domain and that change cases
provided a good overview of the current delta. However, to further improve the utility
of change cases, management would like change cases to have attributes specifying
planed platform release supporting them. Management also believed that PLUSS
models could be a powerful means of communication towards other parts of the
organization. Management believed the initial extra investment related to applying the
PLUSS approach would be returned in terms of reduced modeling costs already in the
second project, assuming the domain engineering team was able to produce models of
required quality before the start of the second project.

5 Summary and Conclusions

We have described how a common use case model can be developed and maintained
for a whole family of products in PLUSS. We have also described how product use
case models can be generated from a family model by selecting features from a
feature model. The approach was applied and evaluated in an industrial case study in
the target domain. Triangulating on the collected case study data has led us to reject
the case study null hypothesis. We thereby draw conclusion that the PLUSS approach
performs better than modeling according to the styles and guidelines specified by the
RUP in the current industrial context. Results did however also indicate that for
PLUSS to be successfully applied, stronger configuration management and product
planning functions than traditionally found in RUP projects are needed. Furthermore,
results also pointed at a need for better tool support and stronger means to document
design rationale. We consider these areas to be important areas of future work.

References

1. Bosch, J.: Design & Use of Software Architectures, Addison-Wesley (2000)

66 Magnus Eriksson, Jürgen Börstler and Kjell Borg

2. Czarnecki K., Helsen S., Eisenecker U.: Staged Configuration Using Feature Models,

Proceedings of the Software Product Line Conference (SPLC 2004), LNCS 3154,
Springer-Verlag, (2004) 266-283.

3. Ecklund E., Delcambre L., Freiling M.: Change Cases - Use Cases that Identify Future
Requirements, Proceedings of OOPSLA’96, San Jose, Ca, October 6-10, (1996) 342-358.

4. Eriksson M., Börstler J., Borg K.: Marrying Features and Use Case for Product Line
Requirements Modeling of Embedded Systems, Proceedings of the Fourth Conference on
Software Engineering Research and Practice in Sweden SERPS’04, Institute of
Technology, UniTryck, Linköping University, Sweden (2004) 73-82

5. Fantechi A., Gnesi S., Lambi G., Nesti E.: A Methodology for the Derivation and
Verification of Use Cases for Product Lines, Proceedings of the International Conference
on Software Product Lines, Lecture Notes in Computer Science, Vol. 3154, Springer-
Verlag (2004) 255-265

6. Fey D., Fajta R., Boros A.: Feature Modeling: A Meta-model to enhance Usability and
Usefulness, Proceedings of the International Conference on Software Product Lines,
Lecture Notes in Computer Science, Vol. 2371, Springer-Verlag, (2002) 198-216.

7. Gomaa H.: Designing Software Product Lines with UML – From Use Cases to Pattern-
Based Software Architectures, Addison-Wesley (2004)

8. Griss M., Favaro J., d’Alessandro M.: Integrating Feature Modeling with the RSEB,
Proceedings of the Fifth International Conference on Software Reuse, Vancouver, BC,
Canada, (1998) 76-85.

9. Jacobson I., Griss M., Jonsson P.: Software Reuse – Architecture, Process and
Organization for Business success, Addison-Wesley (1997)

10. Kang K. Cohen S., Hess J., Novak W., Peterson A.: Feature Oriented Domain Analysis
(FODA) Feasibility Study, Technical Report CMU/SEI-90-TR-021, Software Engineering
Institue, Carnegie Mellon University, Pittsburgh, PA (1990)

11. Kitchenham B., Pickard L., Pfleeger S.: Case Studies for Method and Tool Evaluation,
IEEE Software, Vol. 12 Nr. 45 (1995) 52-62

12. Kruchten P.: The Rational Unified Process - An Introduction, Second Edition, Addison-
Wesley (2000)

13. Lykins H., Friedenthal S, Meilich A.: Adapting UML for an Object Oriented Sysyems
Engineering Method (OOSEM), Proceedings of the 10’Th International INCOSE
Symposium (2000)

14. Mannion M., Lewis O., Kaindl H., Montroni G., Wheadon J.: Representing Requirements
on Generic Software in an Application Family Model, Proceedings of the International
Conference on Software Reuse ICSR-6 (2000) 153-196.

15. Mayo E.: The human problems of an industrial civilization, New York: MacMillan (1933)
16. Von der Maβen T., Lichter H.: Modeling Variability by UML Use Case Diagrams,

Proceedings of the International Workshop on Requirements Engineering for Product
Lines (2002) 19-25

17. Rational Software: The Rational Unified Process for Systems Engineering Whitepaper,
Ver. 1.1, Available at: http://www.rational.com/media/whitepapers/TP165.pdf, (2003)

18. Seaman C.: Qualitative Methods in Empirical Studies of Software Engineering, IEEE
Transactions on Software Engineering, July/August (1999) 557-572

19. OMG: Unified Modeling Language Version 2.0, Available at: http://www.uml.org (2005)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

