

V

RIJE

 U

NIVERSITEIT

 B

RUSSEL

F

ACULTEIT

 W

ETENSCHAPPEN

 - D

EPARTEMENT

 I

NFORMATICA

Multi-Paradigm Design
James O. Coplien
July 8, 2000 11:58 am
Promoter: Prof. Dr. Theo DÕHondt

Proefschrift ingediend met het oog op het
behalen van de graad van Doctor in de
Wetenschappen

ii

Contents
Contents iii

Introduction xiii

Acknowledgments xxiii

1 Thesis Presentation: The Need for Multiple Paradigms 25

1.1 Thesis Question . 25
1.2 Domain Engineering and Multiple Paradigms. 28
1.3 Design, Analysis, Domains, and Families: Term DeÞnitions 30

1.3.1 Analysis . 31
1.3.2 Design . 32
1.3.3 Architecture . 32
1.3.4 Domains . 33
1.3.5 Families and Commonality Analysis . 33
1.3.6 Dimensions of Abstraction . 34
1.3.7 Precise Abstraction . 35
1.3.8 Implementation and Engineering. 35

1.4 Beyond Objects . 36
1.5 Commonality and Variability Analysis . 37
1.6 Software Families . 38
1.7 Multi-Paradigm Design . 39

1.7.1 The Language: C++. 40
1.7.2 Dealing with Complex Families . 40
1.7.3 Incorporating Patterns . 42

1.8 Multi-Paradigm Development and Programming Language 42
1.8.1 Application-Oriented Languages in FAST 43
1.8.2 Domain Analysis and the C++ Programming Language 44
1.8.3 Polymorphism . 46

1.9 Commonality Analysis: Other Perspectives . 46
1.9.1 Policy and Mechanism . 47
1.9.2 Variability over Time versus Variability over Space 47

Contents

iv

1.9.3 Philosophical Foundations . 48
1.10 Related Work . 50

1.10.1 Historic Notes . 50
1.10.2 Meta-Object Protocols . 51
1.10.3 Aspect-Oriented Programming . 52
1.10.4 Generative Programming . 52

1.11 Summary . 53

2 Commonality Analysis 55

2.1 Commonality: The Essence of Abstraction . 55
2.1.1 Deductive and Inductive Commonality . 56
2.1.2 Software Families . 58

2.2 Priming Analysis: The Domain Vocabulary . 60
2.2.1 The Domain Dictionary . 60
2.2.2 Design Epistemology . 62

2.3 Dimensions of Commonality and Commonality Categories 64
2.3.1 (Data) Structure . 67
2.3.2 Name and Behavior . 71
2.3.3 Algorithm . 75

2.4 Examples of Commonality . 76
2.4.1 Structure . 76
2.4.2 Name and Behavior . 77
2.4.3 Algorithm . 79

2.5 Reviewing the Commonality Analysis . 81
2.6 Commonality and Evolution. 82
2.7 Summary . 83

3 Variability Analysis 85

3.1 Variability: The Spice of Life . 85
3.2 The Commonality Base . 86
3.3 Positive and Negative Variability. 87

3.3.1 Positive Variability. 87
3.3.2 Negative Variability. 88

3.4 The Domain and Range of Variability . 90
3.4.1 The Text Editing Buffers Example . 90
3.4.2 Good Parameters of Variation . 91

3.5 Binding Time . 92
3.5.1 Binding Time and Flexibility . 92
3.5.2 Are Objects about Deferred Binding? . 92
3.5.3 Efficiency and Binding Time . 92
3.5.4 Binding Time Alternatives . 93
3.5.5 An Example. 94

3.6 Defaults . 94

Marcinho
Note
interessante

Contents

v

3.7 Variability Tables . 95
3.8 Some Variability Traps . 97
3.9 Reviewing the Variability Analysis. 98
3.10 Variability Dependency Graphs . 98
3.11 Summary. 99

4 Application Domain Analysis 101

4.1 Analysis, Domain Analysis, and Beyond. 101
4.1.1 Traditional Analysis . 102
4.1.2 System Families: Domain Analysis . 102
4.1.3 Application Domain Analysis and Solution Domain Analysis 107
4.1.4 The Activities of Domain Analysis . 107

4.2 Subdomains within a Domain Analysis . 109
4.2.1 Domain Analysis and Reuse . 111
4.2.2 Subdomain Modularity . 112
4.2.3 Iteration and Hierarchy . 113

4.3 The Structure of a Subdomain . 114
4.3.1 Frameworks as Subdomain Implementations 116
4.3.2 The Activities of Subdomain Analysis . 117

4.4 Analysis: The Big Picture . 118
4.5 Summary. 120

5 Object-Oriented Analysis 121

5.1 About Paradigms and Objects . 121
5.1.1 Classes and Objects . 121
5.1.2 Liskov Substitutability Principle. 122
5.1.3 Virtual Functions. 122
5.1.4 Object Orientation: Yet Another Definition 124
5.1.5 The Suitability of Object-Oriented Design 126

5.2 Object-Oriented Commonality Analysis . 127
5.2.1 Commonality Analysis . 129
5.2.2 Variability Analysis. 129

5.3 Summary. 130

6 Solution Domain Analysis 133

6.1 The ÒOtherÓ Domain. 133
6.1.1 Analysis and Language . 134

6.2 The C++ Solution Domain: An Overview . 135
6.3 Data . 135
6.4 Overloading . 136
6.5 Class Templates . 137

6.5.1 Template Specialization . 137

Marcinho
Note
ler

Contents

vi

6.6 Function Templates . 138
6.7 Inheritance . 138

6.7.1 Aligning Domains . 140
6.8 Virtual Functions . 144
6.9 Commonality Analysis and Polymorphism . 146
6.10 Preprocessor Directives . 147
6.11 Negative Variability . 147

6.11.1 Deciding When to Use Negative Variability 148
6.11.2 Negative Variability versus Domain Splitting. 157
6.11.3 A Summary of Negative Variability . 160

6.12 Extended Solution Domain Constructs . 160
6.12.1 Multiple Inheritance. 160
6.12.2 Design Patterns. 165

6.13 A Summary of the C++ Solution Domain: A Family Table 175
6.14 Relative Power of Paradigms . 176

7 Simple Mixing of Paradigms 179

7.1 Putting It All Together: An Overview
of Multi-Paradigm Design. 179
7.1.1 One Size Does Not Fit All . 179
7.1.2 Degrees of Complexity . 182

7.2 Activities of Multi-Paradigm Design. 187
7.3 Example: A Simple Language Translator . 192

7.3.1 Partitioning the Domain into Subdomains. 193
7.3.2 Finding the Right Paradigms within a Subdomain. 196
7.3.3 Implementing the Design . 203

7.4 Design, Not Analysis . 204
7.4.1 Analysis, Architecture, or Design? . 204

7.5 Another Example: Automatic Differentiation . 205
7.5.1 Basic Operations Domain . 208
7.5.2 Degree Domain. 208
7.5.3 Value Domain . 209
7.5.4 Evolving the Design. 213

7.6 Outboard Paradigms . 214
7.7 Management Issues . 214

7.7.1 OccamÕs Razor: Keeping Things Simple . 215
7.7.2 Divide and Conquer. 216
7.7.3 Beyond C++. 218
7.7.4 Domain Expertise . 219
7.7.5 Systems Engineering and Process Issues 219

7.8 Summary . 221

8 Mixing Paradigms Within a Domain 223

Marcinho
Note
ler

Contents

vii

8.1 Method and Design . 223
8.2 Commonality Analysis: What Dimension of Commonality? 224
8.3 Multiple Dimensions of Variability in One Set

of Commonalities. 226
8.3.1 Variability Analysis. 226
8.3.2 Expressing the Commonality and Variability in C++ 227

8.4 Codependent Domains . 231
8.5 Summary. 231

9 Codependent Domains 233

9.1 Codependent Domains . 233
9.1.1 Generalizing Domain Analysis to Multiple Domains 233
9.1.2 A TEXTBUFFER Example . 234
9.1.3 First Case: Compile-Time Binding . 239
9.1.4 Second Case: Buffer Type depends on Output Medium Type

at Run Time; Output Medium Type Depends on Buffer Type
at Compile Time242

9.1.5 Third Case: Buffer Type Depends on Output Medium
Type at Run Time; Output Medium Type Depends on Buffer Type
at Run Time247

9.2 Design and Structure. 249
9.2.1 A Note on Binding Time . 250

9.3 Another Example: A Finite-State Machine. 253
9.4 Pattern-Based Solution Strategies . 260
9.5 Summary. 260

10 Conclusion 261

10.1 Recap . 261
10.1.1 Abstraction and Intentionality . 262
10.1.2 Meta-Design . 262
10.1.3 The Relationship between Domain and Paradigm 262
10.1.4 Multiple paradigms within a domain . 263
10.1.5 Dependencies between domains. 263
10.1.6 Theory of Negative Variability . 263
10.1.7 Regularization of Ad-Hoc Design Patterns 264

10.2 Other Paradigms . 264
10.3 Scalability . 265
10.4 Future work . 266

10.4.1 Taxonomy of Abstractions. 266
10.4.2 Taxonomy of Paradigms . 266

Bibliography 269

Marcinho
Note
ler

Contents

viii

List of Figures
2.1 Scalar number and matrix class categories. . 65
2.2 Capturing signature commonality. . 65
2.3 A family of operator* functions.. 65
2.4 Another dimension: Template arguments. 66
2.5 Data structure for List. . 77
3.1 A fully general implementation of text buffers. 94
3.2 A general source structure that allows ßexibility in implementation. . . 95
3.3 Domain Dependency between EncryptionBuffer and Trapdoor. 99
3.4 Adding the CharacterSet dependency to Figure 3.3. 99
4.1 Subdomains in the domain of Text Editing. 110
4.2 The domains of analysis. 119
5.1 The domain dictionary for digital circuit design. 128
5.2 The Logical Component domain.. 130
6.1 Comparing a C++ design and Smalltalk design of class Stack. 134
6.2 A uniÞed subtype/implementation inheritance hierarchy for Number.. 139
6.3 Inheritance to reuse implementation and structure, not behavior. 141
6.4 A BRIDGE pattern for Number, adapted from [Gamma1995].. 142
6.5 Encapsulation to reuse implementation and structure, not behavior. . 142
6.6 Multiple inheritance for implementation and interface. 143
6.7 Separate implementation and subtyping hierarchies using BRIDGE. . . . 143
6.8 The Wegner polymorphism taxonomy.. 146
6.9 A common Stack data structure. 149
6.10 A simple stack. . 149
6.11 Structure of the BRIDGE pattern (adapted from [Gamma1995],

p. 153). . 171
7.1 Relationships in classic MVC and in the more coupled

EntryForm example. 186
7.2 SYMBOL MANAGEMENT vocabulary. . 197

List of Figures

x

7.3 Variability dependency graph for
commonality domain: NAME. . 201

7.4 Reduced variability dependency graph for
commonality domain: NAME. . 201

7.5 Some C++ class interfaces capturing the analysis of Table 7.1.. 203
7.6 Automatic differentiation domain vocabulary. 207
7.7 Variability dependency graph for automatic differentiation. 210
8.1 Variability dependency graph for the TEXT BUFFER

commonality analysis.. 228
9.1 Dependency graph for the OUTPUT MEDIUM commonality analysis.. 235
9.2 Combining two domains of the application. 237
9.3 Reduced variability dependency graph. . 238
9.4 Class diagram for the design of Section 9.1.3 (Þrst design). 250
9.5 Class diagram for the design of Section 9.1.4 (second design). 251
9.6 Class diagram for the design of Section 9.1.5 (third design). 252
9.7 Domain diagram for the FSM example. 256
9.8 Class diagram of the solution. 259

List Of Tables
3.1 Text Editor Variability Analysis for Commonality Domain:
TextEditing Buffers . 96

3.2 Variability Table for String . 97
6.1 Choosing C++ Features for Negative Variability. 161
6.2 Commonality and Positive Variability in the Domain of the C++

Programming Language . 162
6.3 Factoring Commonalities and Positive Variabilities into Patterns 170
6.4 Factoring Commonalities and Negative Variabilities into Patterns . . . 173
7.1 Compiler Transformational Analysis for Commonality Domain: NAMES

(Commonalities: Structure and Behavior) . 200
7.2 Transformational analysis for domain BASIC OPERATIONS

(commonalities include arity, argument types, and return types) 208
7.3 Transformational analysis for domain VALUES (Commonalities: Includes

the use of Hessian and gradient matrices, a representation of the current
value, and most behaviors) . 210

8.1 Text Editor Variability Analysis for Commonality Domain:
TEXT BUFFER (Commonality: Behavior and Structure) 227

8.2 Text Editor Transformational Analysis for Commonality Domain:
TEXT EDITING BUFFERS . 229

9.1 Text Editor Variability Analysis for Commonality Domain: Output
Medium (Commonality: multiple behaviors; suggests inheritance) . . 236

9.2 Run-time handling of Buffer Parameter of Variability 248
9.3 FSM Transformational Analysis for Commonality Domain: ABSTRACTFSM

(Commonalities: Structure and Behavior) . 254
9.4 FSM Transformational Analysis for Commonality Domain:

IMPLEMENTATIONFSM (Commonalities: Structure and Behavior) 255
9.5 FSM Transformational Analysis for Commonality Domain: USERFSM

(Commonalities: Aggregate Behavior) . 257

List of Tables

xii

Introduction
Multi-paradigm design tries to dig deeper than any single technology or technique
to address fundamental questions of software abstraction and design. What is a
paradigm? What is the relationship between analysis, design, and implementa-
tion? These questions go to the foundations of abstraction that underlie the basic
paradigms of design and programming. And the answers to these questions more
often appeal to broad insight and experience than to the Þrst principles that are the
hallmark of most academic research. These are questions not only of technology,
but of system organization of design in the broadest sense of the word.

Apologia

I Þrst want to beg the readerÕs indulgence and patience with the theme and direc-
tion of this thesis, and with to explain a bit of the context and motivation that both
separate this thesis from other Ph.D. works and which make it uniquely pertinent
to the crucial issues facing software development today.

Many theses are original works that focus on a new-found nugget in the disci-
pline, and which expend much energy to evaluate and hopefully validate such an
idea in a limited context. Such works are difÞcult enough because the problems
are hard and the solutions elusive. But most of these theses are limited by the
sheer chronological and experiential limitations of their authors. There is some-
thing to be said for the perspective that experience brings. This thesis draws not
only on prior art and state of the art, but on having lived these problems since
writing my Þrst programs in 1970, and then during the time I worked as a systems
programmer in the ensuing decade, through the time I worked on development
and applied research for the next decade, and Þnally through my research in the
subsequent decade, the 1990s.

In this thesis I chose to integrate my experience around recurring themes that
arose around the serious problems that have plagued the discipline since the ear-
liest days. Rather than being a treatise on possibilities for a single well-formulated
contemporary hot topic, this thesis attempts to step back and look at a more time-
less problem. Certainly the thesis builds on recent research and discoveries. But it
addresses problems that only recently are coming to the attention of the broad

Introduction

xiv

community, though the problems have always lurked beneath the surface, and
some researchers like myself have directed some of their energies to solving those
problems one or two decades before they became popular.

This is a work of synthesis, consolidation, and extension that is the reßection of
years spent on the forefront of the most difÞcult issue in contemporary computer
science: mastering the complexity of problems beyond the mathematical and ana-
lytical essence of programming. It struggles with the question of how to model
the complexity that so far has eluded almost all formalisms and most paradigms,
paradigms that take simple one-dimensional views of a richly multi-dimensional
world. Simply put, we need to know how to manage several paradigms simulta-
neously.

There are formalisms and principles for combining paradigms in a way that
reßects a deeper view of design. This takes the thesis into the territory of abstrac-
tion. The thesis chooses commonality and variation as its formal foundations for
abstraction. And it does so with good reason, both from the grounding of decades
of experience and from pertinent research in cognitive science (which, though the
thesis does not cover extensively, is explored in Section 1.9.3). These principles
were chosen not for academic purity, but from the perspective that experience has
shown that program comprehensibility, intentionality, and maintenance cost all
fundamentally relate to the question of being able to understand software abstrac-
tions. The idea is developed here in the thesis, but it is developed more as a ques-
tion of ÒpartitioningÓ than as a question of Òabstraction.Ó That is because
experience has also shown that abstraction Ñ which might be deÞned as selective
ignorance Ñ can be a dangerous thing in complex systems. It is important to
choose abstraction tools that guide separation of concerns Þrst, and which use eli-
sion of detail only as a last resort to that end. So the term ÒabstractionÓ in this
thesis has more to do with the way we perceive the world, in the same way that
category theory thinks about it, than in the way we organize the things we per-
ceive in the world. It goes deeper than paradigm.

Because the work goes to this depth, and because of its integrative focus, the
research results reach further than just combining domain engineering techniques
with object orientation to extend design techniques for a given programming lan-
guage as one Þnds in [Vici+1998]. This thesis presents a fundamental new way of
thinking about design. The proof is in the uniformity with which its principles can
be applied to problem domain and solution domain, to this paradigm and that, to
C++ and to many other implementation technologies.

The Þrst few paragraphs of Chapter 1 take these perspectives a level deeper,
drawing out the individual thesis claims that this work explores. Here in the
introduction I take a less formal look at these concepts in the sections that follow.

Introduction

xv

Abstraction

One of the most basic questions of design is: What is abstraction? Abstraction is
one of the key tools of software design; it is necessary for managing the immense
and ever-growing complexity of computer systems. The common answer to this
question usually has something to do with objects, thereby reßecting the large
body of literature and tools that have emerged over the past decade or two to sup-
port object-oriented techniques. But this response ignores useful design structures
that are not object-oriented: templates, families of overloaded functions, modules,
generic functions, and others. Such use is particularly common in the C++ commu-
nity, though it is by no means unique to that community. And the perspectives
both of experience and practical application substantiate the need to go beyond
any single approach (such as object orientation) even if there were compelling
arguments for the superiority of any single technique (which there probably are
not).

It also pays to revisit some basic design principles and ask: why abstract?
Abstraction has become a synonym for ÒgoodÓ in many circles. But most abstrac-
tion is purely hierarchicalÑÞne if the system is simple enough to be decomposed
into layers or hierarchies. The object paradigm is symptomatic of this world view
in its predominant use both of class hierarchies and implementation hierarchy.
But the essence of the complex structure of modern systems doesnÕt easily suc-
cumb to hierarchy. First there is the issue of scale: systems of hundreds of thou-
sands, or millions, or tens of millions, or of a hundred million lines of code do not
lend themselves well to a single hierarchical analysis. Systems that large have
many disjoint Òtops,Ó so Òtop-downÓ or, more generally, any hierarchical struc-
ture, is a poor semantic for system structure. In a telecommunication systems,
these ÒtopsÓ include billing, operations, administration, maintenance, call pro-
cessing, and dozens of others. And though the ÒtopsÓ may be (conceptually) dis-
joint, the implementations that support each top cannot easily be separated from
the implementations subtending from other tops. Modularity is always, at best, an
approximationÑa perfectly modular system is not a systemÑand in most complex
systems it is little more than a weak pretense or convention. Most paradigms in
the modular tradition struggle to express reasonable designs for these domains.

Second is the issue of domain complexity: neither nature, nor business, have
been so kind as to formulate problems with intrinsic hierarchical structure. Many
of our design and implementation strategies nonetheless force these worlds into a
hierarchical design and implementation. A hierarchy can be made to Þt any
problem with enough work, but it ceases to be a good Þt under the inevitable
changes that face software development. Software is supposed to be soft and
adaptable to these changes, but experience has shown no single paradigm has yet
Þnessed the challenge of aligning the implementation partitioning with the nat-
ural lines of evolution in the business.

Introduction

xvi

So the major challenges facing software today are based in capturing business
domain structure and Þnding suitable implementation structures that best Þt
them. Multi-paradigm design rises to these challenges with design principles that
support abstractions that overlap in the code structure. It supports abstractions
that are more network-like than hierarchical, which makes them a better Þt for
complex domains with similarly complex structure. It considers application struc-
ture on its own terms rather than on the terms of a preordained paradigm such as
objects. It also considers each paradigm on its own terms, and then considers the
transformation between problem and solution as an activity in its own right
rather than an activity that is subservient to the partitioning criteria in either one.
It is not a simple problem, not the kind of problem that begs a thesis easily stated
as an algorithm or formulated as a proof, but a problem that can be attacked using
fundamental principles of abstraction such as commonality and variation.

Commonality and Variation

All abstraction techniques share some common principles. Each technique is a dif-
ferent way of grouping entities according to properties they share, including regu-
larities in the way individual entities vary from each other. To some, commonality
captures the recurring external properties of a system that are germane to its
domain. To others, commonality helps regularize implicit structure that analysis
uncovers in the recurring solutions for a domain. Multi-paradigm design honors
both perspectives. For example, the technique called object-oriented design groups
objects into classes that characterize the common structure and behaviors of those
objects. It groups classes into hierarchies or graphs that reßect commonality in
structure and behavior, while at the same time allowing for regular variations in
structure and in the algorithms that implement a given behavior. One can describe
templates using a different characterization of commonality and variation. Com-
monality and variation provide a broad, simple model of abstraction, broader than
objects and classes and broad enough to handle most design and programming
techniques.

Software Families

Commonality and variation arenÕt new to software design models. ParnasÕs con-
cept of software families [Parnas1976] goes back at least two decades. Families are
collections of software elements related by their commonalities, with individual
family members differentiated by their variations. The design ideas that have
emerged from software families have often found expression in widely accepted
programming languages; good examples are modules, classes and objects, and
generic constructs. The work of Lai and Weiss on environments for application-
speciÞc languages takes this idea to its limits [Weiss+1999]. The so-called analysis
activities that focus on the discovery of software families and the so-called coding

Introduction

xvii

activities that focus on how to express these abstractions have always been closely
intertwined. Multi-paradigm design explicitly recognizes the close tie between lan-
guage, design, and domain structure and the way they express commonality and
variation.

Domain Analysis

We discover software families in an activity called domain analysis, which is another
Þeld with a long history [Neighbors1980]. Software reuse was the original goal of
domain analysis, and this goal Þts nicely with software families. Multi-paradigm
design explicitly focuses on issues that are important for reuse. To help the designer
think about adapting software to a spectrum of anticipated markets, multi-para-
digm design explicitly separates commonalitiesÑassumptions that donÕt changeÑ
from variabilitiesÑassumptions that do change. We strive for domain analysis, not
just analysis. We design families of abstractions, not just abstractions. Done well,
this approach to design leads in the long term to easier maintenance (if we predict
the variabilities well) and to a more resilient architecture (we donÕt have to dig up
the foundations every time we make a change). Of course, multi-paradigm devel-
opment is just one tool that helps support the technical end of reuse. Effective reuse
can happen only in the larger context of organizational issues, marketing issues,
and software economics.

Paradigm

We use these foundations of commonality and variation to formalize the concept of
paradigm. A paradigm, as the term is popularly used in contemporary software
design, is a way of organizing system abstractions around properties of common-
ality and variation. The object paradigm organizes systems around abstractions
based on commonality in structure and behavior and variation in structure and
algorithm. The template paradigm is based on structural commonality across
family members, with variations explicitly factored out into template parameters.
Overloaded functions form families whose members share the same name and
semantics, and in which each family member is differentiated by its formal param-
eter types.

I use the term Òmulti-paradigmÓ here with a bit of trepidation. One of the early
manuscript reviewers, Tim Budd, was concerned about confusion between his use
of Òmulti-paradigmÓ and the way the term is used in this thesis. I was concerned
about using terms such as ÒanalysisÓ because of my desire to put the thesis into
the hands of everyday programmers, whose problems it strives to address. Tim
graciously offered that our discipline is diverse enough to accommodate a broad
spectrum of deÞnitions for Òmulti-paradigm,Ó and I embrace the phrase because it
emphasizes the role of the programmer and not that of the methodologist.

Introductionxviii
Multi-paradigm Design and C++

C++ is a programming language that supports multiple paradigms: classes, over-
loaded functions, templates, modules, ordinary procedural programming, and
others . B jarne Stroustrup, the creator of C++, intended i t that way
[Stroustrup1995]. Most programmers use the C++ features that go beyond objects
(though some abuse them to excess and others force designs into an object-oriented
mold when they should be using more natural expressions of design provided by
other language features). The powerful template code of John Barton and Lee
Nackman [Barton1994] or the generative programming techniques of Czarnecki
and Eisenecker [CzarEise2000] are perhaps the height of tasteful multi-paradigm
design.

Even though Stroustrup designated C++ as a multi-paradigm language, there
have been no serious attempts to create a design method suited to the richness of
C++ features. This has been a missed opportunity in the decade that C++ has been
popular. Gifted programmers mix paradigms instinctively, but the industry has
not risen to the challengeÑin fact, may have forgotten the challengeÑof formal-
izing the mixing of paradigms in C++. There is a gap between the current design
literature and the intended use of C++ features that is reßected in current practice;
witness, for example, the success of the Standard Template Library [Musser+1998]
and the lack of good design methods supporting the formulation and use of para-
metric abstractions. This thesis bridges that gap, using simple notations and
vocabulary to help developers combine multiple paradigms instructively. The
techniques presented in this thesis might all be recognized by an expert C++ pro-
grammer, and while the formalization of these techniques may Þt the intuition of
these programmers, such formalisms have so far eluded the C++ design and pro-
gramming communities. Furthermore, these formalisms provide a springboard
for a new view of design, based on a model of paradigm rooted in commonality
and variation, that generalizes to many expressive programming languages and
to software design in the most general sense.

Meta-Design

During a lecture I gave at DePaul University in September 1995, the department
chair, Dr. Helmut Epp, suggested the term meta-design for this work because its Þrst
concern is to identify design techniques suitable to the domain for which software
is being developed. That is a useful perspective on the approach taken in this thesis
and in fact describes how most developers approach design. One must Þrst decide
what paradigms to use; then one can apply the rules and tools of each paradigm
for the system partitions well-suited to their use. This concern is the domain not
only of the system architect and designer, but also of the everyday programmer.

Deciding what paradigm to use is one matter; having tools to express the
abstractions of a given paradigm is another. We can analyze the application

Introduction xix
domain using principles of commonality and variation to divide it into subdo-
mains, each of which may be suitable for design under a speciÞc paradigm. This
partitioning occurs during a development phase commonly called analysis. How-
ever, it is better thought of as an early phase of design because it tries to create
abstractions that the implementation technology can express. Not all implementa-
tion tools (programming languages and other tools such as application genera-
tors) can express all paradigms. For this reason, itÕs important to do a domain
analysis not only of the application domain, but also of the solution domain.
Multi-paradigm design makes this an explicit activity. Solution domain analysis is
another facet of the Òmeta-designÓ nature of multi-paradigm design.

Method apart from Methodology

There are many things this thesis is not. It is not a comprehensive design method,
software development life cycle model, or turn-the-crank approach to design. Most
good new designs are variants of old designs that have worked; itÕs rare that we
face completely new or unique software problems. It would be inappropriate and a
waste of time to apply the notations and techniques of this thesis to every module
in a new system. But we should be armed to face new problems when they arise so
that we can discover the structure in them and carry that understanding into
design and implementation. Furthermore, the notations and techniques of multi-
paradigm design provide a uniform way to document designs that augment
object-oriented techniques with other paradigms.

Multi-paradigm design is a craft that is neither fully an art nor fully a rigorous
discipline. This thesis presents notations, diagrams, and design models to support
the developerÕs thought process. As is true with all such formalisms, there is
always the temptation to get caught up in them for their own sake. Multi-para-
digm design is a collection of activities that produce an architecture, and architec-
ture is about relationships between pieces. But architecture is also about utility
and aestheticsÑproperties of good software that elude most methods. Good taste
has a key place here, and I donÕt intend the techniques to fuel automated design
or coding. Good taste comes in part from experience and in part from good
insight. Such considerations usually arenÕt paid homage in Ph.D. work, and that
may explain many of our industryÕs shortcomingsÑwhich is why I pay the con-
sideration homage here. The issue of good taste is drawn out a bit more explicitly
at the end of Chapter 6, where there is a discussion on the relative merit of para-
digms and on the underlying subjective criteria necessary to great design.

Used with common sense, these techniques complement good human judg-
ment and experience. If you Þnd that by applying these techniques, you arrive at a
design you neither like nor understand, then donÕt use the design. The techniques
are a tool, not a mandate. But all readers should take one thing away from this
thesis: The object paradigm, or any other paradigm, is just one of a set of useful

Introductionxx
paradigms, and design must express structures more broadly than any single par-
adigm can.

The Organization of the Thesis

Each chapter builds on the ones before it to build new concepts and increase the
readerÕs understanding of domain engineering and multi-paradigm techniques.
Most readers will read chapters sequentially and return to speciÞc chapters as ref-
erence material.

Chapter 1 through 7 are the foundational chapters that lay the groundwork for
domain engineering.

¥ Chapter 1 presents the thesis, introduces vocabulary, motivates the need for
multi-paradigm design, and lays high-level foundations for domain engi-
neering.

¥ Chapter 2 and Chapter 3 cover commonality and variability analysis, respec-
tively. The two concepts are used together in application, but each is pre-
sented in its own right both for simplicity of presentation and to emphasize
its language subtleties. Chapter 3 introduces the central concepts of positive
and negative variability, themes that are important to clean designs and to
understanding how domain engineering interacts with commonly used
design patterns.

¥ Chapter 4 explains how to use domain analysis to Þnd abstractions in the
application domain; it builds on the techniques of the preceding chapters.

¥ Chapter 5 demonstrates how the principles of domain engineering can be
used as a basis for the abstraction techniques of the object paradigm.

¥ Chapter 6 is a pivotal chapter, both because it applies ÒanalysisÓ techniques
in an unconventional wayÑto characterize the solution domainÑand
because it places C++ constructs in a formal framework that form the basis
of commonality and variability analysis. This chapter also places multiple
inheritance in context. Furthermore, it shows both that patterns can aug-
ment the solution domain, and that most commonly used patterns are in fact
just common conÞgurations of commonality and variation.

¥ Chapter 7 ties together the preceding chapters into a coherent framework for
thinking about design. It introduces a taxonomy of design problems that
have varying degrees of structural complexity. It also presents a high-level
set of activities that guide good design and that could be the basis for a
method based on domain engineering and multi-paradigm design tech-
niques. The chapter deals with the simple case in which each domain can be
developed largely independently of others in a single paradigm.

Introduction xxi
¥ Chapter 8 goes a step further, investigating structurally complex designs in
which simple divide-and-conquer techniques donÕt prevail. Chapter 8 inves-
tigates the use of multiple paradigms within a single domain.

¥ And Chapter 9 goes yet a step further by investigating Òtangled hierarchiesÓ
with signiÞcant design dependencies and structures that cross domains. It
presents examples of such recursive, structurally complex designs and pre-
sents heuristics for Òbreaking the recursion.Ó

¥ Chapter 10 is a conclusion that reiterates and ties together the claims of the
thesis. This chapter also discusses future work.

Notations

Domain names appear in a typeface that looks like this: TEXT BUFFER. Pattern
names appear in a typeface that appears like this: TEMPLATE METHOD. Member
function, class names, and code examples appear in a typeface that looks like this:
Code Example.

Class diagrams in the thesis follow the UniÞed Modeling Language (UML)
notation [Fowler+1997].

Introductionxxii

Acknowledgments
This thesis is an extended subset of a book, ÒMulti-Paradigm Design for C++,Ó
published by Addison-Wesley in October of 1998 [Coplien1999]. Most of the
corpus of the work was developed under the umbrella of the book project, and
much of the bookÕs success owes to the encouragement and help of those who sup-
ported and assisted me in the book project.

I especially want to thank all of those who, through their dialogues, comments,
and feedback, improved the quality of the manuscript. Just van den Broecke,
Frank Buschmann, Paul Chisholm, Russell Corfman, David Cuka, Cay Horst-
mann, Andrew Klein, Andrew Koenig, Stan Lippman, Tom Lyons, Lee Nackman,
Brett Schuchert, Larry Schutte, Herb Sutter, Steve Vinoski, and David Weiss all
provided review comments at many levels, ranging from conceptualization to
code. I appreciate them very much for their efforts. I also want to thank my tire-
less and patient editor at Addison-Wesley, Debbie Lafferty, who also worked with
me on my Þrst book. She has been a true joy to work with. Special thanks also go
to Jacquelyn Young, the bookÕs production editor; to Laura Michaels, the bookÕs
copy editor; and to Kim Arney, the bookÕs compositor. Discussions with Lalita
Jagadeesan inspired me to create useful examples. A special thanks to Tom Stone,
the Addison-Wesley acquisition editor, for his early advice to me and his early
enthusiasm about this book inside Addison-Wesley. A special thanks to Andrew
Klein for help with the UML diagrams. I appreciate Bell Labs for generously
giving me time to pursue research supporting the thesis work. And last, a special
thanks to my Bell Labs management and colleagues, especially to David Weiss,
for sharing their work with me and providing support and encouragement.

It has been a great pleasure to work with my advisor, Prof. Theo DÕHondt, who
offered encouragement and guidance throughout the process. I believe it has been
an interesting experience for both of us, an unconventional arrangement in many
ways, but one in which Prof. DÕHondtÕs skills with research, academia, and
people applied masterfully. I am indebted to Carine Lucas for her early guidance
on thesis preparation and for her early encouragement and support. The thesis
review committee was both constructively critical and warmly supportive of this
endeavor, and their comments and feedback have helped remove rough edges
from the thesis: Prof. Viviane Jonckers, Prof. Dirk Vermeir, Dr. Patrick Steyaert, Dr.

Acknowledgmentsxxiv
Ulrich Eisenecker, and Dr. Bjarne Stroustrup. I appreciate the forebearance of my
family: my wife, Sandra and children Christopher, Lorelei and Andrew, as I spent
all those evenings in my ofÞce typing away. I am especially indebted to friends
who offered moral support and encouragement aduring this journey: Christa
Schwanninger, Rebecca Grinter, Martine Devos, Liping Zhao, Jerry Weinberg, and
most of all to Xue Fang Devey, who often would point out the light at the end of
the tunnel.

Chapter 1

Thesis Presentation: The Need for
Multiple Paradigms
This overview motivates multiple paradigms in software development. I start by
presenting the thesis question. Ensuing discussion ties domain engineering and
multi-paradigm design to the state of the art, prior art, and emerging themes
related to object-oriented design. It also introduces important vocabulary for the
chapters that follow: software families, commonality, and variability.

1.1 Thesis Question

Abstraction, Intentionality, and the Importance of Design

This thesis examines the broad question of software design. It attempts to do so
from Þrst principles of abstraction, both in the tradition of software and the clas-
sical models of abstraction behind it, as well as from the perspective of more pow-
erful abstraction models emerging from contemporary category theory
[Lakoff1990]. The thesis builds on the broadly acclaimed importance of software
design in reducing software cost, reducing time to market, and in the intentionality
that makes systems easier to understand and more likely to meet their needs than
poorly designed systems with obscure structures.

Meta-Design

This thesis will demonstrate the practicality of software design at a higher level
than is addressed by the principles of any single design paradigm, as the term par-
adigm is commonly used in the programming language and software design com-
munities. The thesis will develop a theory, or model, of meta-design that supports
software development by drawing on several design paradigms simultaneously. In
so doing, the thesis develops unifying formalisms based on commonality and vari-

Thesis Presentation: The Need for Multiple Paradigms26
ation that provide a foundation for a model of common software development par-
adigms.

The relationship between domain and paradigm

The thesis will present a model of the rich relationships between domain and para-
digm, using domains to characterize the classic abstractions we form around the
structure of an area of interest based on commonality and variation. The thesis
question builds on a model of domains and domain analysis [Neighbors1980], a
mature Þeld that is seeing resurgence and growth as the object paradigm seems to
be meeting the limits of its abstracting and expressive power ([Czar1999],
[Weiss+1999], [CzarEise2000]). Whereas an object-oriented design method might
appeal to the universality of objects, multi-paradigm design appeals to the univer-
sality of domains.

The thesis introduces a simple tabular notation that guides the selection of par-
adigms for a domain. Each row of the table is a conÞguration of commonality,
variability, and other properties necessary to uniquely identify a paradigm. Each
table comprises a collection of rows that together characterize a domain. A given
domain may employ several paradigms; the table show how each paradigm
relates to a parameter of variation.

These tables are used in two ways. First, they make a concrete and formal con-
nection between paradigm and solution domain analysis. Second, almost iden-
tical tables are used to make a concrete and formal connection between the
commonality and variation of the application domain, and the paradigm that
should be selected to express that commonality and variation. Together, these
charts are somewhat like the colour scheme charts for a house: they give help in
making crucial decisions about design, and all that remains after the decision is a
lot of hard work.

The breakdown of classic domain analysis

Most software paradigms are themselves rooted in a classic model of abstraction
based on categories shaped by common properties, a perspective that traces its
roots all the way back to Plato [Plato]. The thesis goes beyond the classic model in
two ways. First, it shows that some real-world domains donÕt strictly adhere to the
classical model of simple commonality and variation, but that several paradigms
must sometimes be used within a domain to achieve the higher goals of developer
independence (for example, based on allocation of expertise), software maintain-
ability, and intensionality. This thesis might be contrasted with the work of Kic-
zales et al. [Kiczales1994] where this consideration takes center stage, or with the
integrative work of Czarnecki [Czar1999] that focuses more closely on low-level
design issues.

1.1 Thesis Question 27
Extending domain analysis with domain relationships

Second, the thesis generalizes the classic domain engineering model, commonly
based on scope, commonality, and variation (SCV), by adding the dimension of
relationships between domains (SCV + R). It generalizes parameters of variation
beyond a model based on parameterization or macro substitution to a more full-
ßedged model where application engineering can be viewed as a functional map-
ping where both the parameters of variation and the artifacts of design are them-
selves domains. This generalization of the treatment of domains allows reasoning
outside individual domains about the relationships between them during design.
This is a central issue of system software architecture. Czarnecki [Czar1999]
aggressively develops the domain relationship question, but more from the per-
spective of software conÞguration or re-integration at the implementation level.
This takes his work into automatic code generation, which is one of the factors dis-
tinguishing generative programming from multi-paradigm design.

While domain analysis, commonality and variability analysis, and the notion
of implementation design have long been topics of software design discourse
individually, this thesis offers a synthesis of these ideas which spans a broad
range. The thesis seeks unifying principles that tie together the application and
solution domains, that provide a common unifying model for many paradigms,
and that explain the proper interworking of features within a programming lan-
guage. While just short of being a comprehensive theory of design (because of its
focus on issues that are traditionally programming language issues), the thesis
lays the foundation for a broad model of software design that draws on the port-
folio of technologies that the programming language community has assembled
over the past four decades of progress.

Negative Variability

One example of the generality that comes from a broad design scope is the theory
of negative variability. This is a phenomenon well-known in object orientation as
inheritance with cancellation, about which much has been written, and which is
closely tied to the Liskov substitutability principle [Liskov1988] that provides a
formal foundation for the object paradigm. It is a property germane to subtyping
and/or inheritance. What this thesis shows is that the phenomenon can greatly be
broadened to language features beyond inheritance to any language feature that
expresses what Kevlin Henney (largely unpublished work; but see [Henney2000])
refers to by the broader term substitutability. Negative variability can be used to for-
mally characterize function argument defaulting, template specialization, certain
properties of preprocessor constructs, and even most common design patterns.
This is a powerful unifying notion of design that can be used to advantage in a
design method and in its supporting notations and processes.

Thesis Presentation: The Need for Multiple Paradigms28
Domain analysis and patterns

Last, this thesis shows how many of the popular design patterns [Gamma1995] are
not at all patterns in the Alexandrian sense [Alexander1979], but are special cases
of commonality / variability conÞgurations or ways of dealing with negative vari-
ability.

Chapter 1 Overview

The remainder of this chapter overviews key topics behind multi-paradigm
design, starting with an introduction to domain analysis and how it relates to
multi-paradigm design at a high level. That is followed by term deÞnitions and
introduction of key concepts. Next, I motivate the need to explore methods that go
beyond contemporary object-oriented methods. The next sections present over-
views of commonality analysis, of software families, and of how multi-paradigm
design ties them together. Finally, there is one section on the relationship between
multi-paradigm design and programming language, a section that discusses com-
plementary perspectives on multi-paradigm design, and a section that covers
related work.

1.2 Domain Engineering and Multiple Paradigms

Contemporary commercial software practice seems to equate design with objects.
The object paradigm has given us powerful new tools to capture the common
abstractions of many application domains, and object-oriented design has become
a ubiquitous tool. To implement these designs, C++ is still the language of choice at
this writing. Yet not all that is in C++ is object-oriented, and most implementations
take advantage of C++ features that are not object-oriented. This suggests that
most designs in fact have a non-trivial component that is not object-oriented.
Given that most projects use object-oriented design methods, where do these non-
object-oriented structures come from?

These questions go to the heart of software design. The Þrst purpose of design
is to meet business needs, which are usually dominated by user expectations. Suc-
cess is predicated on a good understanding of the business, or domain, for which
the system is being built. But design has other purposes as well. For example,
design should lead to an implementation that is understandable and easy to build
(to paraphrase Einstein, as easy to build as possible, but not more so). Also, design
should strive to build systems that can be evolved over time and adapted to new
markets and applications.

All of these design goals are actually different outcomes of the same basic prin-
ciples. Most relate to the structure of a business and how it evolves. Our under-
standing of the business increases the likelihood of our meeting the customerÕs

1.2 Domain Engineering and Multiple Paradigms 29
needs. It also lays a foundation for a system structure and a design vocabulary
that helps express and shape the design. And by understanding the broad, stable
aspects of the business, we can design structures that evolve well.

Domain eng ine e r ing ([Ne ighbors1980] , [Ne ighbors1984] ,
[PrietoDiazArango1991]) is a software design discipline that focuses on the
abstractions of a business (a domain) with the intent of reusing designs and arti-
facts. Reuse is one of several good outputs of good design, and the same design
techniques that lead to good reuse also lead to extensibility and maintainability
over time.

Multi-paradigm design embraces many of the goals of the object paradigm, but
the goals differ in scope. The object paradigm also focuses on extensibility and
reuse. It does this by separating the common, stable parts of a design from the
variable, uncertain parts of a design. To oversimplify a bit, one can Þnd the stable,
invariant behaviors and data in base classes (particularly in abstract base classes)
with the variations factored into derived classes. This works well if the design can
be factored into common/stable parts and variable/uncertain parts along the
lines of behavior and data structure. But there may be other useful ways of sepa-
rating what is common from what is variable. For example, we may want to select
between a short and a long in an otherwise identical data structure; this is a suit-
able application for C++ templatesÑnothing object-oriented about that. Function
overloading, function templates, and other C++ language features express other
kinds of commonalities and variations that are broader than the object paradigm.
Domain engineering covers all of these considerations.

Design is the structural aspect of the process of problem-solving, with activities
to abstract, partition, and model the system so that the designer can understand it.
Object-oriented design helps us ÒÞnd the objectsÓ by using business rules of
thumb, principles of coupling, cohesion, and subtyping, and an informed alloca-
tion of responsibilities to objects. How do we build the design abstractions and
implementation modules in a world that isnÕt purely object-oriented? First, itÕs
important to recognize that weÕre no longer dealing with a single paradigm but
with multiple paradigms, each with its own rules for abstracting, partitioning,
and modeling. Second, itÕs useful to understand that most software paradigmsÑ
certainly those supported by C++Ñcan be characterized in terms of the more gen-
eral design concerns of commonality and variation. We call this domain analysis.
Domain analysis builds a model (not the model, just a model) of the business. We
can draw on this model to build the solution structure. The Þrst focus of design is
to understand the commonalities and variabilities for the components of this
model.

Domain analysis uncovers groupings of abstractions and artifacts that are tied
together by their commonalitiesÑand perhaps by the similar nature of their vari-
abilities. Such groupings are called families [Parnas1976]. While object-oriented
design is an exercise in ÒÞnding the objects,Ó domain analysis is an exercise in

Thesis Presentation: The Need for Multiple Paradigms30
ÒÞnding the families.Ó Note that object-oriented design is a special case of Þnding
families: Classes are families of objects, and class hierarchies are families of
classes. We group them together because of what they have in common. We can
use criteria other than those germane to the object paradigm to Þnd other impor-
tant families that are not object-orientedÑhence the importance of multi-para-
digm design.

The second focus of design is on how to match those commonalities and varia-
tions to implementation technology structures such as classes, functions, tem-
plates, class hierarchies, and data structures. This is called application engineering,
and it is what comes to mind when most people hear the word Òdesign.Ó If we
understand the kinds of commonalities and variabilities that can be expressed by
speciÞc paradigms, then application engineering can use the results of domain
analysis to select the most suitable paradigms for the system architecture and
implementation.

This thesis presents a framework of formalisms, ideas, and simple notations
that can support such a design process. It takes a broad view of design based on
the analysis of the domain, thus producing an implementation engineered for the
domain. I call the technique multi-paradigm design, a speciÞc approach to domain
engineering that builds on a small but rich collection of paradigms supported by
the C++ programming language. The techniques generalize to other program-
ming languages, particularly those with expressive type systems, and to other
implementation technologies. The emphasis on C++ here is in the interest of
focus, concreteness, and pragmatism.

In summary, domain analysis is a set of techniques for identifying software
families, and application engineering is a set of techniques for implementing and
managing software families. Domain analysis and application engineering
together form a discipline called domain engineering. Multi-paradigm design is a
form of domain engineering, whereby domain analysis applies both to the appli-
cation and solution domains. In multi-paradigm design, application engineering
builds on existing tools and paradigms.

Multi-paradigm design and domain engineering revisit the Þrst principles of
abstraction and design to broaden the solution space beyond objects. This broad-
ening has implications for design, architecture, and implementation. The next sec-
tion builds a vocabulary around these basic concepts in light of the principles of
commonality and variation. With those concepts in hand, we can appreciate most
principles of multi-paradigm design in a straightforward way.

1.3 Design, Analysis, Domains, and Families: Term
DeÞnitions

Design, in the software engineering tradition, refers to the activities that take place
between analysis and implementation. Analysis is the activity that elicits user needs

1.3 Design, Analysis, Domains, and Families: Term DeÞnitions 31
and wants. Before these terms were adopted by software, they carried broader
meanings. Multi-paradigm design appeals to the broader sense of these words.
This section introduces key words of the multi-paradigm design and domain engi-
neering vocabulary.

In domain engineering, analysis goes beyond the application analysis that
elicits a given customerÕs needs. We must also assess whatÕs in our toolbox. We
must consider the limitations and assets of the tools and techniques at our dis-
posal and use them to the best advantage of the designer and customer. For
example, when does the designer consider whether to use UNIX libraries or MFC
(Microsoft Foundation Classes)? This may seem like an implementation decision,
but often it is a factor in market requirements. It is clearly a decision that shapes
the architecture and functionality of the Þnal product. This analysis must take
place before we can transform its results into an implementation. It certainly pre-
cedes ÒdesignÓ for any traditional deÞnition of design, that is, the process of
deriving an implementation structure from needs. But just as design can continue
through the end of implementation, so can this analysis continue as long as there
are design activities. Ongoing development may yield insights about the selection
of tools, techniques, and paradigms.

1.3.1 Analysis

In multi-paradigm design, we talk about application analysis and solution analysis.
Application analysis is the ÒtraditionalÓ analysis of the problem space. Solution
analysis borrows the abstracting tools and formalisms of application analysis and
applies them to the solution space. Understanding both sides of the development
equation helps us to use the right tool for the right job and raises the likelihood of
success. Designers should assess the contents of the project toolbox even during
application analysis.

Usually the term ÒanalysisÓ means Òunderstanding the problem.Ó The term
Òobject-oriented analysisÓ has come into increasingly common usage, thereby
suggesting that the design principles of the object paradigm provide good tools to
codify the problem. Unfortunately, the use of any design paradigm during anal-
ysis prejudices the implementation to use that paradigm, even when another par-
adigm might in fact provide a better partitioning. One approach to this dilemma
is to avoid contaminating analysis with any of the prejudices of design. However,
that leads to an analysis that doesnÕt foresee straightforward implementations based
on available tools. Multi-paradigm design solves this dilemma by considering all
implementation paradigms during analysis. More precisely, the analysis considers
basic principles of abstraction and partitioning that underlie most software
design paradigms. We donÕt do partitioning during analysis; that would require
a paradigm that provided the partitioning rules. Analysis gathers the informa-
tion to support the choice of one or more paradigms.

Thesis Presentation: The Need for Multiple Paradigms32
1.3.2 Design

Design is an activity that gives structure to the solution to a given problem. It starts
with a problem and ends with a solution. Here, ÒproblemÓ means a mismatch
between the current state and the desired state, a deÞnition broad enough to include
bug Þxes and enhancements. Design must struggle with pragmaticsÑthe con-
straints imposed by the business and by real-world considerations such as tracta-
bility. In software, as in building design and in some mechanical engineering
disciplines, the solutionÑthe output of designÑincludes an architecture and an
implementation.

We still view design as the activity that takes us from a needs statement to an
implementation, but we broaden its scope. Because analysis scrutinizes both the
application and the solution, it is, in part, a design activity. Because multi-para-
digm design considers implementation tools to be like the expressive constructs of
a programming language, it touches on many implementation issues. Design and
analysis are deeply entangled in this model. This perspective smooths the transi-
tion from the application structure to the solution structure. It helps avoid the
Òphase shiftÓ that happens after data-ßow diagrams in structured techniques,
while avoiding the false hope that the solution structure will match the problem
structure. This is a common pitfall of early object-oriented techniques that pre-
sume that analysis classes map directly onto C++ classes.

1.3.3 Architecture

Architecture is the primary output of design. It is the articulation of the things of
interest in the system and the relationships between those things. ÒThingsÓ may be
objects, tuples, processes, and other individually comprehensible chunks that
Þgure prominently in the designerÕs vocabulary and toolbox. For example, in a
Þnite-state machine (FSM), these ÒthingsÓ include states, transitions, transition
actions, messages, and the machines themselves. The context-free word ÒthingÓ is
preferable to ÒabstractionÓ because the pieces may not be abstract at all, but rather
concrete and complete. Such ÒthingsÓ may be logical architectural artifacts that
lack physical continuity in the source or in memory: An example of this is a pro-
cess, which comprises procedures scattered all over a program.

We usually associate the informal term structure with architecture. System
structure emerges from the building blocks we put into it and how we put them
together. Both the selection of the blocks and their arrangement follow the desid-
erata and constraints of the problem statement. The architecture helps us under-
stand that the design process addresses the problem. Multi-paradigm design
helps us choose building blocks well-suited to the available solution structures
and guides the synthesis of those blocks into a complete system.

1.3 Design, Analysis, Domains, and Families: Term DeÞnitions 33
An architecture usually corresponds to a domain, an area of interest for which a
system is being built. A domain may be hierarchical, which means that architec-
tural models may also be hierarchical.

1.3.4 Domains

A domain is an area of specialization or interest. We talk about the application
domainÑthe body of knowledge that is of interest to users. Because it is of interest
to users, it is hopefully of interest to us. We break down application domains into
application subdomainsÑwe divide and conquer. We talk about the solution domain,
which is of central interest to the implementors but of only superÞcial interest to
system users. Any given design may deal with multiple solution domains at once,
for example, C++ constructs, patterns, and maybe state machines and parser-gen-
erators.

1.3.5 Families and Commonality Analysis

Most advances in software design, and certainly those that have found their way
into programming languages, have been tied to new ways of forming or using
abstractions. Abstraction deals with the general case without reference to the
details of any particular instance. When we think abstractly, we emphasize what is
common while suppressing detail. A good software abstraction requires that we
understand the problem well enough in all of its breadth to know what is common
across related items of interest and to know what details vary from item to item
[Shaw1984]. The items of interest are collectively called a family, and familiesÑ
rather than individual applicationsÑare the scope of architecture and design
[Parnas1976]. We can use the commonality/variability model regardless of
whether family members are modules, classes, functions, processes, or types; it
works for any paradigm. Commonality and variability are at the heart of most
design techniques.

Domains often (but not always) comprise families. A family is a collection of
things (such as objects, functions, classes) that we group together because they
share common properties. Commonality analysis is the activity we use to form and
elaborate families; that is the focus of Chapter 2.

For example, there are many sorting algorithms one might use in a business
application. One usually ignores the differences between these algorithms during
design. What matters are the preconditions and postconditions common to all
sorting algorithms. We simply donÕt care about the steps within the algorithm. A
speciÞc program may use several different sorting algorithms, each tuned for a
different time/space trade-off. At some point, the designer must choose from
among the available implementations.

The same is true if we are using an abstraction like Stack, which can be imple-
mented using an unlimited number of data structures and algorithms. At design

Thesis Presentation: The Need for Multiple Paradigms34
time, the designer cares only that Stack supports all operations needed by a given
family of applications andÑusually with some foresightÑdefers the proper
implementation of those operations. A given program may use several different
kinds of stacksÑStack<int> may be implemented much differently than
Stack<Message>Ñbut all Stacks have common behavior.

During low-level design and implementation, the designer starts to care about
the differences between different kinds of Stacks. The programming language
should provide a convenient way to capture commonalities but be ßexible enough
to express variabilities. Each kind of Stack has a unique data structure and unique
algorithms. For example, Stack<int> may use a simple vector, while Stack<Mes-
sage> may use a linked list of head cells, each of which contains a pointer to a
Message instance. Stacks vary in internal structure. They also vary in the algorithms
that manipulate those structures.

Some domains do not form families; they are no more than areas of focus or
interest. Consider OVERLOAD MANAGEMENT as a domain in a real-time transaction pro-
cessing system design. OVERLOAD MANAGEMENT takes over the allocation of system
resources, such as memory and real time, when the system is offered more work
than it can handle in real time. The designer may establish overload strategies
once at the beginning of the systemÕs life cycle. There may be one overload design
that Þts an entire product line unchanged. The code for overload may never
change (except for bug Þxes) over the productÕs life. But we still want to treat it as
a domain, as a discipline worthy of focus in its own right.

ÒGoodÓ domains (the ones we can easily manage) usually correspond to sub-
systems or system modules. Some domains cross modules, particularly in com-
plex systems (see more about complexity in Section 1.7). Again, OVERLOAD

MANAGEMENT is an example of a domain that may touch many pieces of code in a
system. This means that it interferes with other domains; as it changes, other
domains may need to track it. Such interactions complicate the design. We
address those interactions in Chapter 9.

1.3.6 Dimensions of Abstraction

Software design space is multidimensional, with multiple dimensions, or Òaxes,Ó
of design: a procedural axis, a data structure axis, an axis of compliant behaviors,
and others. Each design technique picks its own favorite axes of commonality and
variability and uses those to formulate abstractions. The object paradigm focuses
on families of abstract data types that share a common interface, though internal
implementations may freely vary. Instead of dwelling on a single combination of
commonality and variability, as in most paradigms, multi-paradigm design
focuses more on commonality and variability in their own right.

Multi-paradigm design uses characteristic dimensions of design called dimen-
sions of commonality. Important commonality dimensions include structure,
behavior, and algorithm. SpeciÞc combinations of commonalities and variabilities

1.3 Design, Analysis, Domains, and Families: Term DeÞnitions 35
correspond to commonality categories, which will be more formally introduced in
Section 2.3 and elaborated on throughout this thesis.

1.3.7 Precise Abstraction

ÒAbstractÓ and ÒgeneralÓ do not imply ÒvagueÓ or Òambiguous.Ó On the contrary,
a good abstraction should be described with precision. For example, we can deÞne
the abstraction File in terms of concrete responsibilities (such as reading or
writing sequences of characters) or in terms of veriÞable properties (a Þle must
have size > m + n characters for a read of n characters to succeed, if the current Þle
position is at index m). Though the description is abstract in the sense that it pre-
scribes only behavior and general in the sense that it accommodates many imple-
mentations, it is not vague or ambiguous. We throw away the details that are not
common to all cases, but we certainly retain those that characterize the abstraction!

1.3.8 Implementation and Engineering

After architecture, the implementation is the second output of design. Implementa-
tion means actual codeÑnot just diagrams or formalisms. Many contemporary
methods view design as a phase intermediate to architecture and coding, instead of
viewing architecture and coding as products of design. But from a more practical
point of view, we canÕt separate design from either architecture or implementation.
If design is the activity that gives structure to the solution, and if architecture is
about structure, isnÕt ÒdesignÓ a good term for the activity that produces it? And
much of code is about structure as well. Why shouldnÕt that be ÒdesignÓ as well? If
you look at how real programmers work, youÕll Þnd they donÕt really delineate
architecture, design, and implementation in most application domains, regardless
of whether the ofÞcial house method says they should or not. (How many times
have you completed the coding before holding the review for your design docu-
ment?) Object-oriented designers gain insight into the allocation of responsibilities
to classes by coding them up. Empirical research on the software design process
reveals that most developers have at least partially coded solutions in hand at the
time of their design review and that design decisions continue into the last throes
of coding [Cain+1996].

Multi-paradigm design looks ahead to implementation constraints and oppor-
tunities instead of leaving them to Òthe implementorÓ as if implementation were
something that followed design. If design is to produce a solution, its output must
be usable. This is where the engineering part comes in. Engineering solves a
problem or class of problems by building on proven techniques, on scientiÞc prin-
ciples, and on the ingenious thinking of the problem solver. It is never done
without an eye to implementation; it is very practical. Domain engineering as a
whole raises problem-solving from an activity focused on individual problems to
an activity that addresses families of problems, that is, commonly recurring prob-

Thesis Presentation: The Need for Multiple Paradigms36
lems of design. Multi-paradigm design, a speciÞc form of domain engineering,
uniÞes the abstraction techniques and vocabulary used throughout the develop-
ment process. The application engineering component of multi-paradigm design
isnÕt deferred until late in the process; rather its formalisms are an important com-
ponent of domain analysis activities.

1.4 Beyond Objects

Many readers will say, ÒI am already using object-oriented design techniques, and
though there are occasional problems, things tend to work out somehow. Why
should I put those techniques aside and look at multi-paradigm design? After all,
C++ is an object-oriented language, isnÕt it?Ó

One hidden danger of this objection is that the term Òobject-orientedÓ has
become a synonym for Ògood.Ó Multi-paradigm design offers formalisms that
can be used to describe the object paradigm with more precision than is
acknowledged in casual use. Furthermore, it demonstrates the relevance of
those formalisms to important software objectives such as decoupling and cohe-
sion, abstraction, and evolution.

In todayÕs market, you can Þnd the ÒobjectÓ label attached to every paradigm
imaginable. That leads to hybrid design environments that build on an attach-
ment to the past, usually supported by a desire to build on investments (people,
tools, embedded software, and even reputations) in old methods and technolo-
gies. And most of these environments are just called Òobject-oriented.Ó One lia-
bility of such combined methods is that they obscure some of the central
principles of object-oriented design, substituting principles from other methods in
their place. These confused combinations of design techniques can lead to archi-
tectural disaster. One common failure mode is to use structured analysis to build
an initial design around system data structures and then implement using respon-
sibility-driven design. A common result of this technique is that cohesion of the
original data models breaks down and objects are forced more and more to expose
their internal data structure. Maintenance becomes difÞcult, the overall structure
weakens, and it takes tremendous energy to keep the system viable.

But pure objects arenÕt the answer, either. Stroustrup has never called C++ an
object-oriented programming language [Stroustrup1995]. Perfectly good para-
digms have been marginalized by object-oriented hype. The tone in contemporary
development shops is that no one would be caught dead using procedural decom-
position, even for a batch sorting routineÑobjects must somehow be crafted into
the solution. That leads to designs in which square pegs have been forced into
round holes.

It has always been a good idea to mix multiple paradigms tastefully, and great
software designers have long kept several tools in their toolbox. Peter Wegner
once remarked that the object paradigm is itself a hybrid that builds on the para-

1.5 Commonality and Variability Analysis 37
digms that preceded it, among them modularity, abstract data types, procedures,
and data structures. Abadi and Cardelli write:

Object-oriented programming does not have an exclusive claim to al these good
properties. Systems may be modeled by other paradigms, including ones based
on traditional notions of algorithms and data structures, which were not well
developed when Simula was invented [DahlNygaard1966]. Resilience can be
achieved just as well by organizing programs around abstract data types
[LiskovGuttag1986], independently of taxonomies; in fact, data abstraction
alone is sometimes taken as the essence of object orientation [America1989],
[Booch1986]. Hence it is possible that, as the availability and awareness of other
techniques grow, the appeal of objects will fade away. ([AbadiCardelli1996], p.
8)

C++ goes further to support procedural, modular, object-based, object-ori-
ented, and generic programming on an equal footing. Mixing paradigms is admit-
tedly hard, just as it is difÞcult to tastefully mix several architectural schools in a
single building. There are few widely understood formalisms, guidelines,
methods, or rules of thumb for mixing paradigms, so the mixing is driven by ad
hoc and political considerations. This is an especially important issue in C++ pro-
gramming projects that tend to mix C and object-oriented development cultures.

This thesis motivates the need for multiple paradigms and lays the foundation
for a semi-formal treatment of multi-paradigm development. It provides vocabu-
lary and notations that might be used either as the basis for a reusable design
method or as heuristic adjuncts to existing (for example, object-oriented) methods
on a case-by-case basis. The thesis introduces a form of analysis based on com-
monality and variability, intuitive concepts that already underlie most design
methods. Much of object-oriented design falls out naturally from commonality
and variability analysis; class hierarchies are one way of tying together members
of a software family. The relationship between objects and commonality analysis
is the topic of Chapter 5. But there are families that are not best implemented or
thought of as class hierarchies. And there are techniques that address Þne points
of object-oriented design that go beyond the goals of domain engineering and
multi-paradigm design. Those techniques complement multi-paradigm design
well.

1.5 Commonality and Variability Analysis

Commonality and variability analyses form the fundamental underpinnings of
design, since they are the essence of how the human mind forms abstractions.
Good abstraction techniques address software complexity and help the designer
elicit and organize domain knowledge. The two problems of complexity and
problem deÞnition are among the predominant challenges facing contemporary

Thesis Presentation: The Need for Multiple Paradigms38
practical software development. We will deÞne the concept of ÒparadigmÓ itself in
terms of commonality and variation.

Commonality and variation are simple concepts that underlie most of the prin-
ciples of this thesis. Each chapter will both use and elaborate the basics of com-
monality and variation. We have already seen their use to identify and describe
software families. They also describe major design structures, as will be discussed
in Section 2.1. They lead to structures that are likely to evolve gracefully, as will be
described in Section 2.6. They help capture, structure, and codify the domain
vocabulary, as we discover in Section 4.3. They are really the foundations of what
we have known as object-oriented analysis all along, as we discuss in Section 5.1.
In fact, commonality and variability analysis are powerful generalizations of
many design techniques. They cover most of the abstraction techniques that C++
inherits from the past two or three decades of programming language develop-
ment.

1.6 Software Families

One way we abstract is by grouping similar entities or concepts. If we group steps
of an algorithm by their relationship to each other, we call the abstractions proce-
dures. If we group related responsibilities of an encapsulated collection of related
data, we call the abstractions classes.

We can group by many criteria that we donÕt Þnd in any popular paradigm. In
the interest of abstraction, we take commonality where we can Þnd it. These com-
monalities fall along many dimensions: structure, algorithm, semantics, name,
inputs and outputs, binding time, default valuesÑalmost anything that causes us
to group things together. In this thesis, we call these groupings families, following
the FAST (Family-oriented Abstraction, SpeciÞcation, and Translation) termi-
nology of Weiss [Weiss+1999].

A family is simply a collection of system parts (or even concepts such as pro-
cesses, which arenÕt contiguous parts) or abstractions that we treat together
because they are more alike than they are different. Because family members have
so much in common, we can usually treat them all the same. We explicitly charac-
terize their differences, called variabilities, to distinguish individual family mem-
bers. This characterization of families brings inheritance hierarchies to mind for
C++ practitioners. However, itÕs an equally valid characterization of templates,
overloaded functions, and most other C++ language features that express design
structure.

Commonality and variability shape families. We can draw an analogy with bio-
logical families whose genetic makeups are the foundation of common and distin-
guishing characteristics. Families are deÞned by their genetic commonality, and
family members are distinguished by their genetic variations. Weiss notes that

1.7 Multi-Paradigm Design 39
one could think of the variabilities as generating a family tree based on the order
in which decisions are made during design.

Families of programs are made up of families of parts. A differential equation
solving program will likely contain a family of differential equation packages
(families of algorithms). A telecommunications system will contain families of
software for different kinds of lines and trunks. A compiler may have a family of
code generators for different kinds of optimization, for different target platforms,
and to support a spectrum of debugging facilities.

Many software families are naturally expressed by existing programming lan-
guage constructs. Classes in an inheritance hierarchy form a family, with a progen-
itor class at its root and mutant classes in the branches and leaves. Their common
behavior (presuming a subtyping hierarchy) is the basic gene set. Each class may
alter the characteristics it inherits (a curiously suitable word) from its parents. We
may have a base class called LogFile, with derived classes RemoteLogFile, Summa-
rizingLogFile, and ScavengingLogFile.

But some family groupings donÕt Þt naturally into object-oriented or proce-
dural structures. There are many computer science constructs that express com-
monality and variability but which are not programming language constructs.
The vocabulary of databases is rich with such expression. Processes, tasks, and
threads form families of sorts in the operating system arena. Network protocols
are families of messages. Even within programming languages, we Þnd rules,
tasks, exceptions, patterns, and many other groupings. These loom important in
everyday design.

Commonality deÞnes the shared context that is invariant across abstractions of
the application. Once we discover commonality, it becomes uninteresting; we
agree to it and put it behind us, and we discuss it no further. Variabilities capture
the more interesting properties that distinguish abstractions in a domain. ItÕs
important both to uncover variabilities in analysis and to provide a way for the
implementation to express them. In FAST, the commonality is implicit in the
application-oriented language (in the compiler and its environment), while the
variability is explicitly expressed in language constructs.

We can make a direct analogy to object-oriented programming languages,
whose programs group abstractions by commonality in signature. Class hierar-
chies form families; new classes need to capture only how they differ from the
other family members. The user of any of those classes can take their commonality
for granted and use their instances interchangeably.

1.7 Multi-Paradigm Design

Multi-paradigm design is a domain analysis technique that features concurrent
analyses of the application and solution domains. The goal is to Þnd solution
domain constructs that most naturally express the structure of the application

Thesis Presentation: The Need for Multiple Paradigms40
domain. We want to look for a match between commonalities and variabilities of
the solution domain with those of the application domain to understand what
solution techniques to apply to which parts of the problem. To support this, multi-
paradigm design offers techniques to build taxonomies of solution domain con-
structs. The taxonomies describe the kinds of commonalities and variabilities that
are germane to each of several paradigms, along with the C++ language features
that express those paradigms. Designers can use those taxonomies to Þt the appro-
priate solution constructs to the commonalities and variabilities produced by
application domain analysis.

1.7.1 The Language: C++

The paradigms of Òmulti-paradigmÓ in this thesis are those expressed by the C++
programming language. This is an unambitious use of the word Òparadigm,Ó
which usually implies the functional, database, and rule-based paradigms that
reach far beyond the boundaries of C++. ÒParadigmÓ is nonetheless an appropriate
term, and the technique generalizes to formal structures beyond those supported
by C++ or any other programming language. It generalizes beyond the object para-
digm, which itself is often viewed as somehow being more general than other tech-
niques. Chapter 6 presents a taxonomy of the C++ solution domain, the result of a
domain analysis of C++ itself.

Multi-paradigm design helps the designer align natural application domain
commonalities with those offered by a programming language. In this thesis, we
focus on C++ as that programming language. The object paradigm expresses just
one of the many kinds of commonalities and variabilities available to a ßuent C++
programmer. Multi-paradigm design attempts to bring out other features of the
programming language, just where it makes sense to do so, so that programs can
better express a good design partitioning.

Paradigms that are beyond the scope of C++ per se arenÕt directly addressed in
this thesis, though multi-paradigm design principles generalize to other solution
domain tools. Databases and scheduling abstractionsÑboth undeniably impor-
tantÑare beyond the scope of this thesis. An excellent database thesis is the classic
Introduction to Database Systems [Date1986], while excellent foundations for paral-
lelism can be found in Object-Oriented System Development [DeChampeaux+1993].

1.7.2 Dealing with Complex Families

It is important to recognize that software families are not simply descriptions of
disjoint sets or subsets of application entities. As in biology, families overlap. And
just as families intermarry and have members that mix genetic characteristics from
multiple parents, so we Þnd rich and complex associations in software architec-
ture. There are many interesting partitionings of any complex system, and many
complex systems can best be understood using multiple, simultaneous, indepen-

1.7 Multi-Paradigm Design 41
dent views. Each view addresses a particular set of concerns for a particular
observer: performance, resource use, message ßow, and so on. For example, a tele-
communications system might have software families for billing, for individually
marketable features like call waiting, for diagnostics, for initialization, for fault tol-
erance, for auditing, and for many others. It is rare that these families form disjoint
subsets of code. Rather, they are interwoven into a multi-paradigm system.

Families, or views of a system, must be chosen, mixed, and managed carefully,
and accommodating multiple, simultaneous views is difÞcult. But when multiple
views are absent, important semantics of system architecture are often omitted.
This has been one of the great downfalls of most software design techniques and
practice. Early object-oriented designs tended to miss the importance of use cases;
these were Þnally given just stature in the work of Jacobson, et al .
[Jacobson+1992]. It seems that every paradigm has drawn attention to its own
partitioning criteria only by belittling others, a marketing and political dynamic
that works against embracing multiple paradigms in a single project. It is particu-
larly important to be able to mix paradigms in complex systems. Complexity is
proportional to the number of distinct, simultaneously meaningful views of a
system [DeBruler1981]. That is, complexity is proportional to the number of over-
lapping families within the system. It is unlikely that we can reduce any complex
system to a single class hierarchy without making the base classÑwhich charac-
terizes the domain semantics of the hierarchy as a wholeÑlargely devoid of any
domain semantics. This shows up in systems that gratuitously use class Object as
the common base.

At the next level of sophistication, the designer can partition the system into
class categories [Booch1994], subsystems with a class hierarchy at their core. This
turns out to be less than ideal because of the potential coupling between hierar-
chies. Such coupling often comes from abstractions of process, while the class
hierarchies capture abstractions of structure. For example, consider a design with
separate hierarchies for the GUI (graphical user interface) and for application
objects. Where does one put the code that manages interactions between the pro-
gram and the user? It is a process consideration that does not belong wholly in
one hierarchy or the other. Such code could be allocated to its own class category,
but doing that would create a complex pattern of coupling between the hierar-
chies. A pattern like model-view-controller (MVC) gives this system view Þrst-
class standing without creating a separate, physically distinct hierarchy for the
domain. MVC captures the dependencies between the domains. Such dependen-
cies wonÕt always surface as patterns, and we need more general design mecha-
nisms to deal with interactions between domains.

The object community has struggled with this problem. As the object discipline
matured, increasingly rich mechanisms came on the scene to address this issue:
multiple inheritance in the early 1980s, the separation of type and class in the 1990s,
the popularization of role-based modeling in the mid- to late-1990s, and design pat-

Thesis Presentation: The Need for Multiple Paradigms42
terns in the same time period. We have come a long way from the original Carte-
sian divide-and-conquer models of inheritance at the roots of object-oriented
programming.

Whereas most domain engineering techniques equate domains with modules,
subsystems, libraries, or other self-contained constructs, multi-paradigm design
supports the interweaving of multiple domains. Multi-paradigm design deals
with families delineated by structure, names and semantics (including the seman-
tics of inputs and outputs), behavior, algorithm, binding time, granularity, and
state. Most methods build on these very principles, though most methods use a
few high-level formal structuring concepts (such as objects or modules) instead of
the more general (and lower-level) concepts of multi-paradigm design. Multi-par-
adigm design describes domain interactions in terms of these more general con-
cepts.

1.7.3 Incorporating Patterns

Section 6.12.2 explores the relationship between software patterns and multi-para-
digm design. Designers can combine structural patterns with multi-paradigm
design techniques, and Section 6.12.2 will demonstrate that many structural pat-
terns (such as TEMPLATE METHOD and STRATEGY [Gamma1995]) are just special cases of
multi-paradigm design techniques. Other patterns are outside the scope of multi-
paradigm design and offer design leverage that canÕt easily be attained with a
method or semi-formal approach like multi-paradigm design. Such patterns com-
plement multi-paradigm design well.

1.8 Multi-Paradigm Development and Programming
Language

Many analysis techniques focus only on the application, or Òproblem,Ó domain. By
distancing themselves from solution Òdetails,Ó these methods claim to be more
abstract. They also claim applicability across a wide variety of programming lan-
guages. For example, some methodologists claim it is possible to do analysis and
even design under the object paradigm, while implementing in any technology of
choice. Such an approach may stagger to success in a greenÞeld system, but it
leaves many difÞculties for long-term maintenance.

Language guides, constrains, supports, and expresses how we partition an
application and how we manipulate it and give it form. As a trivial example, a
homogeneous List in Smalltalk would have one closed form in code to serve all
possible types of contained elements, thereby dealing with different types of con-
tained elements at run time. The same implementation in C++ would probably
use templates to generate one copy of code for each family member (though some
compilers can automatically factor out the object code common to the instantia-

1.8 Multi-Paradigm Development and Programming Language 43
tions, as the Metroworks compiler does at this writing for containers of pointers).
The implementation technology must be reckoned with.

Multi-paradigm design investigates commonality and variability in both the
application and solution domains. We use commonality and variability analysis in
both domains and align the two analyses to derive the solution structure. This is a
bit different than the FAST approach, which derives the implementation tech-
nology from the domain analysis.

1.8.1 Application-Oriented Languages in FAST

The original FAST method of Weiss et al. [Campbell+1990] took an enlightened
view of the application and solution domains and their relationship to each other.
The key to a good analysis is to gather the design knowledge that relates to com-
monalities and hide it as a Òdesign secretÓ so that it doesnÕt clutter the code that
developers use to express the design. Ideally, the programming language itself
should hide all of the commonalities of the domain whose implementation it
expresses so that the programmer can focus on expressing the variabilities.

For example, a spreadsheet language hides the common mechanisms for auto-
matically updating value cells. This is logic that is common to most cells and
which doesnÕt vary from application to application. However, most spreadsheet
languages offer rich constructs to express the values and structures that vary
across applications.

In the original FAST method, Weiss uses commonality and variability analysis
to characterize families of software artifacts or abstractions. Instead of leaving the
programming language to chance, FAST builds a structured vocabulary of family
members as the basis for a custom programming language for each domain. The
language expresses variations in family members; family commonalities are pre-
sumed to hold for all abstractions in the domain being analyzed. There is a trans-
lator for the language that produces family members from speciÞcations, thereby
taking advantage of the shared commonality. This language and its associated
supporting tools form an application engineering environment for the domain.
The FAST method is a reÞnement of early work by Campbell, Faulk, and Weiss on
synthesis processes [Campbell+1990]. It focuses on application engineering envi-
ronments that most often employ application-oriented languages (AOLs), which
are also called Òlittle languagesÓ [Bentley1988] or application-speciÞc languages.

For example, one might use the FAST technique to analyze a protocol and then
use the analysis results to guide the creation of an AOL that succinctly expresses
solutions in the protocolÕs domain of application. The FAST technique analyzes
the application (problem) domain as the source of constraints for the structure of
the solution domain. There is little consideration for constraints that come from
the solution domain itself. Solution domain constraints become important if there
is a goal to reuse solution domain technology instead of to customize a new appli-
cation engineering environment for each domain.

Thesis Presentation: The Need for Multiple Paradigms44
Some domains beneÞt enough from AOLs to justify the cost of a customized
application engineering environment. AOLs make it easier to rapidly generate
solutions within the domain. Some support formal analyses (such as for freedom
from deadlock in the protocol domain example) and substantial optimizations
that are difÞcult with general-purpose languages. When these factors dominate
project needs, it can be cost-effective in the long term to develop an AOL and the
application engineering environment to support it. Projects facing such decisions
can beneÞt from a cost-beneÞt analysis for each domain being considered. For a
Þrst cut, the decision can be made for each domain independently.

One downside to the application engineering environment approach is the cost
both of initial construction and of long-term maintenance of the tools, processes,
and support staff, particularly if the cost canÕt be broadly spread across several
projects. Another downside is its lack of guidance for translation from analysis to
the programming language. The success of a language (such as an AOL, but for
general-purpose languages as well) requires the designer to be skilled both in the
application domain and in language design. Even with a good language designer
on staff, good languages are notoriously difÞcult to design and good language
design could (or should) take months. One might address this problem by doing an
object-oriented analysis of the completed commonality and variability analyses to
Þnd cues for the solution domain language, as has been done in unpublished
work by Weiss and his colleagues.

Multi-paradigm design steps back from any single paradigm to generalize this
process. Furthermore, it focuses on reusing existing solution domain constructs
where possible. This is why the analysis of activities of multi-paradigm design
take into account both the problem domain and the solution domain.

1.8.2 Domain Analysis and the C++ Programming Language

WeissÕs principles underlie most of the precepts of this thesis. We part company
only at the point of choosing a programming language. Multi-paradigm design
does not derive the structure of a custom programming language from the applica-
tion domain analysis. Rather, it extracts the structure from a rich, general-purpose
programming language such as C++ and matches it to the needs of the application
domain. It uses that structure to guide design with more regularity than with the
original synthesis process but with more ßexibility than with the FAST process
alone.

The techniques of commonality and variability analysis are broader than any
programming language. We could have chosen any language that can directly
express recurring design structures without relying on convention. The advanced
or innovative designer can adapt the techniques of this thesis to such program-
ming languages by modulating the models developed in Chapter 6 and applying
them to the remaining analyses in the thesis. Indeed, much of the material in this

1.8 Multi-Paradigm Development and Programming Language 45
thesis has little to do with C++ or with programming language, particularly in the
early chapters.

So why C++? No doubt, the popularity of C++ will be a factor in how broadly
the techniques of this thesis are applied. This was an important consideration rel-
ative to the Òlittle languagesÓ used in application engineering environments,
which almost always serve a small and local clientele and which enjoy the sup-
port of a local wizard. But more to the point, C++ supports multiple paradigms
well. C++ has templates, overloaded functions, inheritance, and virtual
functionsÑa rich collection of facilities to express a broad spectrum of patterns of
commonality and variability. In C++, we can write a single List templateÑone
set of sourceÑthat can maintain lists of any kinds of objects. We can do the same
thing in Smalltalk, though the mechanisms that make the same genericity possible
are implemented in a much different way. All other language debates aside, one
advantage of C++ is that it directly expresses the intent of the analysis in a way
that Smalltalk can do only by convention.

The application engineering component of the FAST method goes beyond com-
monalities and variabilities of any single general-purpose language. Its applica-
tion engineering advocates customized languages that can capture the
commonalities and express the variabilities of speciÞc domainsÑthe language
helps the developer focus on properties that vary. The background commonality
provides a context that the programmer can presume to hold true across a
domain. FAST favors development cultures that need simple, expressive lan-
guages and environments to go with them. As described previously, a good lan-
guage and environment come at considerable expense, and they can address only
limited domains well. C++ is a true general-purpose language that rises to the
complexity of domains that are inaccessible to Òlittle languagesÓ and that enjoys
popular support. These advantages of a general-purpose language sometimes
outweigh the advantages of AOLs, in spite of the complexity and other liabilities
of C++.

The same principle that encourages us to draw on multiple paradigms within
C++ also encourages us to employ multiple design strategies at a higher level. The
language was consciously designed to support multiple paradigms
[Stroustrup1995]. Some domains are sufÞciently rich that a mixture of little lan-
guages and C++ is the best solution. One might use multi-paradigm development
to build a C++ class library that serves as a foundation for an AOL. Another
approach is to partition a domain, using C++ for some sub-domains and little lan-
guages for others; the two parts would communicate through an architectural
interface. Compiler writers often use yacc in this fashion. Common sense and
experience usually suggest one or more of these approaches.

Thesis Presentation: The Need for Multiple Paradigms46
1.8.3 Polymorphism

Polymorphism is behind each of the paradigms that C++ supports. The term poly-
morphism has entered mainstream technical jargon through the object paradigm, to
whose advocates it means roughly run-time operator lookup. Virtual functions
support that sense of C++ polymorphism. But overloading, templates, inheritance,
and even type conversion are forms of polymorphism as well. We will revisit this
in depth in Section 6.9. The etymology of ÒpolymorphismÓ translates literally to
Òmany forms.Ó If there are many forms of a thing, that implies some commonality
by which the variability of forms is established or judged. Commonality estab-
lishes a framework in which polymorphism can make sense, and variability char-
acterizes the polymorphism itself.

For example, if we are using polymorphism in a shape-drawing graphics
package, the variabilities are the drawing algorithms and data structures for dif-
ferent kinds of shapes. But all shapes have something in common. They all share
some data structure (such as their location, border, and Þll colors), and they all
share some behavior (they can all be moved, reshaped, created, and deleted). ItÕs
the commonalities that make them shapes; itÕs the variabilities that make them
kinds of shapes. Polymorphism takes advantage of this balance of commonality and
variability. The result is an abstraction (an abstract base class) that characterizes
the entire family.

Of course, we neednÕt conÞne ourselves to an object-oriented example. All sets
have things in common: They can all have things inserted into them, and they
may all share algorithms and data structures. But a set of integers is different from
a set of windows. This is because the logic that inserts new elements uses different
algorithms to determine if the new element is the same as any element already in
the set (you canÕt replicate elements in a set). This, too, is polymorphism. There
are many forms of sets that share most properties in common, but each kind of set
varies from others in subtle ways. We can capture those differences using tem-
plates, which are another form of polymorphism. A single abstraction (a template)
characterizes the entire family.

1.9 Commonality Analysis: Other Perspectives

Multi-paradigm design draws on related techniques from the legacy of computer
software design. A few of them are discussed in the following sections. These anal-
ogies help tie together multi-paradigm design with broader design models. Exam-
ining multi-paradigm design from multiple viewpoints also offers insight on why
its principles work and why they are important.

1.9 Commonality Analysis: Other Perspectives 47
1.9.1 Policy and Mechanism

Separation of policy and mechanism underlies many long-standing software engi-
neering principles, and we can think of multi-paradigm design in these terms. To a
Þrst order of approximation, the market doesnÕt care about the mechanisms used
to implement its policies as long as the policies are carried out. Most of the time,
mechanism answers the question, ÒHow is functionality implemented?Ó while
policy asks, ÒWhat is being implemented?Ó

The mechanisms of a business domain often remain stable over time, while the
policies shift with market needs, regulations, and other external inßuences.
Because mechanisms are stable and because they are of secondary interest to the
system customer (they rarely appear in requirements), we want to bury mecha-
nisms where the user canÕt see them. This hiding of the secrets of implementation
behind a class interface is an often-heralded goal of the object paradigm. This idea
isnÕt new to objects, of course. It was an early principle of modular design. The
end user shouldnÕt see the mechanisms, but the user should be able to manipulate
those parts of the design that correspond to the policies of the business domain.
ThatÕs the fundamental spirit of ParnasÕs information hiding. In many good sys-
tems, commonality captures mechanism and variability captures policy.

In multi-paradigm design, we express variabilitiesÑpoliciesÑand hide com-
monalitiesÑwhich are often mechanismsÑby using the programming language
of choice (in this thesis, C++). We build a framework for each application domain
and bury domain commonalities inside of it. The framework has external ÒhooksÓ
that the programmer can manipulate or extend to tune the framework for a spe-
ciÞc application. These ÒhooksÓ can be expressed as C++ abstract base classes (the
programmer provides a derived class), templates (the programmer provides tem-
plate parameters), and overloaded function families (the programmer can extend
the family or can call existing functions). They also can be expressed through
other language features. A general approach like this keeps the design ßexible.

1.9.2 Variability over Time versus Variability over Space

We can adopt two different perspectives during analysis: focusing on changes over
time or focusing on variations within a family. We can think of variations in a
family as occurring in Òspace,Ó as different conÞgurations that coexist in time for
different customers or markets. These two approaches have separate but related
goals.

By focusing on commonalities in a family of abstractions for a product or
product line, we increase architectural abstraction. We reduce development
effortÑthis is reuse at its best. We might notice that there are several different
window system technologies and create a parameterized design sensitive to the
kinds of variation. Doing that allows us to deploy a family of systems in which

Thesis Presentation: The Need for Multiple Paradigms48
each member of the family incorporates a different window technology. This is the
strategy most commonly associated with the term domain analysis.

By focusing on what will remain common over time, we try to lower mainte-
nance cost. We try to predict how the domain will change. Better yet, we try to
predict how it wonÕt change, cast that as a commonality, and capture it in the
systemÕs structure. Variabilities should express what changes over time. A good
design anticipates market changes over the lifetime of the system and predicts
how badly they upset commonality assumptions. Predicting wrong can be expen-
sive and can lead to those all-too-familiar situations in which a small requirement
change leads to a large development effort. History is often a good predictor of
the future: What has remained stable in the past often remains stable in the future.

Commonalities in space often unfold as though they were commonalities over
time. In time, system designers may adjust the parameters of variation to select
different family members one by one in successive releases. The project may also
introduce family members that were unforeseen in the initial design. In a good
design, these newcomers can take advantage of the foresight of a good common-
ality analysis because the commonality analysis tries to predict change, whether
over time or in space.

In multi-paradigm design, as in any process that uses domain analysis, the
designer must be careful to anticipate variabilities in ÒspaceÓ as well as changes
over time. The test of time is usually the stronger test of the two. One can gener-
alize from existing applications in mature domains, and those generalizations
point to commonalities that will meet the test of time (remember, the past predicts
the future). In new domains, itÕs more important to project commonalities and
variabilities in time.

1.9.3 Philosophical Foundations

While multi-paradigm design has proven sound in actual practice (as in much
common C++ programming, much of which mixes templates and objects, as well
as in more routinized contexts such as [Barton+1994], [CzarEise2000]) and peda-
gogy ([Budd1995]), it is instructive to look at the deeper philosophical underpin-
nings. Recent research in Þelds such as linguistics has shed new light on the way
the mind deals with cognition and abstraction. One of the leading theories driving
contemporary dialogue in this area is LakoffÕs theory based on stereotypes. His
historical perspective offers encouragement about the applicability of abstractions
based on commonality:

An understanding of how we categorize is central to any understanding of how
we think and how we function, and therefore central to an understanding of
what makes us human. [Lakoff1990, page 6]

and

1.9 Commonality Analysis: Other Perspectives 49
The idea that categories are deÞned by common properties is not only our
everyday folk theory of what a category is, it is also the principal technical the-
oryÑone that has been with us for more than two thousand years. [Lakoff1990,
page 5]

Lakoff goes on to say that modern research in the tradition of WittgensteinÕs
early work [Wittgenstein1953] invalidates much of this tradition. The now out-
dated classic models hold that we group things into categories on the basis of
common properties. Contemporary thought holds the human categorization pro-
cess to be based more on metaphors than on commonality and variation, and such
theory is the thrust of LakoffÕs work.

Multi-paradigm design stays largely rooted in the classic model for several
practical reasons. First and foremost among these is that the classical models have
driven contemporary tools and programming languages, so any method that is to
transfer effectively into broad practice must pay homage to this tradition. Second,
Lakoff himself points out that there is a dichotomy between the workings of
human thought processes and the workings of any machine. Design bridges the
gap between these two worlds, which means that itÕs saddled with some of the
trappings of the classical view on which machines are built. This casts some doubt
about the suitability of models of the human cognition to the design of informa-
tion systems.

Though multi-paradigm design most often errs on the side of the classic view,
it embraces important elements of the modern view as well. Classical categories
have Þxed boundaries, stipulated by commonalities that are assumed to apply to
all members of a family. Software paradigms are one mechanism to constrain the
way these categories are derived from a study of the application and solution
domain, admitting certain categories and omitting others. For example, the very
terms ÒobjectÓ and ÒclassÓ come from set theory and denote a hierarchical
arrangement of objects into bounded sets called types, and types into hierarchies
of bounded hypersets called classes. Other paradigms use different criteria but
almost always share this bounded, hierarchical nature of abstraction. The domain
dictionary phase of multi-paradigm design is much more general, substituting a
set of more linguistic and social criteria on word selection than the more rigorous
epistemology of object orientation or structured analysis data dictionaries. Multi-
paradigm design tends to look to the domain of interest itself for partitioning
clues, rather than depending on archetypical structures of design. And the ulti-
mate taxonomy of categoriesÑthat is, the implementation paradigmsÑdo not
contaminate the early partitioning criteria.

Even if domains form categories with many trappings of the classical modelÑ
such as well-delineated boundariesÑthe domains themselves do not always cor-
respond to the physical solution partitioning. Domains are logical abstractions
that may cut across physical partitionings. For example, a domain such as arith-
metic operators may be implemented using overloading; the family of overloaded

Thesis Presentation: The Need for Multiple Paradigms50
functions may cut across a domain of algebraic types implemented using classes
and inheritance. This richness of categorization rises above the simple partition-
ings of the classic model.

We can also consider the place of multi-paradigm design in the context of the
history of design. Design history has witnessed a cycling between craft and auto-
mation, a history that parallels developments in the arts during the same time
periods. Software design follows this metaphor closely, with early object orienta-
tion being an anthropomorphic, post-modern reaction to the structured era, which
was in turn a reaction to the more unstructured Òhacker cultureÓ of the 1960s
[Coplien2000]. Late object orientation tends to have more overtones of mod-
ernism, with increased focus on methodology and CASE tools. And at its founda-
tion, object orientation is concerned with ÒthingsÓÑobjectsÑmore so than ideas,
which itself is a hallmark of modernism. In 1987, Thackara writes: ÒWe are
entering a post-industrial age in which things will be less valuable than ideasÉÓ
[Thackara1988]. Multi-paradigm straddles the modern/postmodern fence. It
embraces the system perspective of postmodernism and gives expression to
ÒideasÓ that correspond to modern category theory, yet it leaves room for
ÒobjectsÓ as well.

Multi-paradigm designsÕ negative variability mechanism is another response
to the problem of inßexible category boundaries in the classic model. It provides a
formal framework to deal with the breakdown in commonality across families
that are bona Þde categories in the Lakoff sense, though not in the classical sense.
Negative variability (Section 3.3.2, Section 6.11) is a broad generalization of com-
monly used programming mechanisms like argument defaulting, inheritance
with cancellation, and template specialization that usually are regarded as iso-
lated tricks or optimizations. The generalized model arguably moves software
design out of the strictly bounded models of classic category theory and makes
important steps toward LakoffÕs model.

The ideas of Chapter 9 further break down the structure of strictly bounded
categories by accommodating Òtangled hierarchiesÓ that embody recursive con-
ceptual dependencies.

1.10 Related Work

1.10.1 Historic Notes

The concept of software families has early roots in Dijkstra [Dijkstra1968] and
Parnas [Parnas1976; 1976; 1978]. Dijkstra proposed a model of family-based devel-
opment where differences in design decisions distinguished family members
[Dijkstra1968]. The original concepts of information hiding separated the common
and variable aspects of a module into an implementation and interface, respec-
tively [Parnas1972]. Parnas later characterized families as groups of items that are

1.10 Related Work 51
strongly related by their commonalities, where commonalities are more important
than the variations between family members [Parnas1976].

Harlan Mills made an early attempt to formalize common structure across pro-
grams, and developed an algebra of program structures [Linger+1979]. The
Òprime factorsÓ of this algebra were of course linguistic structures, in particular,
those tied to structured programming. These most primitive structures are analo-
gous to the commonality categories of multi-paradigm design.

The earliest application of domain engineering techniques owes to Neighbors
([Neighbors1980], [Neighbors1984]). FODA [Kang+1990] and ODM [Simos+1996]
represent the more prominent domain engineering efforts of the past decade. The
notion of concept starter sets from ODM is similar to the commonality categories of
the work described here. A recent survey summary of other notable methods can
be found in section 2.8 of [CzarEise2000].

Weiss has elaborated and extended ParnasÕs work. Multi-paradigm design has
its roots in the early work on commonality and variation by Campbell and Weiss
[Campbell+1990]. That work evolved into a system called FAST, which empha-
sizes the creation of application engineering environments based on custom lan-
guages, library combination, and other techniques [Weiss+1999]. FAST has started
to incorporate techniques from multi-paradigm design [Coplien+1998] in a com-
mercial setting.

Similar concepts appear in other contemporary work. PreeÕs Òhot spotsÓ
[Pree1995] are a form of variability analysis, though he doesnÕt extend the idea to
paradigms or to anything beyond a factoring of common patterns.

1.10.2 metaobject Protocols

Gregor Kiczales notes that you want to bind all decisions as late as possible so that
you can give customers control over system evolution [Kiczales1994]. Deferred
binding is an important part of the object paradigm and a key part of the kind of
ÒpolymorphismÓ that object-oriented programmers hold dear.1 We want to use the
available facilities of the programming language and other implementation tech-
nologies to align domain variabilities with language constructs that support
change with a minimum of ripple effect.

Prediction is always difÞcult, and we canÕt foresee all of the ways in which a
system will change. Providers and users sometimes must change not only the
system policies but its mechanisms as well. Using the principles of FAST, we try to
bury the mechanisms where the user doesnÕt have to bother with them. Can we
make everything easily changeable?

Kiczales feels thatÕs why metaobject protocols are so important: They make it
possible to reprogram the contract between the programmer and the system. C++

1For more on the relationship between multi-paradigm design and polymorphism, see
Section 6.9.

Thesis Presentation: The Need for Multiple Paradigms52
has no facilities for evolving its object model directly; analogous functionality
comes from idioms [Coplien1992] and patterns [Gamma1995].

We might achieve a broader range of ßexibility by doing a commonality anal-
ysis on the commonality analysis itself, looking for opportunities to regularize
multiple domains. Following KiczalesÕs lead (Òif you canÕt conquer, divide, and
try a metaobject protocolÓ), we might have more success in the solution domain
than in the problem domain. That might lead to another ÒlanguageÓ that captures
the metaobject protocol. While we Þnd this issue resolved in symbolic program-
ming languages, we must simulate reßection in C++ using the kinds of conven-
tions mentioned previously (in particular, see [Coplien1992], Chapters 8 and 9).
This takes us much in the direction of design patterns (Chapter 6), which encode
recurring structures that express semantics not easily encapsulated in objects. Pat-
terns provide a vocabulary that raises the level of the contract between pro-
grammer and system, much as the metaobject programming constructs of
Smalltalk and CLOS do.

Multi-paradigm design doesnÕt aspire to such reßective solutions; this is
largely an issue of practicality and scope. The pattern tie-ins in Chapter 6 are lim-
ited to structural commonalities and variabilities that are simple extensions of
C++ constructs.

1.10.3 Aspect-Oriented Programming

Aspect-oriented programming (AOP) is a way of modularizing features that cut
across traditional modular partitionings. Common considerations like perfor-
mance and reliability usually manifest themselves in code fragments scattered
about a system; AOP brings these fragments together into a uniÞed aspect. ItÕs note-
worthy that KiczalesÕs nascent but promising concept of aspects [Kiczales1997]
corresponds closely to the concept of ÒdomainÓ as that term is used in domain
engineering, and certainly as it is used in this thesis.

One way of viewing AOP, from the perspective of multi-paradigm design, is
that it is the most fully general implementation of multi-paradigm design pos-
sible. Multi-paradigm design attempts to modularize domain knowledge, too, by
trying to apply several stock partitioning criteria to a problem. AOP approaches
the problem head-on, starting with the presumed separation of the problem into
domains, using a special generator (a weaver) to weave an aspect back into the
base.

1.10.4 Generative Programming

The long-standing work of Ulrich Eisenecker and the recent thesis work of
Krzysztof Czarnecki [Czar1999] discuss a development approach called generative
programming. There are many similarities between generative programming and

1.11 Summary 53
multi-paradigm design. Both draw on domain analysis and focus on system fami-
lies.

Generative programming is based on a broad collection of techniques from the
prior art: components [Szyperski1998], objects, aspects [Kiczales1997], reßection
[Kiczales+1991], intentional programming [Simonyi1995], and generics
[Musser+1994], [Musser+1998]. It develops principles that tie these approaches
together [CzarEise2000] around the central themes of domain engineering
[Weiss+1999] and metaprogramming.

The difference between multi-paradigm design and generative programming is
largely one of breadth and focus. Generative programming is a family of tech-
niques and tools that combine to form an overall software engineering method.
The focus is on automating the mapping between the application and solution
domains given an established architecture. Multi-paradigm design, on the other
hand, focuses on creating that initial reference architecture.

There are also differences in overall technique and approach. Generative pro-
gramming is focused on meta-linguistic techniques and generators that are used
to create what are in essence small languages that in turn generate applications.
Much of the recent generative programming research has focused on minimizing
this meta-language set to something as simple as templates with rich compile-
time conditionals. The technique has the feel of building a compiler or generator,
which of course has great payoff in ßexibility. Multi-paradigm design is more
focused on creating architectures and expressing them using the rich features of
the programming language; ßexibility derives from the structure of the code and
the articulation of points of change

I believe generative programming offers much promise in automating the
translation between the application domain and solution domain. The two tech-
niques complement each other well, and I hope to have the opportunity some day
to explore how these two techniques might work together.

1.11 Summary

Choosing a design method is a crucial software development decision. While the
object paradigm is currently in vogue, we must generalize beyond objects alone
and look for opportunities to apply other paradigms. Not everything in nature or
business is best seen as an object. We can use commonality and variability analysis
to look for the dimensions of commonality and variability in both our application
and solution domains. The dimensions shape families of abstraction.

To get started with multi-paradigm design, we now move on to describe anal-
ysis. The next chapter describes how to build the underpinnings of a rudimentary
ÒlanguageÓ for the application domain: a domain dictionary, which captures the
families of interest. Later, we will explore C++ for the families it expresses most
naturally. The goal is to Þnd a natural match between the structure of an applica-

Thesis Presentation: The Need for Multiple Paradigms54
tion domain family and a suitable solution structure. To the degree we succeed,
our code will be more likely to meet its intended need and to continue meeting
the needs of the application domain in the long term.

Chapter 2

Commonality Analysis
Commonality and variability are two key characterizations of most software para-
digms. This chapter introduces the Þrst of these dimensions. Commonality deÞnes
families in an application. Families are the primary basis for abstraction in multi-
paradigm development.

2.1 Commonality: The Essence of Abstraction

All major advances in software design have built on newfound insights into
abstraction. Abstraction, in the common natural language sense, means to focus on
the general and put aside the speciÞc. We abstract by emphasizing what is
common and deemphasizing details. Abstraction is a fundamental analysis tool.

LetÕs say weÕre designing a package to process payroll data. We know weÕll
need to sort the data according to many different criteria. At some level of design,
we may identify sorting as a key business abstraction. ItÕs an abstraction not from
the object paradigm, but from the procedural paradigm. Nonetheless, itÕs a key
business abstraction. ItÕs not a single piece of code. If we know the data are offered
to the sorting algorithm in a largely random order, weÕre likely to use quicksort.
We may sort large, partially sorted data sets with in-place insertion sort. If
memory is available, we may copy the data into a list and then use list insertion
sort, copying back when weÕre done. This typically is twice as fast as in-place
sorting. And if we just want a function with a cute name for student exercises, we
may use bubble sort. At high levels of design, we can treat all of these equally
because of what they have in common: They all sort. This commonality is the basis
of abstraction.

And if weÕre building a matrix algebra package, weÕll talk about the abstraction
Òmatrix,Ó even though we know there are many different kinds of matrices.

Commonality Analysis56
Sparse matrices, identity matrices, and upper and lower diagonal matrices all
differ in their implementation. But we group them together by the behaviors they
exhibit in common. The commonalities again support abstraction.

Commonality analysis goes hand-in-hand with the important design principles
of coupling and cohesion. Software design strives to create largely independent
design products that individually can be built, implemented, and maintained. A
successful partitioning leads to design products that are largely decoupled (so
that development teams can work more independently) and largely cohesive (so
that each design product is a conceptual whole, thereby making the system easier
to understand). For example, we strive to build inheritance hierarchies that group
together classes that are independent of classes in other inheritance hierarchies.
These hierarchies come about from a commonality analysis, though the common-
ality analysis is implicit in object-oriented techniques while we make it explicit in
multi-paradigm design. We group classes together into an inheritance hierarchy
because they share common properties: They have a common interface and may
share a common implementation. Other language features capture other kinds of
commonality. For example, templates let us group structures that have similar
overall code and data structure but that vary in implementation.

Commonality analysis does three important things for us. First, it supports
abstraction. By grouping together dozens of classes under a single design abstrac-
tion, it helps the designer ÒchunkÓ the design as an attack on complexity. A good
example is an inheritance hierarchy, with the base class representing the abstrac-
tion of the classes in the hierarchy. Second, commonality analysis supports cohe-
sion and coupling analyses. Grouping by commonality naturally leads to chunks
that are independent of each other because each chunk has low commonality with
the elements in other chunks. Third, commonality analysis reduces maintenance
cost. The broader a commonality, the more likely it will hold in the long term.
Strong commonalities can be the invariant structures of design. For example, if we
deÞne the base class Telephone in terms of the methods alert (to ring the tele-
phone), DN (which yields its telephone number, for which the term of the trade is
Òdirectory numberÓ), and talk (which causes it to connect to a talking path), we
will have captured an abstraction that characterizes most telephone terminals as
they exist today, as well as most telephones over the past 100 years. We can put
additional functionality in derived classes, but the base class captures the domain
abstraction that is stable across space and over time.

2.1.1 Deductive and Inductive Commonality

We recognize commonality in two major ways: recognizing patterns weÕve seen
before and recognizing recurring structures we havenÕt. The Þrst of these relates to
experience, and the second is a form of learning. Both are relevant to software
design. Reuse is all about experience, and much of the rest of designÑcreating new

2.1 Commonality: The Essence of Abstraction 57
abstractionsÑrelates to the learning model. And it isnÕt much different for the way
we view software than the way we think about the rest of the world around us.

Having seen cars all of our lives, we all recognize one when we see one. Even
when seeing the Þrst cars of a new model year, we recognize these hitherto unseen
entities as cars. They differ in detail from the cars of our experience, but they share
the same aspects in common as cars in general. The Òarchetypal carÓ in our mind
helps us to recognize cars when we see them. Such archetypes shape the new sys-
tems we build. We donÕt have to invent ÒcarÓ from Þrst principles to build a new
one.

The same is true in software: We can build on archetypes or ÒframesÓ as design
foundations [Winograd1987]. When presented with a computing problem, most
of us formulate abstractions drawn from our experience. For many of us, these
abstractions are procedures with arguments. For others, they are database rela-
tions or tuples. And for many, they are classes or objects. All of these are inductive
approaches to abstraction. Most methods draw on only a few rules from a single
paradigm to abstract a complex system into a simpler model (Òif youÕre a hammer,
every problem looks like a nailÓ).

Faced with a new situation in which no learned models apply well, we form
abstractions by seeking repetition. In the absence of analogy and experience, we
apply deductive reasoning to form models and abstractions. The Þrst time we see
the dwellings of a culture foreign to our own, it dawns on us that they are all
related somehow. We form an abstraction that we tag Òdwelling-for-that-culture.Ó
We can do the same in software.

Multi-paradigm design draws on available domain experience to partition the
problem into commonly accepted domains. As the design progresses, multi-para-
digm design draws more and more on the domain itself rather than on stock par-
titionings. GreenÞeld designs for new domains bypass the initial intuitive phase,
borrowing from archetypes only as needed and looking to the domain itself for
partitioning clues. We draw abstractions from the domain itself, instead of tor-
turing abstractions from the problem by using preconceived partitioning criteria.
If by happenstance a stock paradigm is the best choice for a given application,
commonality and variability analysis will support such a conclusion.

This doesnÕt imply that every greenÞeld problem needs a custom paradigm to
derive its solution structure. There are styles of partitioning called commonality
categories (Section 2.3) that emerge again and again, and the designer should rec-
ognize these styles and capitalize on them. Most of these commonality categories
map into C++ programming language constructs and the paradigms they sup-
port, such as objects and templatesÑthis is presumably the reason such constructs
exist in the language. We nonetheless can enumerate some ÒaxiomaticÓ dimen-
sions of commonality that are common to many world views. The perspectives we
choose here donÕt comprise a complete set, and the choice is by no means unique.

Commonality Analysis58
The dimensions we choose will shape our choice of C++ implementation tech-
niques in Chapter 8 and Chapter 9.

2.1.2 Software Families

Software problems, and the solutions that address them, are rich with structure.
We can group data structures and functions by criteria such as structure, name, or
behavior. We call a group of related items a family. Parnas [Parnas1976] deÞnes a
family as follows.

We consider a set of programs to constitute a family, whenever it is worthwhile
to study programs from the set by Þrst studying the common properties of the set
and then determining the special properties of the individual family members.

We can Þnd many family abstractions in most applications.
The analysis of the domain of linear algebraic programming serves as an

example. This domain produces a family of user abstractions called Òn-dimen-
sional matrixÓ that includes column vectors, 2-dimensional arrays, and higher-
order matrices. Drawing on our experience with such programs, we know we also
need a family of data structures for multiple internal representations of these data
structures: sparse arrays (perhaps using a linked list), indexed sequential arrays,
identity matrices, and diagonal matrices. Yet another family is the collection of
algorithms for multiplying matrices: one to multiply sparse matrices, another to
multiply an identity matrix by another matrix (a function that is easily made very
efÞcient), another for the case in which one of the operands is a diagonal matrix,
and so forth. There are analogous families for other operations. Further analysis
may yield even more families.

Even this domain of matrices (which presumably comprises just one part of a
larger problem) is rich with many families of its own. The larger domain of
matrices can be broken down into subdomains: matrices, data structures, and
operators. Each subdomain deserves its own commonality analysis.

Many design techniques focus on modules. There are many kinds of modules.
Objects, classes, processes, and functions are examples of modules produced by
popular design paradigms. Modules are the primary units of system abstraction,
administration, and conÞguration. They need not delineate domains. There is a
tension between the logical cohesion of any business concept and the ability of a
programming language to capture such a concept in a language construct.

Most traditional software design methods are hierarchical. Modulo infrequent
recursion, procedural structures form a directed graph, and the static structure is
strictly hierarchical in block-structured languages. Hierarchies are a powerful tool
in more advanced state machine design approaches ([Selic+1994], [Harel+1998]).
Much early design method literature offers arguments for the power of hierarchy
(e.g., [Rehling1977], [Stay1976]). While the object paradigm may admit to being
neither top-down nor bottom-up, it still relies strongly on hierarchy ([Booch1994],

2.1 Commonality: The Essence of Abstraction 59
ff. 13). We categorize by parts, and organize the parts hierarchically. What struc-
tured analysis, functional decomposition, modular information hiding, and
object-oriented design have in common is that they produce parts. We use these
parts to hide ÒsecretsÓ of design. Whenever the domain allows us to hide design
secrets in modules, we should do soÑthe design will be more resilient in light of
change. But complex systems have many Òtops,Ó so top-down and hierarchical
design paradigms are sometimes unable to expressively characterize some
domains.

The matrix domain is one example. Instead of our capturing important domain
dimensions in a traditional moduleÑthat is, a construct that corresponds to a con-
secutive block of source or object codeÑwe look to capture them in language con-
structs. And we may apply those language constructs across modules. For
example, we may capture matrix structure in a family of modules, with different
modules for sparse matrices, identity matrices, upper and lower triangular
matrices, and so on (though weÕd probably use classes instead of modules, which
we think of as being unlike modules in their support for instantiation). The opera-
tions on matrices are also a family, a domain, but they are a family of overloaded
functions, and not classes or modules.

Finding Domains

At this point, an insightful reader will recognize that we might capture algorithmic
commonality with overloading, behavioral commonality with public inheritance,
and structural commonality with aggregation. But Þrst we need to Þnd the
domains; this is the Þrst step of commonality analysis. Most domains should be
obvious to experienced practitioners in the Þeld, who can formulate the abstrac-
tions from memory and experience. In new problem areas, we need to gather infor-
mation about the problem to partition it into domains and subdomains and to
characterize their properties. To get us started, we develop a dictionary of terms.
Using this dictionary, we ascribe meaning to the ÒpiecesÓ of the domain and to the
domain as a whole.

Starting with the domain deÞnition helps us separate a problem into aspects
that can be separately managed, implemented, and perhaps reused. Consider the
domain of matrices again. The designer must create structures to store and orga-
nize the data in a matrix. To swap or page large matrices to and from disk, one
must know how to map back and forth between primary and secondary memory.
One ÒtopÓ is the domain of the representation; another addresses the semantics of
matrices themselves. Dividing the matrix exercise into two subdomainsÑone for
matrix semantics and one for memory managementÑleads to an architecture in
which the modules are likely to be more cohesive and independently manageable
than if these concerns were considered together.

The next section discusses how the domain vocabulary can help designers
identify domains early in design.

Commonality Analysis60
2.2 Priming Analysis: The Domain Vocabulary

Vocabularies provide rudimentary building blocks for both the structure and inter-
pretation of a domain model. A one-person programmer team can easily assemble
an application vocabulary to be able to Òcommunicate with oneÕs self,Ó and ambi-
guities can be deferred until the programmer chooses to deal with them. But most
interesting software tasksÑincluding most of those done as solo implementation
effortsÑrequire communication among several people: programmers, customers,
testers, marketers, managers, software architects, the hardware folks, and so forth.
These people must communicate among themselves to develop a solution for the
problem presented, and a common vocabulary is essential to effective project com-
munication. Even if solo programmers can avoid the social aspects of design, the
problem of vocabulary resurfaces as they struggle with the translation from anal-
ysis concepts to solution constructs.

The vocabulary is also crucial to supporting intensional design. Properly for-
malizing the domain vocabulary makes it easier to create structures that reßect
real-world concerns.

2.2.1 The Domain Dictionary

We start commonality analysis by building a domain dictionary that documents the
vocabulary of the application area. The intent is to capture all relevant facets of the
problem we are solving, and perhaps facets of the solution as well. Before we
understand a problem in breadth or depth, we catch glimpses of it in words and
word phrases that come from our customers, from requirement documents, and
from our experiences. We call this a domain vocabulary or domain dictionary. It is a
time-honored software design tool that is enjoying a renaissance of sorts in con-
temporary design methods (see [GoldbergRubin1995] for a particularly good treat-
ment of this subject).

The domain dictionary is a catalogue of the technical terms of the problem area,
or domain, in which we are working. It is not unlike the data dictionaries used to
support structured design techniques. As we Þrst approach a problem, we are
faced with immediate needs. Most software development efforts are driven by an
explicit problem, which is owned by a customer. By their natures, these applica-
tions are speciÞc. This speciÞc nature of most problem statements limits opportu-
nities to Þnd commonality. It is rare that a consortium of customers has
considered their shared problems together, so it is unlikely that they would ever
approach a software developer with general requirements hoping for a broad solu-
tion. It is often up to us, as analysts and implementors, to probe the business for
other applications with similar abstractions. We want to broaden our scope to
increase the chances that we will Þnd commonality across the domain of consider-
ation. We design for a family of applications, with the initial application at hand as
one archetypal member of the family. The more broadly we examine a well-

2.2 Priming Analysis: The Domain Vocabulary 61
deÞned domain, the more commonality we Þnd. We want to focus on domain anal-
ysis, not just analysis (either in the common natural language sense or in the sense
it is used in classic software design methods).

Domain analysis has two major beneÞts over simple analysis, though these
beneÞts are duals of each other. The Þrst is generality, which may support reuse. If
we are asked to build an FSM (Þnite-state machine) for a message protocol appli-
cation, we can implement a general FSM that meets the speciÞc need without
excluding other opportunities. There is a cost to this generality in that it costs
more to explore the properties of FSMs in general than it does to understand a
single application. But if the same abstraction can be reused in the long term, we
win.

The second beneÞt of domain analysis is resilience in the face of change. If we
implement to the speciÞcation of the original, single customer, it will take rework
to accommodate changes in that customerÕs world. But consider what happens if
we broaden the design to accommodate similar customers, even if they are hypo-
thetical ones. As requirements change for the original customer, they in effect
characterize a new customer whose needs are similar to those captured by the
original speciÞcation. If we design broadly, we can accommodate requirement
changes more gracefully than if we optimize for the application at hand.

The designer must understand not only the commonalities that are stable
across space and over time, but also the trends in change across space and over
time. We can characterize change with a model based on parameters of variation.
The range of values for parameters of variation generate software family mem-
bers. Chapter 3 discusses variability analysis, a technique to build this conceptual
framework of change. Domain analysis leads to more ßexible software when its
variability analysis complements the generality and resilience to change of the
commonality analysis. If domain analysis is used to design an FSM so that the
abstraction is sufÞciently robust (general) and parameters of variation anticipate
the range of changes well, the FSM can be customized across a wide variety of
applications (reuse) without the price of generality being paid at run time. In fact,
commonality and variability analyses cannot be separated in practice. Flexibility,
resilience to change, and generality are closely related to each other as well.

Consider the vocabulary we would build to analyze an FSM. We could analyze
the vocabulary for the Þrst FSM that we were asked to buildÑperhaps one that
can support a speciÞc message protocol. But FSMs form a family. The same, basic
FSM structure that serves a message protocol should also underlie the sequencing
of dialogue boxes in a GUI. We want to capture what is common at that level of
FSMs.

What do all FSMs have in common? They have a current state. The state is
implemented as an instance of a user-deÞned type such as an enumeration or
integer. They also have a conceptual transition table, which is a mapping from the

Commonality Analysis62
current state and an input event (one of a family of such events, all of the same event
type) to the new current state and a transition function.

Contemporary object-oriented analysis also starts with a domain vocabulary,
the output of an activity often called ÒÞnding the objects.Ó To a Þrst approxima-
tion, the output of this activity is a list of classes (so ÒÞnding the objectsÓ is an
innocuous misnomer; however, see [GoldbergRubin1995] for a different strategy).
The vocabulary that comes from an object-oriented analysis includes not only
class names such as Stack and Window, but also other names that give Stack and
Window meaning: push, pop, and top, or displayText, refresh, and clear. The
domain vocabulary exercise of multi-paradigm design is a broadening of the
ÒÞnding the objectsÓ exercise of objects.

2.2.2 Design Epistemology

The design vocabularly artifacts of most methods (such as data dictionaries in
structured analysis and classes and responsibilities of CRC cards) are scoped by
the methods themselves. For example, the vocabulary of CRC will contain only
objects and responsibilities; if the domain has a term for some collection of related
use cases, for a family of methods, or for a set of values, CRC treats such concepts
as second-class categories. Most object-oriented methods focus on the split betwen
nouns and verbs, aligning objects and classes with nouns and the (Þner-grained)
methods with verbs. Other parts of speech are not as easily admitted to the model.

Multi-paradigm design seeks to go beyond these limitations and draws on the
entire domain vocabulary. The epistemological limitationsÑexpressed as com-
monality dimensions used as the basis for commonality categoriesÑare a param-
eter derived from available solution technologies. This leads to a different
discipline for a good design dictionary than one Þnds in structural analysis or
object-oriented design, for example. Instead of appealing to simple linguistic
assessments (Òis this method a verb?Ó) or to solution domain considerations (Òis
this artifact a data store?Ó) we seek instead to levrage knowledge about the
problem and solution space together.

For this reason, there is less epistemological formalism in multi-paradigm
design than in object orientation or in structured analysis and design, but a larger
focus on social processes. The following questions are typical of a suitable focus
on a good domain dictionary, and should be asked for any tentatively complete
domain vocabulary.

¥ Are deÞnitions clear? Do the architecture team, customer, and user have a
shared understanding of what the terms mean?

¥ Are they all used? Do all of the terms pertain to the anticipated domain of
application? Design teams have a tendency to get carried away and go
beyond the demands of the business into areas best left alone. The vocabu-
lary can help identify these.

2.2 Priming Analysis: The Domain Vocabulary 63
¥ Is everything deÞned?

¥ Do the deÞnitions Þt the appearance of the terms in the requirements docu-
ment? Without user contact (not just customer contact) and outside the con-
text of the requirements document, domain terms can take on a life of their
own. Revisit the vocabulary frequently with the user to make sure there is
agreement about the meanings of the terms in the context of the require-
ments document.

More formally, one can imagine using techniques such as grounded theory
[Glaser+1967] to develop this vocabulary.

The vocabulary of any project of any domainÑindeed, of any culture or
societyÑevolves over time. The domain dictionary formulation is in the scope of
more than one loop of iterative development.

These questions are meant to provoke thought, not to constrain the process. For
example, the domain dictionary team may not strive for precise deÞnitions.
Instead it may characterize the domain by example or metaphor. Preliminary
characterizations may omit even purpose and rationale. For example, the begin-
nings of an FSM domain dictionary might look as follows.

¥ ABSTRACTFSM: Consider an application that implements several message
protocols across a link. An FSM will implement each protocol. Common
application logic should be able to treat FSMs generically, so all FSMs can be
used interchangeably. The ABSTRACTFSM domain captures the commonality
at this level.

¥ IMPLEMENTATIONFSM: All FSMs will have an implementation to internally
represent and manage tuples of the form {current state, stimulus, transition
action, next state} using tables or some other data structure. This domain
captures that commonality.

¥ USERFSM: Each FSM has deÞnitions of speciÞc transition actions and other
code that are provided by the user. This domain provides a place to deÞne
and manage these tuples.

¥ STATE: States may be represented as enumerations, integers, or a class that
abstractly represents some richer state of the application. (This is a value,
not properly an object that well may not appear in a proper object-oriented
analysis.)

¥ STIMULUS: A stimulus is one element of the fundamental four-tuple of the
FSM model. For each state, a stimulus causes the machine to sequence to the
next state and to execute the transition function as a side effect. Potential
synonyms or alternative names are MESSAGE and EVENT.

¥ TRANSITIONACTION: A family of functions that map a current state and stimu-
lus onto a next state. Each function body implements the side effects of a

Commonality Analysis64
state transition. (This is a term that would not be likely to appear in an
object-oriented analysis, either.)

WeÕll use this domain dictionary as we elaborate the design in Chapter 8 and
Chapter 9.

In FAST, Weiss [Weiss+1999] annotates the requirements document by itali-
cizing domain dictionary terms.

Commonality analysis is a generalization of object-oriented analysis. We are
interested in Þnding not only the classes of interest (like event type or state type),
but also common structure (transition table and current state), use cases (the
external FSM interface and the scenarios and rules that govern their use), and
common names or behaviors (state transition functions, which all share common
behavior, argument, and return types). All of these abstractions are fair game for
the domain vocabulary. In the following sections, we explore these facets of soft-
ware commonality in more detail.

2.3 Dimensions of Commonality and Commonality
Categories

Design is an innovative activity. Much of that innovation derives from how we
apply the knife to carve abstractions into the system. We might do this Þrst in the
application domain and then in the solution domain, but in fact most people com-
monly do both together. If we look ahead to the solution domain during applica-
tion analysis, using C++-shaped knives to partition the application domain, then
we will more easily be able to express the structure of the problem as a C++ solu-
tion.

Design is more than cutting cookie-cutter modules from a two-dimensional
piece of dough. The modular structure of a program is just one dimension we can
capture in the design and implementation. When we do design partitioning, we
may need to partition according to multiple criteria at the same time.

Think of how we divide classes in design. We may take a set of apparently
unrelated classes (because their member functions are all different) and catalog
them in some linear ordering. We may order them by importance or alphabeti-
cally by name or however we wish, Þrst categorizing them at a level akin to what
Booch calls class categories. The details of how we distinguish class categories isnÕt
important except to the extent that we try to minimize commonality between the
sets that result from the partitioning. For example, in a linear algebra package, we
may have simple class categories such as scalar numbers and matrices, as shown
in Figure 2.1.

Now consider adding derived classes to this categorization scheme. We want to
arrange some classes together in an inheritance hierarchy because their member
function signatures are a lot alike. We can no longer put them in the same line;

2.3 Dimensions of Commonality and Commonality Categories 65
that categorization exists in another Òdimension.Ó Notationally, it looks as shown
in Figure 2.2.

The dimension that differentiates base classes is orthogonal to the dimension
that separates base and derived classes.

There may also be free functions that take several arguments, with different
arguments declared in terms of different class categories. And each of these func-
tions may exist in several different implementations, so some or all of the func-
tions may be overloaded. That means the functions form families. Yet those
functions operate on the classes. They have the same design stature as the
member functions used to identify the class categories and to arrange the inherit-
ance hierarchies. A good example is a family of operator* functions on some
algebraic hierarchy (where Vectors are column vectors), as shown in Figure 2.3.

Figure 2.1: Scalar number and matrix class categories.

Number Matrix

Figure 2.2: Capturing signature commonality.

Number Matrix

Complex
Vector

Real

Matrix2D

Sparse
Imaginary

Identity

Vector operator*(const Matrix &, const Vector &);

Matrix operator*(const Vector &, const Matrix &);
Vector operator*(const Vector &, const Vector &);
Matrix operator*(const Number &, const Matrix &);
Vector operator*(const Number &, const Vector &);
Number operator*(const Number &, const Number &);

Figure 2.3: A family of operator* functions.

Commonality Analysis66
This function structure canÕt fully be separated from the class structure. How-
ever, neither does it align with the class structure. We can think of it as a third
dimension of the design structure.

And we havenÕt yet talked about the internal structure of the classes, which
may form a grouping different than the grouping by signature. If the original
abstractions are templates instead of classes in closed form, then we have an addi-
tional dimension for each template argument, as shown in Figure 2.4.

And we can go on and on. The result is a rich, multidimensional space that
models the design space available to the C++ programmerÑmuch richer than the
simple, two-dimensional plane of classes or objects. In fact, the design space (both
in the problem and solution domains) is complicated because these dimensions
arenÕt totally orthogonal to each other. For example, overloaded member func-
tions interact with inheritance in complex ways.

Design is the art of carving useful, expressive, maintainable constructs from
this space. The ÒknivesÓ we apply to this space must be able to carve out a clean
partitioningÑand multi-paradigm design provides one set of techniques to
manage the complexity of such design spaces. The knives are determined by all
the available solution domain paradigms. We will use the term dimensions of com-
monality for the aspects of this multidimensional design space. Example dimen-
sions of commonality include the following:

¥ Structure

¥ Name and behavior (IdentiÞer, Signature, Type)

¥ Algorithm

These dimensions describe the kinds of commonalities we use to group family
members into a subdomain. But commonality analysis alone isnÕt enough to select
a solution structure suitable to the structure of the problem. We can also use those
dimensions to characterize differences between individual family members. For

Figure 2.4: Another dimension: Template arguments.

Number Matrix

Complex Vector

Real

Matrix2D

Sparse

Imaginary

Identity

Number, Dim

Number, Dim

Number, DimNumber, Dim

Number, Dimreal_Or_double

2.3 Dimensions of Commonality and Commonality Categories 67
example, all matrices behave the same, but they have different internal data struc-
tures. The study of differences in family members is called variability analysis,
which is the topic of the next chapter.

These two dimensionsÑone for the primary commonality and one for the pri-
mary variabilityÑtogether describe a commonality category. A commonality cate-
gory, combined with requirements for binding time, instantiation, and default
values, point to a unique C++ language feature. Each of these language features is
designed to express abstractions in a particular paradigm. Commonality and vari-
ability analyses help the designer form software families. They also help the
designer select the design paradigm for the family. Commonality categories are in
some sense similar to the concept starter sets of the ODM method [Simos+1996].
However, here we donÕt use commonality categories just to Òjump startÓ analysis
as in ODM, but as the foundation of abstraction in both the application and solu-
tion domains.

Assume that the matrix example is to use run-time binding; common behavior
and variable data structure point to inheritance with virtual functions. That sug-
gests a particular paradigmÑin this case, the object paradigm. Each C++ lan-
guage featureÑtemplates, #ifdef, inheritance, or inheritance with virtual
functionsÑcorresponds to a combination of a commonality category, a binding
time, and an optional parameter governing instantiation.

Commonality and variability analysis are rarely separated in practice; in fact,
variabilities often can be derived from commonalities. So as we search the appli-
cation domain for similarities along the dimensions of commonality, we look for
variabilities along the same dimensions at the same time. The dimensions of vari-
ability are the same as those we use for commonality. For example, we note that
different kinds of matrices vary in structure, while classes in an inheritance hier-
archy vary in the names of some of their member functions and in the algorithms of
some of the functions that retain the same names.

Commonality analysis is largely informal. The techniques presented in this
thesis employ simple tables to organize abstractions and to document the anal-
ysis. The techniques use no mathematically formal factorings; we use no CASE
tools. Rather, we rely on the intuition and insight of a good designer who is
familiar with the domain to factor out the dimensions of commonality in a design.
At this stage, we will just write them down informally, taking notes as we go
along. Later, we will tabulate commonality and variability analysis results to sup-
port further analyses.

The following three sections describe the basic dimensions of commonality we
use to deÞne commonality categories for C++ as an implementation technique:
data, name and behavior, and algorithm.

Commonality Analysis68
2.3.1 (Data) Structure

In most good designs, data structures evolve more slowly than the algorithms that
manipulate them. This may be because data more closely reßect the structure of the
problem and are inherently more stable than procedures. Or it may be because the
cost of data changes forces programmers to avoid changing data directly. In either
case, good data design is key to maintainable systems. The tendency for well-
formed data abstractions to remain stable over time is one advantage the object
paradigm claims over procedure-based design methods. Data structure is an
important dimension of commonality, though it is not the only dimension, and
should not be confused with the dimensions of commonality that are central to
object-oriented design.

Data design is a major concern of classical design methods such as structured
analysis and its derivatives [Yourdon1979]. Before the advent of interactive user
interfaces, and the rise in event-driven models of computation that came with
them, data structures and control ßows were the primary focus of design. The
most important abstractions in a batch payroll system are the data structures and
the sequence of processes that pass over those data. The legacy of classic data-
focused design techniques lives on today in many popular design methods, such
as Shlaer-Mellor, that consider data structure and data ßows early on. In Rum-
baugh, the notations and method suggest that we explore structural relationships
early in design, though data are not the primary focus.

Recent trends toward interactive computing have moved software design focus
from procedures and data ßow to data structure and behavior. While batch applica-
tions are either holding their own or on the decline, most new software systems
support interactive interfaces and ÒreactiveÓ computation. Those systems must
react to randomly sequenced data queries, whether from a real-time data link or
the movement of a cursor across a GUI. In a sequential system, data ßow cues the
task sequencing, though the data just Ògo along for the ride.Ó In an interactive
system or real-time system, the system must route requests for service to the code
that can handle them. The model of computation is no longer a smooth ßow of
data through sequential processes. Rather, it occurs in sporadic bursts of activity
that happen in an unpredictable order. In the object paradigm, we create abstrac-
tions by grouping semantically related bursts of activity called member functions.
These abstractions, called classes, usually have a data structure at their core. How-
ever, we are less interested in the data themselves or in how those data ßow
through the system than in how those data tie related operations togetherÑit is
the operations that form the abstraction. We call this abstraction an abstract data
type.

The contemporary trend toward role-based design [Reenskaug1996] further
emphasizes the distinction between an abstractionÕs ÒessenceÓ and its functional
behavior in a given circumstance (its role). In most responsibility-driven, object-
oriented methods, behavior commonality drives the most important abstractions;

2.3 Dimensions of Commonality and Commonality Categories 69
we strive to defer structure until the end of design and the beginning of imple-
mentation. Examples include CRC cards [Beck1993] and Wirfs-BrockÕs responsi-
bility-driven design [Wirfs-Brock1990]. In these methods, we focus on gross
groupings of behavior that shape the system, instead of on the details of data and
algorithm that shape the code. Even if data do sometimes drive the design struc-
ture, this analysis suggests that we should look beyond data structure as the pri-
mary source of partitioning criteria.

Yet most C++ programmers tie classes and inheritance hierarchy closely to
their data designs; objects are too often thought of as Òintelligent dataÓ instead of
loci of related behavior. Early proponents of the object paradigm jumped to the
conclusion that the maintenance beneÞts of objects result from the time-honored
principle that data are more stable over time than procedures and that classes
were just a suitable mechanism to express that principle. Most methods that con-
tinue to underscore this perspective have their roots in an era that predates
modern interactive user interfaces and the proliferation of real-time systems. They
are Òneo-classicÓ methods; they superÞcially use some object principles, yet they
have their roots in data and process analyses. And old ways die hard. Few pop-
ular design methods in use today consciously defer data layout concerns. One
common failure mode of modern methods is to cast member data as a collection
of states and to treat all objects as FSMs. An FSM can be an object (more on that in
Chapter 9), but many classes are not well-modeled as state machines. For
example, a Window is a good classÑa locus of related responsibilitiesÑbut it is
hardly a state machine, and we arenÕt terribly interested in its data. Inexpert
designers, apart from having a preoccupation with data in contemporary
methods, often focus on data stores (such as the data for a report or form) to Þnd
the objects and Þt the data into the object paradigm by annotating them with
member functions that Ògive the data intelligence.Ó

There is a grain of truth to the analogy between data stability and object sta-
bility, but it breaks down under scrutiny. Consider the case of class Number and its
derived classes (see Figure 6.2). The behavioral hierarchy is clear, following the
subtyping relationships that we derive directly from the application domain. The
meanings of classes Number, Complex, and Real, and the relationships between
them, are clear. Simple analysis produces a class hierarchy, in which Real is
derived from Complex. The unwitting designer encapsulates a representation for
complex numbers inside class Complex. This causes Real to inherit a lot of bag-
gage it canÕt use.

We can learn several lessons here. A design derived primarily from data struc-
ture may be much different from a design based on distribution of responsibilities.
Data structure is nonetheless an important design consideration. Even if data
structures are implementation constructs, good design looks ahead to see how
implementation shapes design decisions. Instead of falling into the trap of the
neo-classic methods that are overly eager to unify data analysis and object anal-

Commonality Analysis70
ysis, we need to separate those two dimensions of commonality and deal with
each up front, during design.

Before we throw the baby out with the bath water, I will be quick to point out
that data design often does line up with a good object partitioning. The point I am
trying to make here is that we shouldnÕt presume such alignment. Rather, we
should come by it honestly.

There is a whole paradigm suitable to the study of data structures and their
access: databases. There is a place for relational modeling and other data-based
modeling techniques in many data-intensive applications. (Object-oriented data-
bases really donÕt fall into the same category because they are less a design reg-
imen in their own right than a way of using object-oriented design structures in
persistent storage media.) C++ does not express database relationships directly, so
this thesisÕs treatment of multi-paradigm design treats them as an Òoutboard par-
adigm.Ó I call them ÒoutboardÓ because they donÕt come with the language; how-
ever, the language can accommodate them if we Òconnect them to the language on
the outside.Ó For example, we can link our C++ programs with database manage-
ment libraries. Just because C++ doesnÕt support some paradigms does not
diminish the value of such paradigms or of C++; both can be considered in the
context of the multi-paradigm techniques of Chapter 7. Databases aside, we will
focus on C++ mechanisms that support simple data commonality, particularly as
it arises as a secondary concern in early design.

LetÕs consider some examples of data structure commonality.

¥ Disk Þle systems. An operating system may support many kinds of Þles:
databases, unformatted character Þles, record-formatted Þles, indexed
sequential Þles, blocked Þles, unblocked Þles, and others. All of these Þles
must work in the context of a grander directory-and-Þle-structure design.
Most Þles share basic data attributes: Þelds for creation and modiÞcation
time, structures to map the logical Þle structure onto basic disk blocks, and
so on. Note that the data structures may (or may not) cut across the major
groupings of Þle system behavior.

¥ Protocol design. Message formats are regularized by size (as in Þxed-size
packet switching and transmission), Þne structure (bit stream or 8-bit bytes),
header format (a collection of Þelds, sizes, and offsets), and other parame-
ters. Data commonality complements message semantics, though the two
analyses can be separated.

¥ As we build software to audit the data structures of a fault-tolerant control sys-
tem, we notice that most auditable data have links to parent, child, and sib-
ling structures. Though not all data structures have all of these Þelds, early
analysis brings them to our attention, so we include them in the domain dic-
tionary. During commonality analysis, we can more precisely characterize
the domain that forms around this commonality. We must deal with data

2.3 Dimensions of Commonality and Commonality Categories 71
structure differences as well, using the variability analysis approaches
described in Chapter 3.

¥ Some memory management algorithms group data by size into equivalence
classes: All blocks of like size are managed together.

¥ A data analysis application treats all scalars together; all ordered pairs (com-
plex numbers, Cartesian points, polar coordinates) together; all ordered tri-
ples (Cartesian and polar 3-dimensional points) together; and so on.

While we are concerned primarily with the structure of data, we can also con-
sider the structure of source code. Template functions have a single, common
structure that can generate many variant implementations. For example, the fol-
lowing function captures the structure of a sorting algorithm, a structure that is
common across most sortable types:

template <class T>
void sort(T s[], int nelements) {

// a good sorting algorithm written in terms of T
for (int top = 1; top <= nelements - 1; top++) {

// vector is sorted in positions
// 0 to top - 1
register int j = top - 1;
while (j >= 0 && s[j+1] < s[j]) {

T temp = s[j];
s[j] = s[j+1];
s[j+1] = temp;
j--;

}
}

}

Template functions handle a small number of commonality/variability pairs
well. For example, they can handle the case in which most of the algorithm is
common with local variabilities that can be modulated through a template param-
eter. In this sense, they can be used like the TEMPLATE METHOD pattern in the design
patterns book by Gamma [Gamma1995]. Template arguments manage the vari-
ability in algorithm template structure just as they manage data structure vari-
ability in class templates. Template arguments can be as speciÞc as simple values
or as complex as user-deÞned types.

We will see in Chapter 6 that inheritance is the most common tool to express
common data structure and that templates capture both common data and code
structure.

Commonality Analysis72
2.3.2 Name and Behavior

It is commonly heard that many interesting problems in computer science reduce
to whatÕs in a name and can be solved by one more level of indirection. Names
convey meanings. We can use commonality of name to group items (such as func-
tions) that have the same meaning. We must take care to avoid the analytical ana-
logue of homophones. There are many kinds of programming language names:
functions, types, parameters, data identiÞers, and others. Modern computer sci-
ence is sloppy with these terms, which often have noble and formal roots.

All this aside, for the moment we can take important design cues from names.
As design and implementation move forward, we may discover a need for each of
the following functions:

void set_date(const char *const);
void set_date(Year, Month, Day);
void set_date(time_t secondsSinceStartOfEpoch);

ItÕs likely that these functions form a family, since they all have the same name
and, at an intuitive level, the same meaning. This example shows how to take
advantage of such commonality in C++ with function overloading. Overridden
functions in an inheritance hierarchy are another kind of family of functions.

It is important Þrst to identify the commonality during analysis and to defer
language feature selection until the full commonality category is known. For
example, consider the design of a general-purpose graphics system in which we
may Þnd a family of functions named displayOn. These functions display an
object on some output medium. We could implement displayOn as a family of
overloaded functions, as done in the previous example:

void displayOn(BitMap*, XWindow*, Point);
void displayOn(const char *const, XWindow*, Point);
void displayOn(BitMap*, MacWindow*, Point);
void displayOn(const char *const, MacWindow*, Point);

Or we could make displayOn a member function of each class whose objects
are displayable:

class XWindow {
public:

void displayOn(BitMap*, Point);
void displayOn(const char *const, Point);
. . . .

};

class MacWindow {
public:

void displayOn(BitMap*, Point);
void displayOn(const char *const, Point);

2.3 Dimensions of Commonality and Commonality Categories 73
. . . .
};

Or, we could make them part of a family of classes that we relate by inherit-
ance:

class Window {
public:

virtual void displayOn(BitMap*, Point);
virtual void displayOn(const char *const, Point);
. . . .

};

class XWindow: public Window {
public:

void displayOn(BitMap*, Point);
void displayOn(const char *const, Point);
. . . .

};

class MacWindow: public Window {
public:

void displayOn(BitMap*, Point);
void displayOn(const char *const, Point);
. . . .

};

There may be even more alternatives based on templates or on idioms or pat-
terns (such as double dispatch). The selection depends largely on binding time;
however, designer insight and experience should dominate. The main point is
that the commonality dimension ÒnameÓ serves several commonality categories.
In objects, one categorizes found names directly as design artifacts. In multi-para-
digm design, one Þrst looks for latent sets of commonalities in the names, then
uses these sets of names to feed a model of commonality and variation. Last, one
decides on one or more paradigms as a result of this analysis. This avoids the pre-
mature construction of hard category boundaries, supporting a structure where
name families may form a category that cuts across other categories. For example,
overloaded functions cut across classes.

We Þnd names in requirements documents, in the user vocabulary, and in pre-
existing code. All of these sources are fair game for analysis. We start common-
ality analysis by scouring these sources for names, structures, sequences, and,
more important, the trends and relationships among them. These trends and rela-
tionships form families, and we can capture the Ògenetic codeÓ for these families
in an abstraction.

There are several kinds of families that group by name. Functions, sets, and
patterns may all have names; it should be clear that we want to group these sepa-
rately from each other. We can deÞne a few terms, as follows, to categorize

Commonality Analysis74
common Òname families,Ó terms that are important dimensions of commonality
in their own right.

¥ IDENTIFIER: An identiÞer is a name that is unique in some context, such as a
scope. It is conventionally the name of a datum or group of data. In the more
general sense, the name of a function or type is also an identiÞer, though we
treat those separately later in this section.

¥ SIGNATURE: A signature is an interface to an operation, procedure, or function
that is described in terms of the parameter and return types. We usually
associate a name with a signature. Function declarations document named
signatures. A signature connotes behavior and semantics. For example,

Complex &operator+=(const Complex&)

is a signature. A family of functions may share the same meaning at a high
level but be implemented with different algorithms. Signatures convey high-
level semantics, independent of any particular algorithm. In fact, a given
program may have multiple functions that match this signature; for exam-
ple, each in its own scope.

Every function has a signature. All functions of a given name need not have
the same signature. An obvious case in point is overloaded functions, which
are distinguished from each other by their signature. Functions of the same
signature and name may form a family. An obvious example are the member
functions in a class hierarchy.

Most programming languages technically deÞne the return value type as
part of the signature. In C++, ÒsignatureÓ is a term of the trade speciÞcally
related to overloading. What is more commonly called ÒsignatureÓ in pro-
gramming language design is called ÒtypeÓ in the C++ community. How-
ever, in this thesis I appeal to the broader deÞnition of Òsignature.Ó The
technical deÞnition of signature in C++ does not include the return type, but
we can generalize the design notion of signature to include return types.

¥ TYPE: A type is a collection of signatures. It does not describe implemen-
tation, but behavior. We should think of ÒtypeÓ in the same sense as
Òabstract data typeÓ: the description of an interface apart from any imple-
mentation. We usually give types descriptive names such as Stack, Window,
TapeDrive, or ComplexNumber.

We sometimes Þnd types directly during analysis, particularly ÒobviousÓ
ones such as Stack, List, and Window. More formally, a type characterizes a
set, or family, of abstractions that group by behavior. During analysis, we
may Þnd abstractions that group by behavior, recognize them as a family,
and encode those properties in a collection of signatures, or a type. We

2.3 Dimensions of Commonality and Commonality Categories 75
should not focus on the data structure of the family membersÑthat is a dif-
ferent dimension of commonality.

Note that class isnÕt among the abstractions considered here. A class is a pro-
gramming language construct often used to implement a type. But each class
brings together two dimensions of commonality in a single abstraction: behavior
and structure. It is better to keep these two dimensions separate at the start of
analysis. If the two analyses align, then a natural single class structure may result.
We donÕt want to prejudice the implementation by prematurely imposing a class
structure. Some contemporary design methods such as Fusion [Fusion1993] con-
sciously recognize this.

Names are an important part of object-oriented analysis. We focus primarily on
class names in most popular object-oriented methods. CRC cards help the
designer focus on behavior and the names that convey the behavior, rather than
on the data structures and algorithms that implement the behavior. The focus is
on the signature.

A type is an abstraction that deÞnes operations that take inputs (arguments to
the functions in the type signature), produce outputs (through arguments and
return values), and modify internal state. Classes are implementations of types.
Instances of classes, called objects, connect in a network, passing inputs and out-
puts to each other to achieve the overall system function.

It is important to distinguish behavior from meaning or semantics. It is a Þne
distinction and, unfortunately, an informal one, but it serves us well to separate
the two. Behavior is closely tied to implementation. We donÕt care exactly how
an object behaves. For example, we donÕt care about the exact sequencing of
instructions inside the member functions that implement type behaviors. The
refresh responsibilities for an AsciiGraphicsWindow class and an XWindow class
behave differently. However, refresh means the same thing to the client in both
cases. Meaning is what the client cares about. A program can interchangeably use
classes that have the same meaning but exhibit different behavior. (We take up
this issue in more detail when we discuss paradigm and objects in Section 5.1.)

2.3.3 Algorithm

Procedures are one of the oldest and most widely used abstractions of program-
ming. Historically, procedural design has been strongly hierarchical in nature,
proceeding either top-down or bottom-up. Top-down design methods that focus
on procedural decomposition rarely take the trouble to combine common algo-
rithms or code fragments in the branches and leaves of the procedural hier-
archy. Common code fragments are frequently duplicatedÑcode for lists or
sets or for walking project data structuresÑparticularly in multi-person devel-
opment projects. Bottom-up design addresses this problem at the expense of a
weak or deferred notion of high-level system architecture.

Commonality Analysis76
If we do a commonality analysis of a top-down design, we Þnd code frag-
mentsÑuse casesÑthat form families. Such commonality pops out when we have
the entire system in view; this is a different perspective than that taken by a top-
down designer who looks at one level at a time. During analysis, we want to con-
sider threads of execution and the potential for commonality. Unlike procedural
designers, who formally look at only one layer at a time, we want to Þnd high-
level use cases in which we analyze the system as a whole. And unlike object-ori-
ented designers, who focus on individual member functions as the units of exe-
cution, we want to consider longer chains of execution.

2.4 Examples of Commonality

This section presents commonality examples for structure, for name and behavior,
and for algorithm. These examples help demonstrate what we seek in common-
ality. They also show that C++ can express a given category of commonality in sev-
eral different ways. The differences help motivate the discussion of variability in
Chapter 3.

2.4.1 Structure

Structural commonality is intuitive to most software designers. To fall back on a
tired example: All Shapes have a center of class Point. The C language tradition
expressed such commonality like this:

typedef struct _Point { int xpos; int ypos; } Point;

typedef struct _Circle {
Point center;
. . . .

} Circle;

typedef struct _Rectangle {
Point center;
. . . .

} Rectangle;

In contrast, a C++ programmer is more likely to factor out the commonality
using inheritance:

class Shape {
public:

. . . .
protected:

Point center;
};

2.4 Examples of Commonality 77
class Circle: public Shape {
public:

. . . .
};

class Rectangle: public Shape {
public:

. . . .
};

That is, C++ can more directly express the commonality than can C.
C++ gives us other ways to express structural similarity. Consider the data

structure for a List abstraction. All Lists are structurally similar, as shown in
Figure 2.5.

Yet not all Lists are identical; the details vary according to the kind of element
held by the list (for example, the exact size of each data block depends on exactly
what X is). We can capture the similarity in a template:

template <class X> class ListRep {
friend class List;

ListRep<X> *next;
X *rep;
. . . .

};

template <class X> class List {
public:

. . . .
private:

ListRep<X> *theRep;
};

2.4.2 Name and Behavior

Consider the simple domain NUMBER, in which we Þnd several families of arithmetic
operations such as operator+, operator-, and operator*. Each family of operators

Figure 2.5: Data structure for List.

next next
X *rep X *rep

rep

X X

Commonality Analysis78
has several members that all ÒmeanÓ the same thing. For example, addition always
means the same thing, independent of its operands. This similarity in meaning is
reßected in the externally observable behavior of the operators and is conveyed in
the names we give them. We use the name operator+ to signify this commonality
of meaning for addition.

C++ offers several language features to capture this commonality, and different
contexts call for different C++ mechanisms. One such mechanism is the overloaded
function. Here, we overload operator+ for assorted pairs of operands that are
compile-time bound:

Complex operator+(const Complex &n1, const Complex &n2) {
// would be declared a friend function in class Complex
Complex retval = n1;
retval.rpart += n2.rpart;
retval.ipart += n2.ipart;
return retval;

}

BigInteger operator+(const BigInteger &n1,
const BigInteger &n2) {

. . . .
}

Complex operator+(const Complex &n1,
const BigInteger &n2) {
. . . .

}

The name operator+= also conveys the meaning of addition, combined with an
assignment operator. We can bind operator+ at run time using overridden virtual
functions in an inheritance hierarchy:

class Complex {
public:

virtual Complex& operator+=(const Complex&);
. . . .

};

class BigInteger: public Complex {
public:

BigInteger& operator+=(const Complex&);
. . . .

};

Note that the latter approach doesnÕt handle sequences of code such as the fol-
lowing:

int i;

2.4 Examples of Commonality 79
Complex a, c;
a = i + c;

However, the overloading approach does handle it, provided Complex has a con-
structor that accepts a single double or int. It is common to use the overloading
structure (to handle the latter problem) together with the overriding structure (to
provide run-time genericity):

Complex operator+(const Complex &n1, const Complex &n2) {
// would be declared a friend function in class Complex
Complex retval = n1;
retval += n2; // a virtual function call
return retval;

}

class Complex {
public:

virtual Complex& operator+=(const Complex&) const;
. . . .

};

Even this solution has limitations. If both the arguments are objects of classes
derived from Complex, then the single-dispatching model of C++ virtual functions
isnÕt enoughÑit doesnÕt accommodate the dynamic type of n2 in the previous
exampleÑand the designer must resort to patterns such as VISITOR. We will dis-
cuss this class of solutions in Section 9.1.

In summary, for a family of functions bound together by a common meaning
(such as addition), both function argument types and C++ language pragmatics
drive the choice of language features. Binding time also governs the choice of spe-
ciÞc implementation constructs. We cover this important aspect of multi-para-
digm design in Chapter 3.

2.4.3 Algorithm

As mentioned above, we can view procedural design either from a bottom-up or
top-down perspective. Consider the bottom-up perspective, driven by the desire to
design one procedure that can be called from several different contexts. Of course,
it would be even better to think about families of algorithms that share much logic
in common. (Note that this is a different kind of commonality from behavioral
commonality as described in Section 2.3.2.) Perhaps the most straightforward way
to distinguish between alternatives in a family of algorithms in by packaging the
variants in a procedure and using a formal parameter to distinguish between them:

void FloorPlan::redraw(int showRoomDimensions = 0) {
. . . .
switch (showRoomDimensions) {
case 2: // draw arrows annotated with room dimensions

Commonality Analysis80
. . . .
break;

case 1: // just show square footage of room
. . . .
break;

case 0: // no annotations at all
break;

}
. . . .

}

. . . .

FloorPlan *p;
. . . .
p->redraw(1); // binding specified here in the source

Or we can factor the differences so that they are altogether outside the function:

void FloorPlan::redraw(void (FloorPlan::*f)() = 0) {
. . . .
if (f) (this->*f)();
. . . .

}

void FloorPlan::drawArrows() {
. . . .

}

. . . .

FloorPlan p;
. . . .
p.redraw(&FloorPlan::drawArrows); // source-time binding

That approach encapsulates commonalities inside individual functions. Going
a step further, we can meet the same design goals in a more object-oriented way:

class FloorPlan {
public:

void redraw() {
. . . .
drawDimensions();
. . . .

}
virtual void drawDimensions() = 0;

};

class FloorPlanWithArrows: public FloorPlan {
public:

2.5 Reviewing the Commonality Analysis 81
using FloorPlan::redraw;
void drawDimensions() {

// draw arrows for this floor plan
. . . .

}
};

. . . .

FloorPlanWithArrows p;
p.redraw(); // with arrows, compile-time bound

Or we can meet those goals in a slightly different use, given the same declara-
tions of FloorPlan and FloorPlanWithArrows:

FloorPlan *q = new FloorPlanWithArrows;
q->redraw(); // with arrows, run-time bound

Each of these approaches captures commonality in algorithm. Each also
expresses a different kind of variation, with a different binding time.

2.5 Reviewing the Commonality Analysis

It is useful to pause and reßect on the commonality analyis as the dictionary
evolves and terms take shape. Dictionaries may evolve over weeks or months and
sometimes longer, so the design team should revisit these terms and reßect on
them frequently. Part of this introspection pertains to the vocabulary itself, as dis-
cussed in Section 2.2.2.

Commonality analysis produces categoriesÑdomainsÑthat exhibit many
properties of the classical model discussed in Section 1.9.3 and in Section 2.2.2:
they are usually disjoint, and are characterized by properties that Þgure promi-
nently in all category members. However, domains donÕt characterize software
elements per se, but one of potentially numerous classiÞcation schemes for a
given object.

We can ask ourselves questions to help ensure weÕve explored the full
boundary of the domain. The reductionist nature of the questions appears to cater
to the classical view. However, if one remembers these questions pertain to a
domain of interest rather than a set of objects, there is nothing in the process of
satisfying these questions that prevents a Þnal design exhibiting many properties
of the modern archetypical view of classiÞcation.

¥ Are there unstated properties that are true for all members of the family?

¥ Can commonalities be stated more precisely?

¥ Are the commonalities accurate?

Commonality Analysis82
¥ Are the commonalities consistent?

We strive to answer these questions during commonality analysis and the (par-
allel) variability analysis (Chapter 3); when selecting implementation mechanisms
(Chapter 6); and when design changes arise during maintenance.

Later chapters (Chapter 4, Chapter 6) in this thesis present a tabular notation
for capturing and organizing domain information in a way that highlights
domain commonalities and variabilities. These notations help professional
designers think about how they should structure problems, and can serve as the
raw material for the commonality analysis review. These tables will be used to
support a general process of design (Section 7.2) that works from the common-
ality analyses of multiple application and solution domains to a system architec-
ture.

2.6 Commonality and Evolution

The abstractions discovered during commonality analysis Þnd expression in the
most stable design constructs, those that carry the most inertia in the implementa-
tion structure. These include inheritance hierarchies, families of overloaded func-
tions, and families of template instantiations. Once deÞned, these underlying
structures are costly to change because of dependencies between the abstractions
of a family or between the family and its clients. A designer who rearranges any
portion of an inheritance graph is obliged to revisit the design decisions for all
classes derived from any moved or removed class. If you add a new signature to a
family of overloaded functions, it is a tedious job to evaluate the scope of coordi-
nated changes that must be made. If a template parameter changes, the pro-
grammer must recompile the template itself and all of the code in the application
that uses the template.

If our goal is to build systems that endure gracefully into the distant future,
they must accommodate change gracefully. Ensuring this means making changes
in ways that are unlikely to reshape or displace major system constructs. We want
most changes to have local impact, to leave global interfaces unaffected, and, in
short, to be invisible to as much of the system as possible. That, in turn, means
that we want changes not to affect the constructs that implement the abstractions
of commonality analysis.

So when we do commonality analysis, we should strive to carve out abstrac-
tions that will remain stable over time. That means that commonality analysis
should draw on the analystÕs knowledge of how the domain changes over time.
Not only should we look for commonality between the constructs in the domain
vocabulary, but we should ask whether the vocabulary will be the same tomorrow
as it is today.

2.7 Summary 83
While we can encapsulate the stable parts of a domain as commonalities, we
canÕt ignore the parts of the domain that change over time. In the next chapter,
weÕll see how variability analysis manages design assumptions that are not stable
across applications or over time. Both commonality and variability analysis dis-
cover system structure: Commonality analysis seeks structure that is unlikely to
change over time, while variability analysis captures structure that is likely to
change. Variability analysis makes sense only in terms of the context deÞned by
the associated commonality analysis. But it is the variability analysis that captures
the way the system evolves. The maintainability of a system may depend more on
what is not in the commonality analysis than on what it contains.

Fortunately, commonality often goes hand-in-hand with resiliency over time.
The basic abstraction called ÒtelephoneÓ has remained unchanged in over a cen-
tury, with a very few outliers, such as video phones (Section 2.1). These telephone
attributes are common to most telephones because they are essential to the com-
monly accepted model of telephone behavior, which is independent of the imple-
mentation. That these abstractions have remained in place for 100 years also owes
to their fundamental relationship to what telephones do. Other parts of the tele-
phone have changed as technology has changed. But most of the time, a good
commonality analysis portends well for a resilient design.

2.7 Summary

This chapter explored the importance of commonality analysis. Commonality is the
Þrst thing we look for to formulate abstractions in both the application domain and
in solution constructs such as programming language building blocks and user-
deÞned types. We start looking for commonality by building a domain vocabulary.
This vocabulary looks beyond a single application to a family of applications in
anticipation of reuse and evolution. The vocabulary captures trends in structure,
signature, types, and use cases. The common abstraction of contemporary object-
oriented analysisÑthe classÑis a second-order abstraction that uniÞes common-
ality in structure and signature. Because commonality analysis goes beyond
classes, and even beyond types and responsibilities, it is a more general technique
than object-oriented analysis alone.

The other side of analysis is variability. Life would be boring if we stopped at
commonality; nothing would ever change! Variability is the interesting part of
design, but it makes sense only in a well-deÞned context. With commonality and
variability in hand, we will be able to survey the shape of both the application
domain and the solution domain and gain insights into how to align the two
structures for a given problem.

Commonality Analysis84

Chapter 3

Variability Analysis
In the last chapter, we looked at commonalities, the Þrst of two important dimen-
sions that underlie most software paradigms. These commonalities can be
expressed in a language such as C++. In this chapter, we discuss the second dimen-
sion of paradigm: Within a paradigm, how do similar items differ? There may be
myriad differences between the members of a family, but we can gain tremendous
abstracting power by parameterizing the variabilities of a domain. Here, we talk
about variability analysis with an eye to the implementation of commonalities and
variabilities in C++. The chapter also introduces variability dependency graphs, a
simple notation for domain structure.

3.1 Variability: The Spice of Life

Commonality analysis is the search for common elements that helps us understand
how family members are the same. As described in Chapter 2, we are good at
Þnding commonality: We take note of it; it catches our eye. But commonality is
monotonous without variability. If there is no variation in family members, there is
no sense in creating abstractions to help understand a family as a whole. So while
commonality forms the backbone and skeleton of design, variability gives it its
ßesh and blood. From an architectural perspective, commonality analysis gives the
architecture its longevity; variability analysis drives its Þtness for use.

As we also noted in Chapter 2, commonality analysis alone is insufÞcient to
prescribe or even suggest a solution technique, particularly when C++ is our solu-
tion domain. For example, assume that we choose to make TEXT EDITING BUFFERS a
domain because their behavior and much of their structure is common. (TEXT

EDITING BUFFERS are a running example in this chapter. WeÕll discuss them in terms
of their applicability to a text editor. We may as well have called them TEXT

Variability Analysis86
BUFFERS because they are broadly applicable to many text processing applications.)
How do we represent abstractions that share common behavior and structure?
Classes and inheritance come to mind, particularly to the object-oriented mind.
But to choose an implementation strategy, you must understand not only how
TEXT EDITING BUFFERS are similar, but also how they are different. If I tell you that
text buffers differ only in their support for encryption, then a designer might
break out each encryption algorithm using #ifdefs. If they differ in the character
sets they support, a good C++ programmer would investigate templates as a solu-
tion. If they use different storage strategies and algorithms, then inheritance is one
viable solution.

Application domain structures can vary along the same dimensions by which
commonality is judged. TEXT EDITING BUFFERS share common behavior but may
differ in algorithm, in detailed type characteristics, or in the argument types
accepted by their member functions. Each of these variations leads to different
C++ technology selections: inheritance for difference in algorithm, templates for
type parameters, and perhaps overloading for different member function argu-
ment types.

Even if the dimension of variability is understood, we must also understand
binding times and defaults. TEXT EDITING BUFFERS might contain source code for
two different memory management strategies. Is all of the code present in a given
running copy of the editor so that we can choose between memory management
strategies at run time? Or do we compile one of the implementations into the pro-
gram when we build it, using #ifdefs to bind the decision earlier? And, in either
case, which buffer management strategy should be the default so that novice
users encounter ÒreasonableÓ behavior if they donÕt choose either option?

We explore all of these questions during variability analysis. Because vari-
ability analysis and commonality analysis both use the same taxonomy of com-
monality categories, the two activities should be done together. Domain
engineering supports commonality and variability analysis with notations that
capture the details of commonalities, variabilities, binding times, defaults, and
relationships between domains. The output of commonality and variability anal-
ysis is a collection of such notations. We can often use these notations as direct
input to low-level design (writing classes and function prototypes) when vari-
ability analysis is done. This chapter introduces the dimensions of variability and
a simple variability notation.

3.2 The Commonality Base

Variability makes sense only in a given commonality frame of reference. When we
analyze variability, it is important to keep something Þxed. Commonality analysis
serves two purposes: to Þnd the major dimensions of structure in a system and to

3.3 Positive and Negative Variability 87
provide a backdrop for variability analysis. The relationship between a variability
and its commonality base is an important part of the published variability analysis.

We canÕt talk about variability in a context-free way, but we must always ask,
ÒVariability in what?Ó Consider a Message. When we say that messages vary in
length, the implied commonality comprises the characteristics that make a mes-
sage a message. On closer inspection, we might Þnd that these characteristics
include a header of a given format and size, a trailer of a given format and size,
and a message body of varying size and unspeciÞed format. The commonality
here is that every message contains a header, a trailer, and a body. For each mes-
sage type, the format of the header and of the trailer is Þxed. We ideally discover
these properties during commonality analysis. There are many other commonali-
ties for messages, too; for example, the algorithms used to dispatch them across a
network medium or to compute their checksums.

Commonalities themselves often provide key hints to variabilities. Consider
this commonality:

All TEXT EDITING BUFFERS have some kind of working set algorithm.

Make no mistake; thatÕs a commonality. However, it also points the way to a
variability: TEXT EDITING BUFFERS vary in the kinds of working set algorithms they
support. A large percentage of interesting variabilities fall into this category.
Because of this tight link between commonality and variability analysis, the two
are done together, not as separate, time-ordered activities.

3.3 Positive and Negative Variability

Let us reconsider the MESSAGE example of the previous section. All MESSAGEs have
headers and trailers of a given format; we note that as an important commonality
of the MESSAGE domain. Though the presence of a Òmessage bodyÓ member is a
substantial commonality of the MESSAGE domain, the body may vary substantially
across members of the domain (but for the time being, we ignore messages that
lack bodies). We can count on all messages having a header, a body, and a trailer.
Note that the format of the header may be Þxed for a particular system but may
vary across systems or across time.

3.3.1 Positive Variability

Variabilities in message size and header Þeld contents are independent of the com-
monalities that make a message a message. A message can leave certain header
Þelds unÞlled and still be a message; that is, it can have a 1-byte body or a 256-byte
body and still quack, walk, and ßy like a message. Yet the formatting of header
Þelds and the size of the message body are important variabilities. Because these
variabilities leave the underlying commonality model untouched, they ÒaddÓ

Variability Analysis88
something to messages that reÞnes their deÞnition. I call these positive variabilities
in that they add to the list of the base speciÞcations that make a message a message
without violating any of those original speciÞcations.

If a parameter of variation is a positive variability, then a less abstract family
results when we substitute a value for that parameter. As we bind more and more
parameters of variation, we create an increasingly restrictive speciÞcation of the
set of family members. For example, TEXT EDITING BUFFERS describe a large family
at one level of abstraction. Particular editing buffers may support speciÞc char-
acter sets, where CHARACTER SET is one of the parameters of variation. CHARACTER SET

is a positive variability because a more restrictive speciÞcation results when we
bind it to a speciÞc selection. It is also a positive variability because its bindings
do not violate the commonalities of the TEXT EDITING BUFFERS domain. The degrees
of freedom become exhausted when all parameters of variation are bound. A
single family member results.

3.3.2 Negative Variability

If all messages have bodies, then the variability is limited to the size of the message
body (presuming that the body format is of no interest to message design). If most
messages have bodies, while others (such as ACK messages) donÕt, the variability
breaks our commonality assumptions. I call this negative variability in that it contra-
dicts the assumptions that underlie what we mean by Òmessage.Ó It is a fundamen-
tally different kind of variability than positive variability.

One might be tempted to claim that all messages have a body; itÕs just that mes-
sages like ACK have a body of size zero. If we take this perspective, we remove
negative variability from the design. However, this is really lying about the
semantics of ACK messages; in the very least, it violates common sense. Such a
recasting of the design may have consequences for cost and complexity. It leads to
embarrassing questions such as, ÒCan I take the checksum of the body of an ACK
message?Ó If so, then ACK messages bear the ÒoverheadÓ of checksum code. This
might complicate the interface of the ACKmessage class. The appearance of
checksum in the interface is semantic overhead. Depending on the types of com-
monalities and variabilities involved, it may also result in real memory or real-
time overhead. These design decisions should be dealt with on a case-by-case
basis because sometimes they do make sense. For example, all Shapes may report
their angle of rotation, even though we could safely do away with this property
for Circles. The consistency we gain by making the property ubiquitous (we do
away with variability altogether) outweighs the slight economies of semantics
and space we might gain by treating Circles differently.

There is a spectrum of negative variability. Multi-paradigm design offers cre-
ative but straightforward techniques to deal with small negative variabilities. For
example, the absence of some message Þeld can be controlled with an #ifdef that
selects code according to message type:

3.3 Positive and Negative Variability 89
// adapted from stropts.h, a UNIX header file

struct strrecvfd {
#ifdef KERNEL

union {
struct file *fp;
int fd;

};
#else

int fd;
#endif

unsigned short uid;
unsigned short gid;
char fill[8];

};

Assume that the KERNEL option is the predominate common base. The non-
KERNEL version introduces a negative variability because it takes the fp member
away from the presumed commonality of structure. If you assume that non-
KERNEL code is the predominate common base, then the KERNEL version takes
away the Þrst-class standing of the fd member as a Þeld whose value can be
trusted as valid. In either case, the variation attacks the presumed commonality,
so itÕs a negative variability.

This example may not scale or generalize well. If only half of the uses of
strrecvfd messages are in the kernel and the other half are not, then it is difÞcult
to claim fp as a substantial component of the STRRECVFD commonality domain. We
may choose to break the structures into two separate domains instead: perhaps
STRRECVFD for Þle descriptors and STRRECVFP for Þle pointers. Such a split makes
the negative variability disappear.

We can apply these models of positive and negative variability across many
domains and across many parameters of variation. These models of commonality
and variability are well-developed for class inheritance under the object para-
digm. Inheritance with cancellation, as dissected in the seminal analysis of Synder
[Snyder1986], is a speciÞc form of negative variability. Public inheritance with
addition is a form of positive variability.

Positive variability is the preferred mode of design under multi-paradigm
design because it most often leads to design support by additional formalisms.
For example, one can use the Liskov substitutability principle when applying
inheritance to express positive variablity. Multi-paradigm accommodates nega-
tive variability as well, often by appealing to existing techniques such as inherit-
ance with cancellation. The most straightforward approach is to split such
domains into disjoint subdomains along the lines of the negative variability. More
advanced techniques range from judicious use of #ifdef to more generalized
solutions that will be taken up in Section 6.11 and elsewhere in the thesis.

Variability Analysis90
3.4 The Domain and Range of Variability

Variability distinguishes the members of a software family. The parameters that
differentiate family members may be just a few, or they may be many. It is impor-
tant to understand the parameters of variation that distinguish family membersÑ
how many of them there are and what values they can take onÑand to understand
how suitable parameter values meet design needs.

This section introduces vocabulary that describes the relationship between
family members and the relationship between family members and the design
trade-offs that shape them. Think of a family as a collection of members that can
be produced by a machine to suit speciÞc design needs. We use the term range to
talk about the entire extent of family members that the machine can produce. The
machine has inputs, knobs, switches, and levers that control the properties of the
family member we want to make. We call these inputs parameters of variation.
There may be few or many parameters of variation, and each may accept only a
couple of values or a large set of values. We use the term domain to denote the
valid combinations of values for all parameters of variation for a family or for a
speciÞc parameter of variation. Note that we use domain and range in much the
same sense as in mathematics. The Þrst job of domain engineering is to build this
ÒmachineÓ by Þnding the commonalities, variabilities, and parameters of varia-
tion that characterize the domain.

Commonality helps us abstract, and abstraction comes from deemphasizing
detail. We think of variabilities as the complement of commonality; they express
what is not common. Does that mean that parameters of variation express detail?
Sometimes, variabilities are more pronounced than the commonalities against
which differences stand out. We still want to capture substantial commonality
during commonality analysis; that gives us a leg up on reuse. But we donÕt want
to deemphasize variability. Instead, we want to regularize it. If we can abstract lots
of variabilities into equivalence sets, there is hope that we can describe all of the
variabilities in terms of a few simple parameters. These equivalence sets are them-
selves an anonymous form of commonality for the domain as alluded to in
Section 3.2. This is a different kind of abstraction than we use to shape software
families from the commonalities across family members. To make a far-fetched
analogy, this is how nature manages variability across the individuals of a species
that share a common genetic structure.

3.4.1 The Text Editing Buffers Example

All variability analysis takes place in the context of an established commonality
domain. Consider the domain of TEXT EDITING BUFFERS for a text editor from
Section 3.2. TEXT EDITING BUFFERS form a family around commonalities such as
structure and algorithm. Different buffers vary over a range of output types, of
character types, and of working-set management algorithms. Output types, char-

3.4 The Domain and Range of Variability 91
acter types, and working-set management algorithms are parameters of variation.
It is these parameters that control the range of variability in the family.

Each parameter of variation has a corresponding domain of values, a set of inde-
pendent design variables whose values we select to generate a particular member
of the common family. A domain is a set of values that characterize the extent of
variability in an associated range. For TEXT EDITING BUFFERS, the domain that con-
trols output type variability includes databases, RCS Þles, screen output, and UNIX

Þles. Character set properties are controlled by selecting from the set ASCII, UNI-
CODE, EBCDIC, and FIELDATA.1

Variability domain sets are the Òpressure pointsÓ of design. By assigning suit-
able domain set members to parameters of variation, we control the generation of
family members for the software design. In a good design, the programming lan-
guage captures the background commonality, but it emphasizes the way we
express parameters of variation.

For example, we may know a great deal about the complexity of TEXT EDITING

BUFFERS; we explore and capture this complexity during commonality analysis.
The programming language should hide the complexity that is shared by all TEXT

EDITING BUFFERS. We should use the facilities of the languageÑinheritance,
#ifdefs, overloading, templates, and othersÑto control the output type, character
set, and working-set algorithm used in a particular text editing conÞguration. We
will investigate the linguistic pieces to this puzzle more fully in Chapter 6 and
will fully tie variability analysis together with the language facilities in Chapter 8.

3.4.2 Good Parameters of Variation

What makes good parameters of variation? Designers can ask themselves the fol-
lowing questions about parameters of variation as the design progresses.

¥ Do the domains of the parameters cover the range of application domain
variabilities? It is crucial to select good parameters of variation if the design
is to endure multiple releases and is to be used in multiple products of the
enterprise. Parameters of variation encode the breadth of the domain.

¥ Are there parameters of variation that cannot be traced to variabilities, or
vice versa?

¥ Are the defaults appropriate and within the domain? (Defaults will be dis-
cussed in more detail in Section 3.6.)

1This is an archaic 6-bit character set used on UNIVAC machines of the authorÕs experience in the
1970s.

Variability Analysis92
3.5 Binding Time

Analysis is largely a job of making associations; commonality analysis searches for
associations common to families of application building blocks. Associations can
be shaped by the application domain, by the use of a product, or by its implemen-
tation. A given product may need to serve several variability conÞgurations. This
means that we may need to accommodate many options in a given product.

3.5.1 Binding Time and Flexibility

When we need to foresee the need for multiple product options, how late can we
defer selecting between members of a software family? Is it at compile time, or run
time, or sometime in between? A software rule of thumb is that the later we can
bind a decision, the better, since late binding and ßexibility often go hand-in-hand
(as discussed in Section 1.10). Of course, we need to balance this rule of thumb
with nonstructural (and often nonfunctional) engineering considerations like per-
formance and static type checking. But if ßexibility is important to us, and if we
incur no penalties for deferred binding times, we want to defer binding as late as
possible.

One must often understand the binding time, in addition to the commonalities
and variabilities, to select a suitable implementation technology for a given anal-
ysis. Multi-paradigm analysis makes binding times explicit. Binding time options
are a function of the solution technologies available. These options are often richer
than the simple compile-time-versus-run-time model so often portrayed in dis-
cussions of the object paradigm; we discuss them in Section 3.5.4.

3.5.2 Are Objects about Deferred Binding?

Deferred binding is one of the carefully taught lessons in many schools of the
object paradigm. Under object-oriented design and programming, we usually
defer the selection of a given class until run time and then select it from context.
Object-oriented programming languages combine this ßexibility with the ability to
hide the decision beneath base class interfaces. Inheritance is the technique that
hides the variability; virtual functions provide the run-time binding and complete
the mechanisms necessary to support transparent variability. Inheritance and vir-
tual functions provide powerful run-time variability against the backdrop of the
commonality of a base class structure and interface.

3.5.3 EfÞciency and Binding Time

We pay a penalty for run-time binding. In general, a program must contain code
for all possible run-time options. If we used run-time binding for every function
call, then every program we shipped would contain a complete copy of all code,

3.5 Binding Time 93
whether or not we anticipated that it would be used. Furthermore, the programs
would all need to contain logic to turn individual options on and off as context
required. Such logic hampers program comprehension and carries a performance
penalty. And there is the spectre of reduced conÞdence because of weakened static
program checks, and weÕd prefer to have complete compile-time type checking. Of
course, we rarely go to these extremes. Instead, we usually bind some of the
dimensions of variability at run time. (Dynamically linked libraries are a curious
exception but are perhaps better thought of as a program engineering technique
than as an important dimension of design.)

3.5.4 Binding Time Alternatives

Most designers think of two binding time alternatives: compile-time and run-time.
We can be more precise, particularly with C++ as our implementation domain.
Binding times include source time, compile time, link time, and run time.

Source Time

Source-time binding implies that the programmer consciously selects the appro-
priate family member in the program source. Template arguments are one
example:

List<char>

where the programmer explicitly substitutes the parameter of variation.

Compile Time

Compile-time binding means that the compiler can select the proper binding from
context at compile time. C++ function overloading is a typical exampleÑthe pro-
grammer doesnÕt consciously stipulate the parameter of variation, but the compiler
does. An unusual example is #ifdef. Though the selection constructs are in the
source code, the parameter of variation may be in a distant header Þle or may be
supplied as a compiler ßag. Compile-time binding informally implies source-time
binding.

Link (and Load) Time

Link-time binding means that precompiled code can be selected to satisfy an inter-
face before the program runs. It is usually environment-dependent and is not sup-
ported by C++, so we donÕt include it in our taxonomy here. For more on link-
editing and load-time tricks for C++ programs, see Coplien [Coplien1992].

Variability Analysis94
Run Time

Virtual functions are the canonical example of run-time binding. The compiler gen-
erates code at compile time to handle run-time alternatives, not knowing what the
run-time context will be ahead of time.

3.5.5 An Example

Consider the TEXT EDITING BUFFERS example again. We could make the editor fully
general so that it could deal with any character set at run time, probably by
deriving several implementations from the same base, as shown in Figure 3.1. But
then each editor would contain full copies of the code for ASCIITextBuffer and
EBCDICBuffer. A given version of the editor must deal with only one character set
at a time, depending on the platform for which it is compiled and linked. We might
use templates so that we can continue to capture the variability in the source, while
not remembering the full complement of alternatives in the implementation, as
shown in Figure 3.2. Both designs capture the same patterns of analysis common-
ality and variability, but they differ in their implementation binding time.

When we do variability analysis, we must capture the binding time for each
parameter of variation, as it will guide us in the choice of a suitable programming
language feature that captures the design intent.

3.6 Defaults

Defaults are useful conveniences when parameters of variation affect the applica-
tion only rarely. C++ has useful facilities that express defaults, such as argument
defaulting, base class member functions, and default template parameters.
Defaults that we capture during commonality and variability analysis can often be
directly expressed by the programming language.

Most of us are familiar with #ifdefs as a way to capture variability. We also are
familiar with how to use them to vary the default behavior or structure of our

Figure 3.1: A fully general implementation of text buffers.

TextBuffer

ASCIITextBuffer EBCDICBuffer

3.7 Variability Tables 95
code. We may wish to place debugging code in our text buffer implementation,
but we may not want the code included in the production version of the object
code. We may arrange debugging code to be the default:

#ifndef NDEBUG
// include this code by default
cerr << “got to “ << __FILE__ << __LINE__ << endl;

#endif

If we turn on the #define, then we can generate a production version. If pro-
duction versions are much less frequent than debugging versions, then itÕs appro-
priate to leave debugging on in the default case. That makes less work for the
developer.

Designers should also remember that defaults are dangerous. A complex
design may have many parameters of variation, each of which should be scruti-
nized to support a given deployment context. It is presumptuous of the designer
to let a default value Þlter into an implementation unchallenged. Defaults should
be chosen carefully (if they exist at all), should be explicitly documented as part of
the project architecture document, and should be revisited for each application.

3.7 Variability Tables

We can produce a variability table to document the result of our variability anal-
ysis. There is one table for each commonality domain, and each application may
comprise multiple commonality domains.

Figure 3.2: A general source structure that allows ßexibility in
implementation.

TextBuffer

ASCII EBCDICCharType

Buffer

Buffer<EBCDIC>Buffer<ASCII>

At compile time,
choose one of the
Buffer instantiations

Variability Analysis96
Table 3.1 shows the results of the variability analysis for TEXT EDITING BUFFERS.
TEXT EDITING BUFFERS are a commonality domain in the grander context of a design
for a complete text editing program. We recognize the TEXT EDITING BUFFERS

domain during commonality analysis for its commonalities of structure and algo-
rithm. That is what all TEXT EDITING BUFFERS have in common; the variability table
describes how they differ.

We see that there is a range of TEXT EDITING BUFFERS deÞned over domains of
output types, character sets, working set management techniques, and debugging
code conÞgurations. The columns of the table elaborate the domain for each of
these ranges, the rangeÕs binding time, and the default value, if any. An additional
column provides a simple description for the parameter of variation (the domain
variable).

In Chapter 8, these tables will be used together with models of the C++ lan-
guage structure to drive the solution structure.

Parameters of
Variation

Meaning
(the decision being
made) Domain Binding Default

Output type The formatting of text
lines is sensitive to the
output medium.

Database,
RCS Þle,
TTY, UNIX
Þle

Run time UNIX Þle

Character set Different buffer types
should support
different character
sets.

ASCII,
EBCDIC,
FIELDATA,
UNICODE

Compile
time

ASCII

Working set
management

Different applications
need to cache different
amounts of Þle in
memory.

Whole Þle,
whole page,
LRU Þxed

Compile
time

Whole
Þle

Debugging
code

Debugging traps
should be present for
in-house development
and should remain
permanently in the
source.

Debug,
production

Compile
time

None

Table 3.1: Text Editor Variability Analysis for Commonality Domain:
TEXTEDITING BUFFERS

3.8 Some Variability Traps 97
3.8 Some Variability Traps

Consider the following variability table entry for a TEXT EDITING BUFFER:

Here, we are not thinking of windows as output media analogous to the
OUTPUT TYPE subdomain of Table 3.1, but as a separate, loosely coupled domain in
the same system. The designer has designated the WINDOW type as a parameter of
variation. Why? Because different TEXT EDITING BUFFERS coexist in systems with
different kinds of windows. ItÕs unlikely that these classes interact; itÕs more likely
that a class such as EditingLanguage (analogous to an MVC controller) would
dispatch contents from the buffer to the window. Even if the WINDOW and TEXT

EDITING BUFFERS domains interact, the window type shouldnÕt change the imple-
mentation of TEXT EDITING BUFFERS; a given TEXT EDITING BUFFER can coexist with
any kind of WINDOW. The two can be designed independently.

Just because there is a relationship between two domains doesnÕt mean that
one of the domains is a parameter for the other. We need to be sure all domains are
sensitive to the listed parameters of variation.

HereÕs another common pitfall, with an example suggested by Paul Chisholm.
Consider the variability table for a string shown in Table 3.2. This analysis would
lead to a design in which classes such as PathName and RegularExpression were
derived from string. We would factor the variability into derived class parsing
functions that override a base class virtual function. The proper design is to sepa-

Parameters of
Variation

Meaning
(the decision
being made) Domain Binding Default

Window type Text buffers write to
many different kinds
of windows.

X, Curses,
MS
Windows

Run time None

Parameters of
Variation

Meaning
(the decision being
made) Domain Binding Default

Parsing algorithm Different kinds of
strings must be parsed
differently; they obey
different lexical gram-
mars.

Character
string,
PathName,
Regular
Expression

Run time None

Table 3.2: Variability Table for STRING

Variability Analysis98
rate classes such as PathName from string. This is because there are properties of
PathName and RegularExpression that violate the commonalities of all strings
(see [Coplien1992], Section 6.5). For example, you canÕt overwrite an arbitrary
PathName character with an arbitrary character, such as Ô/Õ or Ô*Õ (as contrasted
with pathname abstractions in Modula 3, for example).

It is crucial that the commonalities and variabilities hold for all family mem-
bers and that all alleged family members exhibit the claimed commonalities and
can be parameterized with the known variabilities.

3.9 Reviewing the Variability Analysis

It is important to review the results of variability analysis, just as it is important to
introspect on the results of commonality analysis, as we did in Section 2.5. In prac-
tice, we review commonality and variability together because one makes sense
only in the context of the other. Here are questions we can ask about the analysis
from the perspective of its variabilities.

¥ Do the variabilities cover all members of the family?

¥ Can any variabilities be stated more precisely? Variability precision helps
avoid interference between them. While we will see later that some variabil-
ity codependence can be tolerated, simpler designs result from independent
variabilities.

¥ Are there any variabilities that are inconsistent?

¥ Do the variabilities anticipate change well (domain analysis)?

¥ What family members are excluded (i.e., cannot be speciÞed)?

¥ Can you reduce the number of variabilities? This leads to a more general,
and potentially more reusable design.

3.10 Variability Dependency Graphs

Here, we present a trivial notation that uses simple graphs to show the relationship
between domains and their parameters of variation. We call these graphs variability
dependency graphs. WeÕll use this notation later in the thesis (in Chapter 7, Chapter 8
and Chapter 9) to organize the software architecture.

Consider a domain ENCRYPTIONBUFFER that is used to gather and encrypt collec-
tions of text. We can envision a family of buffers that employ different encryption
algorithms. A particular member of the ENCRYPTIONBUFFER family uses a particular
encryption algorithm. In our simple notation, we depict ENCRYPTIONBUFFER as a
node with an arrow pointing to the parameter of variation, as shown in Figure 3.3.

3.11 Summary 99
This isnÕt terribly interesting in its own right, but it becomes more interesting if
we look deeper. First, ENCRYPTIONBUFFER may also take CHARACTERSET as a param-
eter of variation: Different encryption buffers need different internal storage struc-
tures for UNICODE than for ASCII. WhatÕs more interesting is that TRAPDOOR,
which we view just as a parameter of variation, can actually be thought of as a
domain in its own right. Its code also depends on CHARACTERSET, which means that
as a domain, it also takes CHARACTERSET as a parameter of variation. So we can
elaborate Figure 3.3 to capture these semantics, as shown in Figure 3.4.

These graphs can be used to map the relationship between domains in a
design. There can be complex chains of relationships that propagate through
parameters of variation. This simple notation helps the designer understand what
the overall structure is, what the impact of change is for a given parameter of vari-
ation, and how domains depend on each other. WeÕll see in Chapter 7 and again in
Chapter 8 and Chapter 9 that this simple notation has other much more powerful
uses.

3.11 Summary

In this chapter, we presented a variability model to describe the differences
between related software abstractions. Variabilities are the key to the genetic code
of software families. Deep relationships exist between our commonality models
and variability models, and we must be careful to discern between positive vari-
ability and negative variability. Wherever reasonable, negative variability should

Figure 3.3: Domain Dependency between ENCRYPTIONBUFFER and TRAPDOOR.

ENCRYPTIONBUFFER TRAPDOOR

Figure 3.4: Adding the CHARACTERSET dependency to Figure 3.3.

ENCRYPTIONBUFFER TRAPDOOR

CHARACTERSET

Variability Analysis100
be addressed by dividing a single domain into subdomains. Where that canÕt be
done, degenerate solutions such as #ifdefs might be considered.

We studied the domain and range of a variability, its binding time, and its
defaults. These are the primary characteristics of a variability analysis. We can
capture these properties in a variability analysis table and use that table to match
analysis structures with C++ coding constructs that express them.

Chapter 4

Application Domain Analysis
This chapter introduces domain analysis. When doing traditional analysis, we
study a particular problem or application. When doing domain analysis, we study
a family of problems or applications. We will use the commonalities and variabili-
ties in these domains to characterize family members.

4.1 Analysis, Domain Analysis, and Beyond

Analysis is a well-considered study of a problem. Domain analysis is a well-consid-
ered study of a domainÑa problem area of interest ([CzarEise2000], section 2.3). Most
design methods emphasize application domain analysis, commonly called problem
domain analysis. I use the term application domain to emphasize that not every soft-
ware project should be viewed as a problem but as a focus of many kinds of
change. Analysis provides opportunities not only to apply problem-solving and
engineering techniques, but also to be creative and artistic. As you read about the
techniques, notations, and procedures presented in this chapter, keep in mind that
creativity is at the heart of design. It is important to understand that abstraction is
at least in part an art. All designers draw on their experience, knowledge, and per-
spective to abstract the essential properties of a large or complex problem.

In this thesis, I treat domain analysis as part of the broader concern of domain
engineering ([CzarEise2000], section 2.2; [Arango1989]). Engineering disciplines
focus not only on the problem at hand, but also on solution domain pragmatics
and formalisms. Any formal analysis can be effective only if it looks ahead to
implementation. Multi-paradigm design ties together the application analysis
with the solution by using a common set of formalisms, called commonality catego-
ries, to characterize both aspects of design. Though this chapter focuses on appli-
cation analysis, it will use notations and vocabulary that anticipate available

Application Domain Analysis102
solution strategies. In Chapter 6, weÕll switch out of the application domain and
examine solution domain analysis. These two analyses work together to provide
domain-level solutions to domain-level problems in C++ domain engineering.

4.1.1 Traditional Analysis

Most formally trained software engineers are taught the art of analysis. The
ÒthingÓ we usually are taught to analyze is a requirements document, and the
result is something called an architecture, or a high-level design document. In any case,
the term is only loosely deÞned. Others see it as the transformation from informal
user needs into a requirements document. We learned analysis as an art, as it is,
rather than as a component of computer Òscience.Ó

Requirements documents are complex, often ambiguous, and almost always
incomplete, even though they usually represent the needs of a single client for a
single application. As discussed in Chapter 2, abstraction is a key design and anal-
ysis tool that helps us manage or defer the complex details of large or intricate
systems. Chapter 2 shows how commonality analysis helps us form the abstract
stereotypes [Wirfs-Brock1990] and archetypes we use to think about systems. It
also helps us Þnd families of similar abstractions within an application; that is, it
helps us abstract. It also helps us identify code that can be used by more than one
part of the system; all members of a given software family may share code. Good
analysis thus provides an important foundation for software reuse.

Occasionally, we discover abstractions during analysis that we think of as
members of a family. We Þnd the simplest kinds of software families within single
systems. We can make an analogy to building architecture: Most of the windows
for any given building share properties in common, while windows are likely to
vary more widely across several buildings. In a piece of software, we may Òdis-
coverÓ families of input/output (I/O) devices, or messages, or data structures, or
behaviors, all within a single application described by a single requirements docu-
ment. A diligent designer can gain insights into these families by building domain
dictionaries (Section 2.2) and carrying out domain analysis with the client organi-
zation.

4.1.2 System Families: Domain Analysis

In most real software development projects, the developer must consider multiple
deployment conÞgurations from the very beginning. Even projects that start as sin-
gular systems usually branch into divergent, customized products as their markets
grow and as customer expectations broaden. It is insufÞcient to analyze the appli-
cation at hand. We broaden our scope to the entire domain of application, to the
domain of our market, or to the domain of the corporate vision. Instead of applica-
tion analysis, we do domain analysis.

4.1 Analysis, Domain Analysis, and Beyond 103
What is a domain? The American Heritage Dictionary deÞnes it as, ÒA sphere of
activity, concern, or function; Þeld . . . E.g. the domain of history.Ó By domain anal-
ysis, most people mean the study of the fundamental business abstractions. Finan-
cial trading is a domain. Among its abstractions are transactions, stocks, bonds,
securities, futures, derivatives, and exotics. Audio telecommunications is a
domain. Calls, telephones, lines, trunks, subscribers, and features are its impor-
tant abstractions. These are application domains. Each one deÞnes a business,
enterprise, or market in which we Þnd families of complete systems.

The term domain also has a more formal meaning in mathematics, in the sense
of the domain and range of a function. We alluded to this meaning of ÒdomainÓ in
Section 3.4. In multi-paradigm design, the term domain appeals to both of these
meanings at once. It is in part this alignment of meanings that supports the way
we express important abstractions of the application domain in the formal con-
structs of a solution domain language.

This thesis presents design and implementation techniques built around the
domain concept. Domain analysis is a set of techniques for identifying software
families, and application engineering is a set of techniques for implementing and
managing software families. Domain analysis and application engineering
together form a discipline called domain engineering. Multi-paradigm design is a
form of domain engineering for which domain analysis applies both to the appli-
cation and solution domains.

In Section 4.2, we will see that these broad domains are woven from smaller
domains called subdomains. GUIs are a subdomain: windows, menus, dialogue
boxes, text, fonts, and colors are among its abstractions. These abstractions often
emerge as classes under object-oriented analysis, though many of them are too large
to make good classes that are primitive and cohesive. Booch [Booch1994] uses the
term class categories to describe the class hierarchies and associated classes for a
given subdomain. Class categories group abstractions that emerge from object-ori-
ented analysis and design. Under multi-paradigm design, we want to apply parti-
tioning criteria that generalize beyond those offered by the object paradigm.

This is a wider scope of abstraction than we encounter in traditional analysis.
We must seek commonality not only within an application but also across related
applications. The application systems themselves form families. We talk about
market product lines that are related by common properties and attributes and
that vary according to their utility for speciÞc markets. A good product line archi-
tecture separates the common parts from the variable parts. Good design encap-
sulates common properties and identiÞes architectural pressure points that
express the variabilities for speciÞc markets. The design must produce an imple-
mentationÑin real codeÑthat can conveniently be conÞgured for each of the
market segments by suitably binding the parameters of variation.

Application Domain Analysis104
Family Members in the Application and Solution Domains

Some variabilities control low-level detail in algorithm and data structure. Many
important market variabilities reach into the Þne structure of the system implementa-
tion, while leaving the gross structure unchanged. Of course, many market depen-
dencies can directly be expressed at a higher level by including and excluding
speciÞc modules. But, in general, the importance of an application variability may
not correspond to the scope or abstraction level of its implementation.

For example, consider a text editor that has been designed to work with any
one of several character sets. (The editor example serves to illustrate many points
in this and later chapters.) There might be a domain named TEXT BUFFERS whose
area of concern is the working set of text being edited at any given moment. This
domain may support basic editing functions common to all text editors. It also
may participate in output and input to and from disk Þles and in output to the
screen. Most of the object code for this domain is different for chars than it is for
wchar_t characters. These differences are small and are sparsely distributed
throughout the object code. We might control the generation of object code for a
given market by specifying a template parameter (for TEXT BUFFERS classes and
functions) at the source code level. Templates provide a convenient, localized
mechanism to express such market variabilities. The parameter easily can be
propagated to all of the TEXT BUFFERS code, where it can Þne-tune the generation of
object code suitable to a speciÞc market.

Because application domain analysis can affect the solution structure at many
levels of granularity, it is important to conduct problem and solution domain
analyses in tandem. For the same reason, it is important to consider all family
members of a domain together. Domain analysis is an integrated view of com-
monality and variability across the abstractions of the entire domain. Though it
may be done at a slightly higher level of abstraction than we would Þnd in a tradi-
tional analysis, domain analysis should not be thought of as a layer that ties mul-
tiple analyses together. A single domain analysis cuts across all systems in a
family at once.

Balancing Abstraction and SpeciÞcation

Domain analysis is more abstract than traditional analysis. Abstraction is good
because it facilitates the navigation of complex domains: The higher the abstraction,
the lower the complexity. Weinberg [Weinberg1971] remarks that itÕs sometimes
easier to solve a general problem than to solve the speciÞc one. Furthermore, the
general solution ÒgeneralizesÓ to the speciÞc case, even though a direct solution for
the speciÞc case may have been more difÞcult to come by. The higher the level of
abstraction, the more broadly an abstraction is likely to apply. It is this abstraction,
supported by appropriate documentation and economics, that provides the foun-
dation for reuse. The abstractions that come from domain analysis apply to all

4.1 Analysis, Domain Analysis, and Beyond 105
applications in the domain, whereas those that come from traditional analysis are
guaranteed to apply only to the application at hand.

A good domain analysis balances abstraction with speciÞcation. Abstraction
hides detailÑit causes us to lose design information. The higher the level of
abstraction, the less information is conveyed by the design. The level of abstrac-
tion should be commensurate with the scope of the business or enterprise. Broad-
ening beyond the expected business application of a domain, or one of its
abstractions, may result in discarding details that are important to the domain. On
the other hand, if the abstractions do not cover the business domain, then evolu-
tion may take the system outside its architectural boundaries, thus leading to
clumsy or costly architectural modiÞcations. Domain designers must understand
their business well.

For example, consider a software package that helps companies manage Fed-
eral corporate income tax deductions. Some of the interesting subdomains would
be Þnancial instruments, sales, purchases, and inventories. Good designers look
for the parameters of variation in each subdomain, drawing on customer require-
ments and on their own domain expertise in Federal tax law. This may lead to an
elegant, manageable product for the U. S. market. But if the company wants to
broaden its product to address state tax issues, it will Þnd domains that are absent
at the Federal level. Things are even worse if the company wants to move into
international tax. Looking at the initial problem as one of Òtaxability manage-
mentÓ ignores the latent parameters of variation that capture the interests of the
market. Designers can fall into these traps either because they donÕt understand
the domain well enough (perhaps they are ignorant about differences between
Federal and state tax liabilities) or because they donÕt understand their business
vision well enough (they prematurely limit themselves to the Federal tax market,
thinking that the state or international tax markets will never be of interest).

Returning to the editor example, consider a general-purpose editor we want to
reuse across several domains. We might make the editor so general-purpose that it
can accommodate graphical editing and text editing, as well as special-purpose
editing such as editing the lighting sequences for computer Þlm animation. An
editor that general probably is striving for too much abstraction. There isnÕt
enough commonality among the editing abstractions for graphics, text, and Þlm
animation lighting to beneÞt from considering the three together.

Levels of Domain Abstraction

During domain analysis, we abstract globally and reify locally. ReiÞcation means
to talk about an abstraction in terms of how its instances are used in the real
world. For each member of a family of systems, we use the general abstraction
to meet a speciÞc need. For example, if we are building a text editor to run
under Motif, we can still talk about that application as though it needs X Win-
dows. The same is true of another application that needs to run OpenLook.

Application Domain Analysis106
XWINDOWS is the abstraction that transcends this domain. We can talk about each
domain as though it used something called XWINDOWS, though XWINDOWS may
exist only as an analysis abstraction. Using an abstract concept from the domain, as
if it were a concrete building block, is reiÞcation.

The abstractions of a domain analysis should be more abstract than those we
consider during ordinary analysis only to the extent they are more general. The
goal of domain analysis is not only to raise the level of abstraction (as an aid to
problem cognition), but also to raise the level of generality and the breadth of
applicability. ÒGeneralÓ doesnÕt imply Òvague,Ó but it does mean that we suppress
architecturally irrelevant detail and emphasize the commonalities that are impor-
tant to the domain.1 One design is more general than another if it expresses fewer
variabilities. We want to capture the essence of commonality and parameterize
the variability. Rather than enumerate variabilities, we enumerate parameters of
variation that characterize the application domain. For example, we wouldnÕt say
that Òwe need Stack<int>, Stack<Number>, Stack<Message> . . . ,Ó but that Òwe
need Stack<T> where T is some type.Ó This parameterized design is more general
than an enumeration. But it is not vagueÑwe can write every bit of source code
for it.

To increase abstraction, we reduce speciÞcation. That is, a more general class
has fewer member functions, or less restrictive interfaces, than a more speciÞc
counterpart. Sometimes, an abstraction can be made more general in this way, too.
But we can also replace a family of related, speciÞc classes with a single general
template that captures the interfaces shared by the family members and whose
parameters control individual instantiations. The template is perhaps less
abstract, but certainly more general, than the original individual classes. As an
example, consider parameterizing the text editorÕs FILE domain with different
encryption algorithms (again, for different markets).

In short, we look for families of systems. By broadening to a family of related
systems, we reduce the risks of requirements changes. If we derive a speciÞc
application architecture from a highly speciÞed (very speciÞc) architecture, then
even small requirements changes will drive changes in major system structures or
interfaces. If we keep the structure more generalÑby aligning it with the domain,
instead of with a speciÞc application or customerÑit is more likely that the archi-
tecture will roll with the punches of system evolution. We can ÒreuseÓ the design
across space and timeÑthis was the central intent of the founders of domain anal-
ysis [Neighbors1980].

1ÒIn this connection it might be worthwhile to point out that the purpose of abstraction is not to
be vague, but to create a new semantic level in which one can be absolutely precise.Ó W. Edsgar Dijk-
stra, The Humble Programmer, CACM 15(10), October 1972.

4.1 Analysis, Domain Analysis, and Beyond 107
4.1.3 Application Domain Analysis and Solution Domain Analysis

In many of the traditional design methods, application analysis was something one
did before starting on the design and implementation. In multi-paradigm design,
we use foreknowledge of the implementation domain to our advantage. Consider
this approach as an extension of one of the advantages claimed for the object para-
digm, whose argument goes something like this: Presume that your programming
language can express Òobjects.Ó During analysis, look for ÒobjectsÓ as units of
abstraction. When you go from analysis through design and implementation, you
will ÞndÑsurprise!Ñthat you can express the abstractions of analysis in your
implementation language.

The object paradigm was one of the Þrst to popularize this technique. Classic
software paradigms depended on intermediate forms, state charts, data ßow dia-
grams, and many other artifacts that spoke of transformation after transformation
between analysis and design. The object paradigm tried to linearize this with a
Òone-Þts-allÓ approach for both the application and solution domains.

We do the same thing in multi-paradigm design, except that we broaden the
design expressions available to the designer at implementation time. We open up
all of the facilities of the language, not just the ones that are object-oriented.

4.1.4 The Activities of Domain Analysis

Domain analysis has three major activities: identifying the business domain,
dividing the business domain into subdomains, and establishing the abstractions
within each subdomain. Most software development efforts are shaped by the
needs of a single customer. When we are doing domain analysis, it is important to
broaden analysis into the needs of multiple customers. These multiple customer
perspectives can help identify the critical business domains. In most business
applications, the domains should be intuitive to experienced practitioners. Cus-
tomers can help reÞne the domains of interest; a good domain is one to which a
customer can relate.

Subdomains are the speciÞc business or technical areas that are key to the suc-
cess of the general business domain, or enterprise. Identifying the subdomains is a
crucial part of multi-paradigm design. Unfortunately, it is the part of design that
is the most difÞcult to regularize. Splitting an application into good subdomains
relies on intimate knowledge of the business or application being analyzed.
Potential customers, or even hypothetical customers, can temper the list of
domain commonalities and add to the list of domain variabilities. In the editing
example, we may have a domain called PERSISTENT STORAGE with subdomains
DATABASE and LINEAR FILE. Each subdomain can be used equivalently by the rest of
the editing code. But the abstractions and algorithms that support database
retrieval and update will be quite different from those that support ordinary Þles.

Application Domain Analysis108
They are different areas of interest that merit attention from development teams
with the concomitant expertise, so we treat them as individual subdomains.

Historically successful subdomains of a business provide a good starting point
to design new products for that business. To an experienced designer, subdomain
partitioning follows the intuition that comes from experience in the domain,
rather than from any formal or rigorous method. Once that is done, the design
teams can proceed with domain analysis for each of the subdomains by using
commonality and variability analysis. These activities point the way to system
architecture and implementation.

Some domains lack an experience base, and intuition canÕt be trusted as the
source of partitioning criteria. How does one discover the domains for a new busi-
ness or for radically new problems in an existing business? For such problems, it
pays to carry out an informal commonality and variability analysis at the system
level before partitioning the domain into subdomains. The commonalities usually
point the way to a domain partitioning.

The best subdomains are disjoint. ÒDisjointÓ informally implies that domains
have distinct parameters of variation and that each domain is sensitive to its own
ÒlocalizedÓ business drivers. A good domain or subdomain forms a family of
related abstractions. It is useful to think of a subdomain as a unit of architecture
and design reuse; the software of a subdomain can be independently reused only
if it is adequately disentangled from other software. All interesting domains have
some external coupling, usually through the parameters of variation. If they
didnÕt, they couldnÕt be integrated with any other software. However, we want to
minimize such dependencies in the interest of simple elegance and reuse.
Chapter 7 focuses on multi-paradigm design for such independent subdomains.
Sometimes, high coupling between domains is inevitable, even though we must
keep the domains separate for business reasons or because the beneÞts of reuse
still outweigh the costs of coupling. In these cases, we must factor related parame-
ters of variation from multiple domains at once and must manage the dependen-
cies between domains. In the editing example, the TEXT BUFFERS domain may
overlap with the EDITING LANGUAGE domain, which deals with editing commands
and the interaction between the commands and screen updates. Both are reason-
able areas of interest and form good domains in their own right, but each must be
considered in the context of the other. Consider a simple line editor: Its text buffer
must manage only individual lines. Visual editors will probably manage buffers
that are one or two screens large (or they may manage an entire Þle image at a
time). Stream editors (such as sed) need a text buffer that is really a stream buffer.

Chapter 9 describes solutions to the problem of dependencies between
domains. The success of the approaches of Chapter 7, Chapter 8, and Chapter 9
depend on subdomains that are as decoupled as possible, something we consider
from the earliest stages of analysis.

4.2 Subdomains within a Domain Analysis 109
4.2 Subdomains within a Domain Analysis

In the previous section, we noted that traditional development starts by exploring
the needs of a single customer and looking ahead to the single integrated solution
that will solve the problems brought to the surface in analysis. The next step usually
is to partition the system into independently manageable parts. Paradigms are col-
lections of rules that help us Þnd the pieces in a system. These parts may be self-
contained systems, which could be separately marketed, or separately manageable
building blocks within a given discipline. Independently deliverable parts are
called subsystems. To Þnd these building blocks, a designer can use the object para-
digm, database modeling, data modularization, procedural decomposition, or
another paradigm of choice. Traditional design decomposes an individual applica-
tion by using one primary paradigm. We broaden this in multi-paradigm design,
following the principles of domain engineering. But we donÕt jump directly from a
single paradigm to multiple paradigms; Þrst, we revisit the question of design
scope.

The scope of system domain analysis deÞnes a context in which we look for
abstractions. This scope is broader than a single system. Again, we could apply
one primary paradigm to coax abstractions from the domain. But because
domains are broad in scope, a single paradigm may be insufÞcient to express its
abstractions. (In fact, the same is true for complex systems in which traditional
analysis is used; it just becomes more apparent in domain analysis.) We could try
to use multiple paradigms directly on the domain. But the question is, where do
we start?

Most large problem domains are woven from multiple, smaller subdomains.
For example, the domain of Þnancial trading includes the subdomains of Þnancial
instruments, human-machine interfaces, interprocess communications, databases,
and others. In telecommunications, we Þnd call processing, recovery, administra-
tion and maintenance, billing, and others. In a text editor, we Þnd buffer manage-
ment, human-machine interfaces, text Þles, and potentially others. Each of these
subdomains is itself a domainÑa Òsphere of activity, form, or functionÓÑthat pro-
vides a focus for the designer.

Some domains may be modules or subsystems. But consider some of the
domains listed previously. Financial instruments and databases may overlap each
other, as do TEXT BUFFERS and EDITING LANGUAGE, as do most domains in telecom-
munications. WeÕll see later that even in the simple text editing example, domains
can be intertwined in ways that make naive module boundaries unsatisfying.

While high-level domain analysis is concerned with families of systems that act
like product lines, we can look across a domain of application for families of sub-
systems. A subsystem may not stand alone as a self-sufÞcient product, but it still
may capture the design and implementation decisions for a business domain.
Window systems are a good example: They rarely stand alone but capture design

Application Domain Analysis110
decisions2 for a well-deÞned technical area. In our domain analysis of text editors,
we discover ÒwindowÓ as a recurring abstraction. Window characteristics may
vary from text editor to text editor, so the window packages form a family. These
families themselves characterize a domain. We call these families subdomains to
distinguish them from the broader business domains that are the popular topic of
contemporary domain analysis. In most contexts, text editing would be a domain
for which windows, Þles, and command processing would be subdomains, as
shown in Figure 4.1. In the context of a broader domain like text processing, text
editors may be a subdomain; we want a family of text editors to support a given
text processing application. Subdomains will be our primary focus for common-
ality and variability analysis.

Subdomains transcend applications. In a particular implementation, we bind
the parameters of variation for a subdomain to generate a subsystem. A subdo-
main is an abstraction that captures the commonality and variability of similar
subsystems that recur across business applications. These subsystems form a
family. The subdomain analysis characterizes that family, capturing its properties
of commonality and variability. We should be able to generate any family member
(any subsystem) with suitable choices for the parameters of variation. Frame-
works are often a suitable way to capture commonality across family members,
while providing parameters and interfaces that express the variability of an indi-

2Most paradigms are weak at capturing all design decisions and in particular at capturing the
design rationale. We donÕt mean to address the issue of full design capture here. SufÞcient to this
context is that the code for class Window actually does capture the design intent for a speciÞc applica-
tion or domain, even though a user or reader of the code may not be able to reverse-engineer all that
design intent.

Figure 4.1: Subdomains in the domain of TEXT EDITING.

WINDOWS

FILES

TEXT

BUFFERS

COMMAND

PROCESSING

4.2 Subdomains within a Domain Analysis 111
vidual subsystem (Section 4.3.1). In the editor example, the domain FILE may
depend on parameters of variation that control the buffering technique, the char-
acter set, and encryption. Suitable choice of values for these parameters of varia-
tion generates speciÞc family members for speciÞc applications and markets.

4.2.1 Domain Analysis and Reuse

As mentioned earlier in the chapter, good domain analysis is one key to reuse.
Because traditional analysis focuses on the application at hand, its abstractions will
have little better than an even chance of serving other applications as well. True
reuse requires a broader perspective that encompasses multiple market threads.
Domains should extend to the boundaries of the business, but not too far beyond.
If they are too broad, they will be difÞcult to implement. If too narrow, their useful-
ness is limited.

Good system designers usually know the subdomains that are relevant to the
business in which their expertise lies. That is, they know the patterns of common-
ality that recur in product after product. These intuitive subdomains form the
bulk of the Þrst level of analysis. Commonality analysis helps discover more
subtle subdomains or sub-domains relevant to new areas of application. A good
domain exhibits common patterns of vocabulary, structure, name, behavior, and
use cases (Section 2.3). A given domain may not exhibit commonality of customer
(for example, both Þnancial traders and interactive text-editing tool writers use
human-machine interfaces), manufacturer (there are many window vendors), or
target application.

Fortuitously chosen subdomains apply not only to many applications within a
given business. They also may broaden to apply to multiple businesses in the enter-
prise. Databases, human-machine interfaces, interprocess communication, and Þle
management are good examples of broadly applicable domains. That means that
we can look beyond the current customer domain of interest to other domains in
our business and in related businesses in order to shape a broader family of
abstractions. Of course, many subdomains remain peculiar to individual busi-
ness domains. For example, we wouldnÕt expect many of the abstractions of
telecommunications administration and maintenance to apply broadly to other
businesses. And we wouldnÕt expect the paradigms of highly parallel graphics
rendering to contribute much to classic numerical analysis programs.

The outputs of business domain analysis include the following:

¥ A characterization of the families of products captured by the analysis

¥ A list of the subdomains of interest

These artifacts can directly drive the structure of the solution domain, which, of
course, is taken into account from the beginning of application domain analysis.

Application Domain Analysis112
A software artifact that encapsulates commonalities for a broad domain and
that can be tuned with well-speciÞed variabilities provides a solid foundation for
reuse. The object paradigm supports this kind of reuse through inheritance; that
is, new derived classes reuse the design and code of the base class. We use multi-
paradigm design to express forms of reuse other than type specialization.

A good analyst has an eye to the implementation technologies available, even
as the initial partitioning into subdomains takes place. One can more fully under-
stand how to partition the domain into subdomains only when aligning the anal-
ysis with a solution structure. We take this up in more detail in Section 4.4.

Multi-paradigm design is only a technological enabler for software reuse. Good
reuse and good domain analysis rely on good insights into business needs. Reuse
itself is a business practice with business goals such as increased proÞtability and
reduced time to market. These considerations are beyond the scope of this thesis,
but I mention them so as to temper expectations a reader may create from the
design perspective alone. The most important reuse issues involve sociological,
organizational, and market issues that are beyond the scope of this thesis. ItÕs
important to recognize that a comprehensive reuse program owes as much to
reward systems, organization issues, and economic models as it does to any tech-
nical concerns. For more on these issues, see the practical and accessible work by
Tracz [Tracz1995].

4.2.2 Subdomain Modularity

Ideally chosen subdomains are modular; that is, the partitioning results in non-
overlapping pieces. We choose subdomains to break down the complexity of a
larger system into smaller, manageable pieces. The pieces are manageable to the
degree they are independent and cohesive. In some cases, modularization may be
difÞcult and the success of a decomposition is sensitive to the domain. In fact, the
more cohesive a domain is, the more difÞcult it is to partition it. There is little we
can, or should, do about the properties of the application domain. We can only
choose our knives carefully to extract the best possible partitioning from the
problem deÞnition. With these subdomain pieces in hand, we can start to apply
commonality analysis to each one.

We could apply domain analysis to the entire spectrum of business domain
systems, but it makes sense to start with the subdomains, for two reasons. First,
many business domains are just too broad to analyze for commonality. Second,
while the abstractions within a domain may be tightly coupled (such as keyboard
to pointing device and window), coupling across domains limits the reusability of
their abstractions and the ability to separately evolve domains (as discussed in
Section 4.1.4).

Most contemporary analysis methods also suggest that design start with a
high-level partitioning into separately maintainable chunks. Simple-minded pro-
cedural decomposition starts with procedural hierarchies. Simple-minded object-

4.2 Subdomains within a Domain Analysis 113
oriented analysis starts with objects. Most contemporary design approaches force
the system into a single abstraction mold. Others, such as BoochÕs method, start
with subsystems [Booch1994]. It is more important to Þnd the patterns of com-
monality and variability that will lead to the best patterns of coupling and cohe-
sion. These in turn promise good software evolution dynamics.

A domain often can be captured using conventional administrative constructs
such as subsystems (as in [Booch1994]). However, domains are logical units of
design and may not always map onto the contiguous bodies of code that usually
deÞne a subsystem. (An example follows in Section 4.3.) Domains may even
overlap. A common example of this from object-oriented programming is the
multiple dispatch problem. Consider the code that outputs the contents managed
by the TEXT BUFFERS domain to a Þle managed by the PERSISTENT STORAGE domain.
Which domain ÒownsÓ the code? The code structure and algorithms depend on
both domains.

It is also important to note that not all subsystems are domains; subsystems are
traditionally administrative units of code, not logical units of design. For example,
enterprises may choose a domain to suit market interests or even market percep-
tions of system modularity and conÞguration even if the domain touches many
parts of the code. Making the domain a Þrst-class concern makes it easier to
manage its evolution.

4.2.3 Iteration and Hierarchy

Software tradition and the even deeper traditions of Western culture usually lead
us to attack problems in a top-down fashion. This hierarchical approach lends itself
well to prevailing business structuresÑwhich are often hierarchicalÑand it serves
the enterprise well to align the software structure with the business structure
where reasonable and possible. In fact, much of the intuition that drives the initial
partitioning of domains into subdomains derives from business experience (as
opposed to being derived from, for example, software engineering principles).

In large systems, subdomain structures can be applied hierarchically. The ini-
tial partitioning from domains into subdomains may leave unmanageably large
chunks that may be further subdivided. Subdivision should stop when the
abstractions are more detailed than one Þnds in the vocabulary of the market.
ThatÕs when to start choosing paradigms suitable to divide the subdomain into
manageable design pieces.

A strictly hierarchical approach can leave serious blind spots, particularly in
new domains. Work with the lower-level subdomains often yields insight into the
higher-level domains, and the designer should take advantage of those insights
by revisiting higher-level design partitionings. For example, ongoing work in the
DATABASE and LINEAR FILE domains may yield insights on the parameters of varia-
tion and common code that can be factored into the PERSISTENT STORAGE domain.
And the evolution of clients of the PERSISTENT STORAGE domain may suggest

Application Domain Analysis114
changes in their contracts with PERSISTENT STORAGE that in turn might affect the
structure of its subdomains.

Domain analysis isnÕt an up-front activity we leave behind once we shape the
application domain into subdomains. Increased understanding of the solution
shapes the way we think about the problem. There is a danger in presuming that
the results of domain analysis are conclusive. Any successful development pro-
cess must embrace iteration.

4.3 The Structure of a Subdomain

We must structure the subdomains into parts that can be individually developed.
This is the familiar territory of paradigms such as the procedural paradigm or the
object paradigm. How do we judge a good partitioning, and what do we mean by
the Òbest solutionÓ to an analysis problem? Paradigms usually apply the tried and
true principles of coupling and cohesion. Maximizing cohesion within a module is
good, as is minimizing coupling between modules. Paradigms guide us to create
modules that satisfy these guidelines, whether we use modules in the Parnas
[Parnas1978] sense or whether our modules are procedures, objects, or abstractions
from other paradigms.

If we dig deeper, we Þnd that coupling and cohesion principles serve a deeper
needÑcreating software that is easy to write in the Þrst place and that is easy to
understand and modify. A single, preconceived solution paradigm can hinder our
understanding of the straightforward structure in the problem or application
itself.

For simplicityÕs sake, we try to keep subdomains disjoint within a given appli-
cation or application domain. As we partition subdomains, we pick up where
most contemporary analysis techniques complete their Þrst task: decomposing a
problem into abstractions. Most paradigms seek to reduce a system to parts, each
of which can be individually understood. Traditional techniques apply a single
paradigm to one system at a time, perhaps choosing one that gives us the most
intuitive partitioning. We use a paradigm to ÒchunkÓ a system into units that bal-
ance structure, behavior, and binding times. We think of the parts as physical enti-
ties that are distributed in space (either across our source code or through the
memory spectrum of a running program or system).

An important tenet of C++ is that no single paradigm works best all of the time;
this rule applies as well in the application domain as in the solution domain. We
can use multiple paradigms within a single design as we Þnd opportunities to
apply them. These paradigms may overlap within a domain. Within a given
domain, we are less interested in its ÒpartsÓ than in the patterns of commonality
that cut through the systems in many dimensions. Most paradigms focus on a
physical view of the system, presuming we are going to decompose the system
into ÒphysicallyÓ separate modules. We desire a logical view, in addition to this

4.3 The Structure of a Subdomain 115
physical view, that allows us to clearly see important abstractions that cut across
any single physical partitioning. Instead of seeking a strict partitioning, we look
for the logical groupings that make sense within a domain. That leaves room for
the important abstractions that transcend objects (or procedures or modules).

We Þnd simple conßicts between logical and physical partitioning in everyday
C++ programming. For example, a system may have a family of functions that
convert instances of user-deÞned types into strings. A common convention is to
designate an asString function for each type. These functions are logically
relatedÑthey all have the same name and the same meaning, but each applies to a
different type. Architecturally, each such function is likely to be associated with
the type to which it applies. We might write them as friend functions:

class MyType1 {
friend string asString(const MyType1 &s) { }

. . . .
};

class MyType2 {
friend string asString(const MyType2 &s) { }

. . . .
};

. . . .

If each instance of asString is (or can be) implemented with a similar struc-
ture, then we might create a single template instance that can be written in terms
of other member functions. This closed copy of the source ÒgeneratesÓ the family
of related functions:

template<class T>
string asString<T>(const T& c) {

// really dumb implementation of asString
string retval;
char *buf = new char[BUFSIZ];
strstream str(buf, BUFSIZ);
str << c;
str >> retval;
return retval;

}

If we look at all of the classes to which we wish to add asString behavior and
note that those types all have similar signatures, then we broaden the common-
ality beyond the function to the classes themselves. We would express the com-
monality using inheritance hierarchies:

class Base {
public:

virtual string asString() const;

Application Domain Analysis116
. . . .
};

class MyType1: public Base {
public:

string asString() const { }
. . . .

};

class MyType2: public Base {
public:

string asString() const { }
. . . .

};

And, of course, if the structures of all asString functions are common in this
last case, we can factor their implementations into a single, closed copy in the base
class. So, though asString is a legitimate logical abstraction, we may Þnd that its
implementation is not modular in the software structure.

As an example of how multiple partitionings work together, consider the com-
plementary type and class abstractions put forth in the design paradigm of
Schwartzbach and Palsberg [Palsberg+1994]. Early object-oriented designs
equated class and type. Schwartzbach and Palsberg laid many of the foundations
that have helped us separate typeÑthe behaviorÑfrom classÑthe implementation.
Design then becomes a task of identifying not only the types, but also the classes to
implement them and the mapping between them. Trygve ReenskaugÕs role-based
design is similar in intent [Reenskaug1996]. In multi-paradigm design, we try to
broaden our design scope even further.

4.3.1 Frameworks as Subdomain Implementations

A framework is a software package that captures software architecture in source and
object code. It is a partly Þlled-out implementation, with ÒholesÓ to be Þlled in on a
per-application basis. Therefore frameworks are an abstraction and characterize a
family of related implementations. Object-oriented frameworks have become
increasingly popular in the literature and industry dialogue, though their success
in current practice is difÞcult to substantiate [Fraser+1997]. One can speculate (and
I emphasize the speculative nature of this observation) that the failure is due in
part to the limitations of the object model; there has been notable success in
vendor-decoupled frameworks such as the X Window system [Scheißer1996] and
the STL [Musser+1998] that embrace objects less explicitly if at all.

Frameworks describe the solution to a problem, so it is usually premature to
focus on frameworks during analysis. I present them here in the analysis chapter
to give the reader a Þrmer grasp on the usable end-products of design.

4.3 The Structure of a Subdomain 117
Frameworks usually capture the implementation that is common to an entire
domain. The most common frameworks support user interfaces. Trygve Reen-
skaugÕs Model-View-Controller is a general model of human-machine interaction
that is the foundation for a family of related frameworks. Proprietary frameworks
in software corporations support families of software that are germane to a line of
business.

A typical framework deÞnes interfaces for which the user provides an imple-
mentation, abstract base classes from which a user derives implementation
classes, or coupling relationships between classes in the framework. If a base class
guides the implementor by stipulating the interface for a function that the user
must deÞne, then that function is a parameter of variation. If class derivation is
used to capture the implementation of speciÞc family members, then the struc-
tural or behavioral differences between the base and derived classes represent
parameters of variation. Patterns of registration between classes (or their objects)
bind abstract notions of the distribution of responsibility to real functions that are
written for speciÞc applications, as in the Smalltalk Model-View-Controller
framework. In each of these cases, we parameterize the generic framework with
user-supplied constructs to generate a family member.

Sometimes, individual subdomains map closely onto frameworks. Good
frameworks can be independently delivered, maintained, and evolved. The sub-
domains we discuss in Chapter 7 map closely onto frameworks. Tightly coupled
subdomains are difÞcult to manage as independent frameworks. A rich frame-
work usually combines multiple subdomains, sometimes by using multiple para-
digms, to attack a business problem of broad scope. Frameworks usually emerge
from the rich interaction of paradigms that we describe in Chapter 8.

4.3.2 The Activities of Subdomain Analysis

Section 4.1.4 established the principles for dividing a business domain into subdo-
mains. Each of these subdomains must now be analyzed for pressure points of
commonality and variability that can be expressed in a C++ implementation. This
is the main focus of multi-paradigm design, and it is the activity that most distin-
guishes it from other techniques.

To do this, we apply the techniques that were introduced in Chapters 2 and 3.
The Þrst step is identifying the commonalities and variabilities of the subdomain.
Though these were presented as separate activities in Chapters 2 and 3, we do
them together in practice. Commonalities help reveal the variabilities, and vice
versa.

Introspection and clear deÞnition are key to a good domain analysis
(Section 2.5), and there are many questions we must ask ourselves about the com-
monality analysis (Section 2.2.2). Are the deÞnitions clear, complete, and consis-
tent? Are the commonalities complete, precise, accurate, and consistent? The
variability perspective is important as well (Section 3.9). Do the variabilities

Application Domain Analysis118
extend to the edge of the domain, both as it is deÞned today and as the team antic-
ipates how it will change? Are the variabilities complete, concise, and consistent?
Another audit on variability can be done through the parameters of variation
(Section 3.2). Are they complete and consistent with the variabilities, and are their
default values appropriate and within the domain?

And donÕt lose the big picture perspective: Could the subdomain product be mar-
keted as a product in its own right? The answer wonÕt always be yes, and the market
may not always be broad. But a subdomain should be cohesive and should offer
intuitive functionality that helps the business.

4.4 Analysis: The Big Picture

In this chapter, we started by motivating the need to broaden analysis to domain
analysis. We do this by looking for software families either that transcend the prod-
ucts of our business or that we expect to transcend releases of a given product.

In theory, we can characterize domain analysis as a spectrum of techniques that
lie between two extremes. In the Þrst approach, we separate problem domain
analysis from solution domain analysis. We can analyze the problem domain
without regard for how to express the solution. This has the advantage that we
can defer implementation details. However, it incurs the risk of delivering an
analysis that cannot be implemented within the reasonable constraints of devel-
opment technology and culture.

In the second approach, we take the implementation technology into account
from the very start. For example, we would cast all domain abstractions in terms
of C++ language constructs: classes, templates, functions, and so forth.

Neither of these extremes provides a satisfactory operating point, but it is
nonetheless important to reconcile analysis techniques with the implementation
strategies that follow. A good analyst starts with some notion of the implementa-
tion technology but doesnÕt let that knowledge dominate the abstractions that are
created. When multi-paradigm design techniques are used within subdomains to
align analysis structure with programming language structure, the mappings will
occasionally be awkward or even intractable. If it is difÞcult to express a subdo-
main using C++ constructs, consider rethinking the domain partitioning.

Figure 4.2 summarizes the abstracting activities of multi-paradigm design. In
this chapter, we have focused on the upper-left ÒbubbleÓ of the Þgure. We start by
identifying the application domain, or business, in which we wish to work. We
split the problem into subdomains, relying more on our intuition than on any reg-
ularized or formal method to do so. Next, we do commonality and variability
analysis on individual subdomains, as the Þgure demonstrates has been done for
CUSTOM PROTOCOLS. This is an iterative process, with commonality and variability
analysis proceeding in parallel and converging on a Þrst-cut selection of subdo-
mains.

4.4 Analysis: The Big Picture 119
Once commonality and variability analysis are Òcomplete,Ó the designer must
align each subdomain structure with the available structures in the solution space.
To do that, the designer must understand the structure of the implementation
space. The implementation language is a domain unto itself. Design and imple-
mentation are the arts of aligning the commonalities and variabilities of the appli-
cation space with those of the solution space. The upper-right ÒbubbleÓ of Figure
4.2 represents the analysis of the solution domain. We discuss that bubble further
in Chapter 6. The structures of the application domain and the solution domain
are combined to yield the framework of the bottom bubble. The techniques for
combining these analyses will be covered in Chapters 7 and 8.

As we Þnd that the implementation technology of choice doesnÕt Þt the com-
monality and variability analyses for the application domain, we may revisit the
analysis of the application, the choice of solution technology, or both. In extreme
cases, it might be useful to rethink the use of C++ as an implementation tech-

Figure 4.2: The domains of analysis.

The Application domain: What

The Solution domain

Classes
Templates
Overloaded functions
Structures
Algorithm fragments

business are we in?

Subdomains: Technological or
business areas that are core
competencies of the business

Human
interfaces

Custom
protocols

Data
management

Design for a C++ implementation of
one of the system subdomains

A framework: Disjoint
from other frameworks,
woven from potentially
overlapping or tightly

coupled “parts”

Application Domain Analysis120
nology, particularly if other implementation technologies have proven themselves
in the past. For example, rule-based systems should consider using tools that sup-
port expert systems (such as Prolog), while systems that deal with the manage-
ment and concurrent access of large-scale data sets should use database tools.
Multi-paradigm designÑlike all good designÑis fundamentally iterative. It takes
time to Þnd the right knife that will cut the right solution in all of the right places.
Good domain analysis is more time-consuming than simple analysis of a single
application, with an eye to a single implementation paradigm. The beneÞts of this
extra time spent come from products that may be more broadly applicable and
that may better withstand the tests of time.

Even then, the picture isnÕt quite complete. The product is a framework whose
parameters of variation can be bound for speciÞc applications. This last step is
done on a per-application basis, once for each occurrence of the subdomain in a
given application domain. Over time, Þeld experience feeds back into further iter-
ations of the domain analysis process.

4.5 Summary

We strive to do domain analysis, not just analysis, to increase the likelihood that a
system will evolve well. Once we establish the breadth of the domain, we try to
decompose it into subdomains. Subdomains can be analyzed with commonality
and variability analysis. Sometimes, commonality and variability analysis shed
new light on the system as a whole, and the subdomain partitioning may be revis-
ited. As commonality and variability analysis converge within a subdomain,
implementation abstractions start to appear.

At this point, we can start aligning the results of commonality and domain
analysis onto the structures supported by C++. But Þrst, weÕll take a look at
object-oriented analysis as a speciÞc case of commonality and variability analysis,
exploring it as an extended example.

Chapter 5

Object-Oriented Analysis
In this chapter, we look at the object paradigm as an example of a problem domain
analysis technique. We develop object-oriented analysis from the principles of
commonality and variability analyses presented in earlier chapters. We analyze an
application, assuming that the object paradigm is the best-suited paradigm, by
using principles of commonality and variability to derive design abstractions.

5.1 About Paradigms and Objects

The term paradigm, Þrst popularized by Kuhn in his classic book [Kuhn1970],
became a household word in software with the popularization of the object para-
digm. A paradigm is a set of conventions we use to understand the world around
us. In software, paradigms shape the way we formulate abstractions. What is your
world made of? Do you divide the world into procedures? Data records? Modules?
Or classes and objects?

In practice, a paradigm encodes rules, tools, and conventions to partition the
world into pieces that can be understood individually. The goals of a paradigm
usually include a quality vaguely called modularity, which means that analysis
should produce cohesive, decoupled abstractions. If abstractions are independent,
then their owners can evolve them independently without tripping over each
other. If we assume that we can evolve a system by evolving its parts, then a para-
digm helps us by creating islands of change.

5.1.1 Classes and Objects

Classes and objects are the main abstractions of the object paradigm. Cohesion and
coupling are the basic partitioning criteria; they are borrowed from the module para-
digm and structured design [Stevens+1974]. We form objects around related groups

Object-Oriented Analysis122
of responsibilities or, sometimes, around a cohesive data structure. A class is a pro-
gramming language construct that describes all objects that have the same respon-
sibilities, that implement those responsibilities in the same way, and that share the
same data structure. The same term is also used for design abstractions, as an
informal synonym for Abstract Data Type, though this thesis will attempt to stick
to the more precise deÞnitions of these terms. Programs that use classes and
objects are often said to use Òobject-based programming.Ó

5.1.2 Liskov Substitutability Principle

The object paradigm, in the sense of object-oriented programming, goes one step
further. Not only does it provide principles for dividing the world into parts; it also
provides additional principles for grouping those parts into higher-order abstrac-
tions. These principles relate to subtyping and inheritance. Subtyping is the term
usually used to describe the relationship between analysis and design abstractions,
while inheritance is one mechanism used to reßect subtyping in most languages
that support object-oriented programming. (Some languages such as self
[Ungar+1987] use delegation instead.) We group classes into inheritance hierar-
chies by using strict rules of behavioral compliance. That is, Class B may be
derived from class A if and only if there is an object of class B that can be substi-
tuted for each instance of class A in a program written in terms of class A, without
changing the behavior of the program [Liskov1988]. This requires both that we
design our classes appropriately and that the programming language cooperate by
making substituted derived class objects Òwork.Ó The programming language fea-
ture that allows a program to treat objects of different classes as though they were
all of the same type is one form of polymorphism.

5.1.3 Virtual Functions

Inheritance and virtual functions implement this form of polymorphism in C++.
Polymorphism literally means Òmany formsÓ; each C++ class represents one form,
or implementation, of a general type. For example, the following declaration
describes an abstract data type interface (ÒabstractÓ in the sense that operator+=
has no implementation):

class Complex {
public:
friend Complex operator+(const Complex&, const Complex&);

virtual Complex &operator+=(const Complex&) = 0;
. . . .

};

5.1 About Paradigms and Objects 123
This type may take one of several forms:

class PolarComplex: public Complex {
public:

Complex &operator+=(const Complex &other) {
// complex polar stuff

}
. . . .

private:
double radius, theta;

};

class CartesianComplex: public Complex {
public:

Complex &operator+=(const Complex &other) {
rpart += other.rpart;
ipart += other.ipart;
return *this;

}
. . . .

private:
double rpart, ipart;

};

The essence of object-oriented programming is that the implementation of a
type operation is chosen according to the objectÕs form at run time. Virtual func-
tions dispatch member function calls (such as Complex::operator+=) according to
the type of the object at run time.

This is a fairly formal deÞnition of the object paradigm. More informally, we
design loosely coupled, cohesive classes and arrange them into specialization hierar-
chies, with general classes at the root and more speciÞc classes toward the leaves.
From a programming language perspective, object-oriented programming is mod-
ular programming (encapsulation), plus instantiation (the ability to create mul-
tiple instances of any given module), plus inheritance and polymorphism. Peter
Wegner gives the name inclusion polymorphism [Wegner1987] to the run-time type
substitutability that supports the object paradigm so as to distinguish it from
other forms of polymorphism, such as parameterized types and overloading (look
ahead to Figure 6.8).

Object-oriented analysis derives object and class structures from the applica-
tion domain structure, with most of the focus usually placed on class hierarchies.1

Like any analysis activity, object-oriented analysis relies on the intuition of the
analyst to know what makes good objects and classes, by knowing what good

1Some object-oriented methods defer inheritance beyond the analysis phase, calling it an imple-
mentation activity. Some inheritance grouping inevitably takes place during analysis, even if analy-
sis and the implementation considerations of design can be separated.

Object-Oriented Analysis124
objects and classes have been in the past. In my experience, the most effective
object-oriented analysis techniques are informal.

5.1.4 Object Orientation: Yet Another DeÞnition

We can deÞne the object paradigm in terms of commonality and variability. Pre-
suming that we start with a domain dictionary, object-oriented analysis is based on a
commonality analysis, in which we search for commonality of type. Recall that a
type is a collection of signatures, where a signature captures name and behavior
(Section 2.3.2). The Þrst abstracting step of object-oriented analysis is to build fami-
lies of abstractions grouped by behavior. So the idea of families should be intuitive
even to students of contemporary object-oriented methods.

Positive versus Negative Variability

We look for variability in behavior against the background of type commonality.
This variability includes positive variability in signature. If some family members
exhibit a few behaviors not common to the family as a whole, thatÕs OK; those
family members will become derived classes. Negative variability isnÕt accommo-
dated in the object models supported by most object-oriented design methods and
programming languages. Negative variability in a family of types points to an
implementation that would use inheritance with cancellation, which good
designers avoid. This, too, is apparent to designers who practice object-oriented
techniques, but for reasons different than those developed in Section 3.3.

It is more common to Þnd types whose signatures are the same but whose
implementations are different. The signatures of XWindow and MSWindow might be
the same, if they are suitably abstracted to the level of a domain abstraction
named WINDOW. The behaviors of these two abstractions are clearly distinct, and
their implementations will be different. This is variability in behavior against a
common backdrop of semantics or meaning.

Binding Time

Binding time is a key attribute of domain analysis, as discussed in Section 3.5. The
interesting variabilities of object-oriented programming are bound at run time.
Deferred binding is the key to balancing commonality of semantics with variability
in behavior and is what gives the object paradigm its abstracting power.

Defaults

Defaults are the Þnal key attribute of domain analysis (Section 3.6). In any family
of types, a more abstract family member provides defaults for more speciÞc family
members. These are the basic semantics of inherited properties. The inheritance

5.1 About Paradigms and Objects 125
mechanism propagates defaults through a graph that deÞnes subtyping relation-
ships between the family members. The subtyping graph, which is almost always
the same as the inheritance graph in most C++ programs, captures relationships
other than defaults as well. Its main purpose is to capture specialization of
behavior, which can be explained in terms of the strengths of pre- and postcondi-
tions for individual signature elements of related types [Meyers1992]. Inheritance
of (default) behaviors lines up nicely with the subtyping graph most of the time.

There is a large body of literature on the dichotomy of inheritance and sub-
typing. Much of the time, the two can be uniÞed. ItÕs important to recognize
exceptions and to design accordingly. The exception arises as a collection of
family members either that have common structure but not common behavior or
that have common behavior but not common structure. This is a special kind of
negative variability that is discussed in more detail in Section 6.11. The most
common technique is to break implementation and interface into separate hierar-
chies. Pointers tie together instances across hierarchies. This is such a recurring
problem that the solution can be regularized; such solutions have been captured
as design patterns. This thesis covers design patterns in more detail in Chapter 10.

More generally, we can use negative variability as a single general formalism
that covers both design patterns and such ÒanomaliesÓ as lead to the separation of
inheritance and subtyping. Negative variability addresses the question of
defaults, or more properly, of presumed commonalities (of which defaults are a
speciÞc case) under a unifying theory that extends from inheritance with cancella-
tion to argument defaulting, conditional compilation, template specialization, and
other language features. What this suggests is that the subtyping/inheritance
dichotomy is just a special case of a broader phenomenon called negative vari-
ability, one of the central claims of this thesis.

Neo-classic object-oriented methods (those that try to incorporate object-ori-
ented semantics in traditional structured techniques) focus on commonality of
structure instead of behavior. They treat structure as an analysis consideration
instead of an implementation detail. An analysis based on structure isnÕt likely to
capture the architecture as well as an approach based on types (see Section 2.3.1).
Though structural commonality and variability often follow type commonality
and variability, there are notable exceptions. A compelling counter-example can
be found in the discussion of Section 6.7.

In short, the object paradigm is:

¥ A way to capture variations in structure and behavior in explicit program-
ming constructs called classes

¥ A way to group these classes into abstractions by their commonality in
behavior

¥ A way to share default behaviors between similar classes

Object-Oriented Analysis126
¥ A way to unify behaviors that vary at run time into an interface that can be
known at compile time and that relates to properties of the commonality
analysis

Of course, we donÕt need to think of the object paradigm in terms of common-
ality and variability analyses. In fact, multi-paradigm design doesnÕt consider the
object paradigm for its own sake, or on its own merits, at all. ItÕs just that the tech-
niques used in multi-paradigm design, based on commonality and variability
analysis, result in abstractions similar to those that would be found through con-
temporary object-oriented analysis techniques when applied to problems for
which object-oriented solutions are a good Þt. There is more to practical object-ori-
ented design than just commonality analysis. Proper subtyping, fat and thin inter-
faces, information hiding, and other design properties are all supported by widely
accepted object-oriented design heuristics. Proven development methods empha-
size different properties to meet different domain needs. Good projects build on
the strengths of one or more of these design methods even if multi-paradigm
design is being used.

5.1.5 The Suitability of Object-Oriented Design

How would we know to apply the object paradigm instead of another? Or, asked
another way, how would we know, when doing analysis, to focus on object-ori-
ented abstractions, instead of naively exploring the universe of paradigms sup-
ported by C++? The object paradigm produces a good architecture if the Òpressure
pointsÓ of the application line up with the dimensions of commonality and vari-
ability supported by the object paradigm. (Pree [Pree1995] calls these hot spots.) The
object paradigm presumes commonality in type and structure; it expresses vari-
ability in implementation. If the members of a family can be cast into that frame-
work, then the object paradigm is a good Þt.

Language and Paradigm

Much has been said of C++ and Smalltalk and the degree to which they support the
object paradigm relative to each other. One advantage claimed for pure object-ori-
ented languages is that they force all design abstractions into an object-shaped
mold. In a pure object-oriented world, other paradigms take second-class status
and are difÞcult to express except in object-oriented terms.

Few designs are purely object-oriented because they express other important
dimensions of commonality and variation. C++ captures some of these non-
object-oriented design structures well. Most C++ programmers consciously use
some degree of procedural decomposition. FSMs (Þnite-state machines) are part
of many object-oriented designs and can conveniently be implemented in several
ways in C++. Templates, overloading, and other language features arenÕt intrinsi-

5.2 Object-Oriented Commonality Analysis 127
cally object-oriented. There are other design structures that go beyond what C++
can express well, too. Industry experience suggests that objects do not express
Òunits of workÓ well [Constantine1995]. Why? Because the commonalities and
variabilities deal with steps and algorithms that are related to each other in time
(succession of invocation), not with structures and collections of behaviors that
are related in meaning. In telecommunications design, important business
abstractions such as ÒcallÓ or telecommunications features such as call forwarding
and call waiting rarely make good objects because they are units of work. And of
course there are database constructs, parallel programming constructs, and other
important solution domain structures that C++ can accommodate only by conven-
tion, if at all.

Multi-paradigm design is important because it goes beyond objects to express
other design structures that Þnd rich expression in C++. To understand what this
means is to understand the richness of expression of the solution technology that
we will explore in Chapter 6. It also means understanding how to align the appli-
cation space with the solution space, which we elaborate in Chapter 7. I men-
tioned previously that paradigms help us to the degree that we can evolve a
system by evolving its parts. But that doesnÕt mean that to understand the parts is
to understand the system. The object paradigm gives us the objects, the parts.
Other paradigms help us understand other important relationships that make a
system a system. And C++ can express some of those relationships directly.

Where do objects still work? The object paradigm excels at capturing stable
domain resources and artifacts. Windows are a good example. Again, drawing
from the telecommunications domain, lines, trunks, and ports make good objects.
There are countless other examples in almost every other domain. Even so, one
size does not Þt all.

Objects also seem to work well in domains with direct-manipulation interfaces.
If we think of a domain in terms of parts that we assemble or manipulate, objects
are often a good Þt. A library of graphical shapes is the time-worn canonical
example. Computer-aided design (CAD) programs form another important soft-
ware family well-suited to the object paradigm.

To illustrate the relationship between multi-paradigm design and object-ori-
ented design, the following sections apply multi-paradigm design to an Òobject-
oriented problem.Ó Digital hardware design is the application domain, a domain
full of resources and artifacts. The software written for digital design usually
draws on a direct manipulation metaphor, another harbinger for objects.

5.2 Object-Oriented Commonality Analysis

We can illustrate how the object paradigm Þts within multi-paradigm develop-
ment by studying the objects of a system using commonality and variability anal-
ysis. Consider a digital circuit CAD program as a simple example. Instead of

Object-Oriented Analysis128
designing a circuit editor, simulator, or wire-wrap generator, we do analysis for the
entire domain of circuit design. We do domain analysis, where digital logic design
is the business domain (Section 4.1.4).

The Þrst step of domain analysis is to build the domain dictionary, shown in
Figure 5.1. This step not only establishes a vocabulary that helps design team
members communicate. It also establishes the fundamental building blocks of
multi-paradigm design.

The next step of domain analysis is to Þnd the subdomains. This is an intuitive
step that draws on our familiarity with the application domain. Drawing on the
domain vocabulary, an experienced designer might derive the following domains:

LOGICAL COMPONENTS

NET

PORT

PHYSICAL COMPONENT

Each of these domains is a family with multiple members. Each family groups
individuals by essential common characteristics (family members share the same
commonalities and variabilities). For example, LOGICAL COMPONENTS is a domain of
all of the logic elements that can be incorporated in a design. Designers use LOGICAL

COMPONENTS as the logical building blocks of the design. They all have a graphical
representation, all have input and output signals that can be connected to nets,
and all can be asked about the physical components that implement them. They
all behave the same. Gates, registers, counters, and ßip-ßops all fall into this
domain. NETs are a domain whose elements can be connected to LOGICAL COMPO-

Figure 5.1: The domain dictionary for digital circuit design.

Design element: Any electrical or
physical component of the circuit
design

Network element: A design element
with one or more associated signal
values

Gate: A network element of primitive
combinatoric logic design (NOT,
AND, NAND, OR, NOR, etc.)

Flip-ßop: A family of logic elements
with single-bit memory

Net: An electrically passive connection
between two or more network
elements

Block: A logical grouping of related net-
work elements, which itself behaves as
a network element

Label: . . .
Input pin: . . .
Output pin: . . .
IC: . . .
Board: . . .
Counter: . . .
Register: . . .
Schmidt trigger: . . .
Line driver: . . .
Line buffer: . . .

5.2 Object-Oriented Commonality Analysis 129
NENTS or to PORTS; they can be reshaped, named, created, deleted, and so on. There
are different kinds of nets: power nets, ground nets, signal nets, and others. But,
again, they all behave the same at some level. Other domains such as PORTS (inter-
faces to a hardware building block) and PHYSICAL COMPONENTS (the real ÒchipsÓ into
which LOGICAL COMPONENTS are packaged) are also grouped because they behave
similarly.

We could have formed these domains formally by using a process to optimize
commonality within each domain and to minimize commonality across domains.
An intuitive partitioning sufÞces and can incorporate insights that a formal
approach might miss. Still, it is a good idea always to audit the commonality anal-
ysis results using the questions of Section 2.5.

5.2.1 Commonality Analysis

We grouped LOGICAL COMPONENTS together because they all behave the same. We did
the same for NETS, PHYSICAL COMPONENTS, and other domains. ItÕs likely that all of
the family members in these domains also share some data structure and imple-
mentation. These commonalities are one set of traits that make a domainÕs mem-
bers a family.

5.2.2 Variability Analysis

Each logical component implements some logic function, but each implements a
different logic function. Each has pins, but the number of pins varies from compo-
nent to component. Though components exhibit commonality in structure and
algorithm, they also show variability in structure and algorithm. The fact that each
member has these variabilities is itself a kind of commonality, but we use the vari-
abilities to distinguish individual family members.

Each of these families exhibits commonality in behavior and structure and vari-
ability in algorithm and structure. These patterns of commonality and variability
deÞne our grouping criteria, the criteria we use to abstract. Such criteria form a
paradigm. What paradigm did we use (whether subconsciously or not) to group
family members into domains? The object paradigm captures commonality in
behavior and structure and variability in algorithm and structure. In this example,
commonality and variability analysis were a roundabout way of concluding that
we should use the object paradigm, that each domain should be an inheritance
hierarchy.

BoochÕs [Booch1994] class categories correspond closely to ÒdomainsÓ as used
here. A class category comprises the classes in a class hierarchy, along with closely
associated support classes and functions. We can use a class hierarchy to organize
most of the domain abstractions. For example, the LOGICAL COMPONENT domain can
be used to organize LOGIC GATES and MSI (medium-scale integration) COMPONENTS

(Figure 5.2). In general, this includes all components that the designer uses to

Object-Oriented Analysis130
implement the logical functionality of a hardware system. Logic Gates capture the
commonalities of NAND gates, AND gates, OR gates, inverters, and many more.
MSI COMPONENTS include ßip-ßops, shift registers, register caches, buffers, line
drivers, and other ÒchunkierÓ design units.

Multi-paradigm design doesnÕt deal with the details of inheritance hierarchies:
what is the base class and derived class, and what is public or protected. Those
design decisions are well-supported by the popular object-oriented design
methods listed in the References at the end of this thesis.

5.3 Summary

This chapter showed how simple commonality and variability analysis can help
the designer choose the object paradigm for a suitable design. The purpose of the
chapter was to illustrate the main principles of multi-paradigm designÑcommon-
ality and variabilityÑfrom the familiar perspective of object-oriented design.

The problem of designing a package for circuit design and simulation is much
more complex than the treatment of it in this chapter. In particular, we ignored
many important domains such as graphics, simulation, interfacing with analog
circuit design and veriÞcation domains, and a host of others. Even the domains
treated here depend on each other in contorted ways. For example, the logical and
physical partitioning of gates canÕt really be separated.

The object paradigm is well and good for dealing with problems where the
commonality and variation align with what the object paradigm and its associ-

Figure 5.2: The LOGICAL COMPONENT domain.

Logical component

Logic gate MSI component

NAND gate Shift register

5.3 Summary 131
ated linguistic structures can express. The object paradigm excels at capturing
designs where objects can be encapsulated and either organized or classiÞed into
hierarchies. But most languages have evolved beyond the object paradigm per se
to incorporate constructs that arenÕt strictly object-oriented. Several forces drive
the emergence of these features, the strongest of which is intentionalty. It is often
necessary to express features that donÕt follow traditional lines of Parnas encapsu-
lation, or that donÕt fall into traditional inclusion or classiÞcation hierarchies. Tem-
plates, overloaded functions, and other language features are the manifestations
of these paradigms that go beyond objects. Many of these features have infor-
mally come to be called object-oriented, but that isnÕt useful from the perspective
of design formalism. One can postulate that the need to support elegant evolution
might be another such force, though this probably gives designers credit for more
foresight than usually can be afforded in front-line software development.

In the next chapter, we lay some foundations that will help us move beyond the
object paradigm into other architectural styles. WeÕll develop these foundations
from the C++ language itself: What paradigms does it support?

Object-Oriented Analysis132

Chapter 6

Solution Domain Analysis
In this chapter, we revisit domain analysis, but this time in the solution domain
instead of in the application domain. Many of the same principles of application
domain analysis apply to the solution structure. The particular solution domain we
investigate here is that of the C++ programming language. We also look at patterns
as a powerful augmentation to the solution domain Ñ but also note that most pat-
terns are just expressions of common conÞgurations of commonalities and varia-
tion.

6.1 The ÒOtherÓ Domain

In Chapter 4, we studied how to capture the structure of the problem domain in
commonalities and variabilities. Many design methods analyze only the problem
domainÑand then only with respect to a single paradigm. While we have already
discussed why it is important to use multiple paradigms, we havenÕt carried the
question into the solution domain.

Why study the solution domain? If we view design as the activity that derives a
solution structure from a problem structure, it isnÕt enough just to understand the
problemÑwe must understand the solution domain as well. The solution domain
includes aspects of computer architecture, networking architectures, human inter-
faces, and other subdomains. But many of the abstractions of the solution domain
live in the programming language. It is the structure of the programming lan-
guageÑor, more precisely, the way in which a programming language expresses
commonality and variabilityÑthat determines the ÒshapeÓ of the solution
domain. In this chapter, we analyze the C++ programming language to discover
its important dimensions of commonality and variability; that is, we analyze the
solution domain from a C++ perspective.

Solution Domain Analysis134
Some readers may want to take offense to such a thorough treatment of lan-
guage features that are obvious to them. IÕd like to try to appease those readers by
asking them to think of this chapter as a broad foudation for most C++ language
features that can shape a vocabulary of design and implementation under multi-
paradigm design. We will investigate how to build on this design model starting
in Chapter 7.

6.1.1 Analysis and Language

Different solution domainsÑsuch as different programming languagesÑcall for
radically different designs, even with the same problem domain analysis. Consider
a simple Stack class, implemented in C++ and in Smalltalk (Figure 6.1). These lan-
guages employ different kinds of commonality and variability that suggest, and
even force, different designs. The code for the C++ design has a parametric argu-
ment, T, that is absent in the Smalltalk design. The object code is bound to the
design much earlier in Smalltalk than in C++.

After we analyze the solution domain in this chapter, we will be ready to dis-
cuss how to mold and shape the architecture of the problem domain into the
architecture of the solution domain. That done, the foundations of multi-para-
digm design will be complete.

Figure 6.1: Comparing a C++ design and Smalltalk design of class Stack.

ArrayedCollection subclass: #Stack
instanceVariableNames:

'collection
limit
collectionSize'

classVariablenames: ''

Stack>>getElement: anIndex
^collection at: anIndex.

Stack>>pop
|object|
object :=

self getElement: 1.
collection replaceFrom: 1

to: limit - 1
with: collection
startingAt: 2.

collection at: limit
put:
self defaultElement.

limit := limit - 1.
^object.

template <class T> class Stack:
public ArrayedCollection<T> {

public:
Stack();
~Stack();
T pop();
void push(const T&);

private:
int collectionSize, limit;
T getElement(int);
T *collection;

};

T Stack<T>::getElement(int index)
{

return collection[index];
}

T Stack<T>::pop() {
return getElement(limit--);

}

6.2 The C++ Solution Domain: An Overview 135
6.2 The C++ Solution Domain: An Overview

What does it mean to do domain analysis of the C++ programming language? We
want to look for the families of abstractions that the language can represent. Now
that we are armed with the tools of family analysis, itÕs straightforward to charac-
terize these families as follows:

¥ Data, a mechanism to group families of related values

¥ Overloading, a mechanism to group families of related functions

¥ Templates, which group related algorithms or gross data structures

¥ Inheritance, which groups classes that behave the same (usually public
inheritance; we treat private inheritance separately in Section 6.11)

¥ Inheritance with virtual functions, which also groups classes that behave the
same but with later binding than inheritance alone provides

¥ Preprocessor constructs, such as #ifdef, typically used for Þne-grain varia-
tions in code and data

Each of these language features characterizes a paradigm, a way of organizing
the world. These language features shape the code in a C++ program. They also
shape the way we think about and express the abstractions of banking systems,
telecommunications systems, GUIs, and other application domains. The following
sections focus on each of these features in turn, exploring the commonality and
variability properties of each. Later, in Chapter 8, we will bring the application
domain and solution domain together.

6.3 Data

C++ offers a rich variety of constructs to store and organize data, ranging from
built-in types to structs, all the way to full-ßedged class objects. A data store rep-
resents a family of values. The commonality and variability analysis is simple, so
trivial in fact that we would not present it here but for completeness.

Commonality: Structure and behavior. A data item in C++ has a Þxed
structure that is established at source coding time and bound into object
code at compile time. The type system associates valid operations with
data values, also at coding and compile times.

Variability: State. Data items vary only in their state.

Binding: Run time. The value of a data item may be changed at run
time through any non-const identiÞer for that data item.

Example: Different color correction algorithms have formulae whose
coefÞcients correspond to different display manufacturers. These coefÞ-

Solution Domain Analysis136
cients can be treated as commonalities for families of similar displays
and as parameters of variation that distinguish sets of displays.

6.4 Overloading

Classic C offers no language feature to group related functions. C++ offers several
lexical and semantic groupings of different granularity: class scope, name spaces,
and overloading. Overloading supports families of functions within a scope.

Commonality: Name, return type, and semantics. Overloaded func-
tions form a family whose members are related by name and by mean-
ing. All overloaded functions have the same name and consistent return
type. C++ does not enforce consistent semantics between overloaded
functions, but common use follows that guideline.

Variability: Algorithm and interface. Each overloaded function may
have its own formal parameters, algorithm, and local data and may call
on other functions of its choice. Functions are distinguished (selected by
the compiler for use) based on their interface.

Binding: Compile time. The appropriate function is chosen, from con-
text, at compile time.

Example: There may be several functions for setting the color of a win-
dow. Some functions may take Xgcv values from the X system. Others
may take red-green-blue intensity arguments. Others take other kinds
of parameters suitable to other window technologies.

A classic example from StroustrupÕs early book [Stroustrup1986] is the fol-
lowing collection of algebraic power functions:

int pow(int, int);
double pow(double, double); // from math.h
complex pow(double, complex); // from complex.h
complex pow(complex, int);
complex pow(complex, double);
complex pow(complex, complex);

Note there is variability in the return types of these functions. In a fully general
characterization of commonality and variability for overloaded functions, we
would take the return type into account. However, C++ does not overload on the
basis of compatible return types as a concession to simplicity (unlike Algol 68,
which handles this at the expense of much higher language complexity). To state
an obvious point in an instructive way, the domain analyses of the C++ and
Algol 68 solution domains differ, particularly in their treatment of overloaded
functions.

6.5 Class Templates 137
6.5 Class Templates

C++ templates are an outgrowth of macro idioms used by early C++ programmers
to capture common blocks of source code that could be parameterized with macro
arguments. They retain similar design semantics today, though they are more inte-
grated into the language. They also have matured to support highly idiomatic
design expressions. Chapter 8 explores these more advanced constructs as a nat-
ural way to express dependencies between domains.

Commonality: Structure. Templates share the same structure. This
includes the structure both of the code and of the data of a class tem-
plate. Function templates are an analogous construct for individual
algorithms in closed form. We treat function templates (later in the sec-
tion) separately from class templates because applications treat them
quite differently.

Variability: Detailed type or value. Templates take arguments that
modulate and add to code generation. Template arguments usually
arenÕt used for large structural changes.

A template may deÞne a default for each of its parameters of variation.
Defaults are an important component of multi-paradigm design, as described in
Section 3.6.

6.5.1 Template Specialization

A template deÞnes a family. Individual family members can be generated with
suitable template arguments that capture parameters of variation. There is a way to
generate other variant forms, too, using template specialization. Consider a template
named Stack that takes a parameter T:

template <class T> class Stack { };

We can stipulate a peculiar form of this template for a given parameter of vari-
ation, say, for stacks of integers:

template<> class Stack<int> { };

This is an interesting form of negative variability that we will cover further in
Section 6.11.

Binding: Source time. Template abstractions are bound to their clients
at compile time or link-edit time according to parameters of variation
(template parameters) that are explicit in the source. Template parame-
ters may be defaulted:

template <class T, class SequenceClass = dequeue<T> >

Solution Domain Analysis138
class Stack {
. . . .

};

Example: Collections, such as Stack previously, are common examples
of templates.

6.6 Function Templates

Function templates and class templates build on the same C++ language mecha-
nism. However, because one supports data abstractions and the other supports
procedural abstractions, the two are used for different design purposes.

Commonality: Structure. Templates share the same source code struc-
ture. A function template is an abstraction of algorithm with details
such as type dependencies, constants, defaults, and so on, factored out
into parameters of variation.

Variability: Detailed type or value. This is much the same as for class
templates.

Binding: Source time. Template abstractions are bound to their clients
at compile time or link-edit time. The parameter of variation is explicit
and direct in the code where the binding takes place.

Example: The sort function is the stereotypical example of a template
function. The argument is a template type. The template expands into
code suitable for the argument type with which sort is invoked:

template<class T> int sort(T[] elements, int size);

6.7 Inheritance

Programmers most often think of inheritance as a code reuse mechanism. More
broadly, C++ inheritance can express both subtyping and code commonality.
Multi-paradigm design tends to de-emphasize the code reuse perspective while
focusing onÑand carefully distinguishing betweenÑcode and behavior common-
alities.

Commonality: Behavior and data structure. Inheritance Þgures promi-
nently both in object-oriented design and in object-oriented program-
ming. When C++ was still young, the industryÕs model of inheritance
was much simpler than what we use today. Contemporary models sep-
arate inheritance of behavior from inheritance of structure. In other
words, there are two separable components of commonality: common-
ality in behavior and commonality in representation.

6.7 Inheritance 139
When we do application domain analysis, we focus on behavioral inheritance.
If we were to focus on commonality in the structure of the implementation, we
might compromise the designÕs ßexibility. A design based on implementation
structure may not broaden to related domains, or even to new applications in the
original application domain. Focusing on behavior tends to leave designs more
ßexible. This philosophy lies at the heart of design methods such as CRC cards
[Beck1993] and responsibility-driven design [Wirfs-Brock1990].

Example: The Number hierarchy is a stock example often used to illus-
trate this point.1 Consider the design of Figure 6.2. The Þrst step of
many contemporary object-oriented design methods is to establish class
behaviors without undue consideration for implementation. The inher-
itance tree on the left (with the most abstract class at the top and the
most reÞned class at the bottom) properly expresses a behavioral hier-
archy. The operations on Number are a subset of those on Complex, which
in turn are a subset of the operations on Integer. Each class inherits the
operations of the class above it in the hierarchy. This is inheritance of
types in the application domain, that is, inheritance of behavior. We
might draw such a picture using a design notation such as UML

1Some designers object to this example because though Complex is closed under division, its
derived class Integer is not. However, closure need not be inherited. There is nothing to prevent the
inverse or division operations of Integer from returning Complex values.

Figure 6.2: A uniÞed subtype/implementation inheritance hierarchy for
Number.

Number

Integer

Complex

Real part

Imaginary part

Real part

Imaginary part

Integer value

No state

Behavioral
inheritance hierarchy

Class implementation,
assuming an implementation

hierarchy that follows the
behavioral hierarchy

Solution Domain Analysis140
[Fowler+1997], OMT [Rumbaugh1991], Booch [Booch1994], or ROOM
[Selic+1994], apart from the C++ implementation that is to come later.

6.7.1 Aligning Domains

An important design step is to align the application domain structure with the
solution domain structure. In C++, this often means translating the Rumbaugh,
Booch, or ROOM classes directly into C++ classes. Assume that we derive the C++
classes from the behavior hierarchy at the left of Figure 6.2. We assign data Þelds to
Complex for its real and imaginary parts and a simple integer Þeld to class Integer.
But because Integer is derived from Complex, it inherits all of its properties in a
C++ inheritance hierarchy, including the real and imaginary data items. So
sizeof(Integer) may be 12 bytes, if the machine represents both ßoating-point
and integer quantities in 4 bytes of memory each. For efÞciency (and because it
goes against Òthe rule of least surpriseÓ for an Integer to contain a real and imagi-
nary part), we would like for Integer not to inherit these data Þelds.

The designer must take special care when structure and behavior have dif-
ferent hierarchies. C++ can capture implementation inheritance through private
inheritance and behavioral inheritance with public inheritance. Private inherit-
ance carries the semantics of encapsulation (called implementation hierarchy by
some). The member functions of classes derived from private bases often invoke
member functions of their base class, sometimes deferring all of their semantics to
their base class counterparts. So Set might reuse the implementation of its private
base class List, as shown in Figure 6.3. Set gets all of the machinery of List for
free, including its algorithms and implementation. It contributes functions such as
Set<T>::add, which maintains element uniqueness. The only behavior directly
reused by the derived class is the size operation; the inheritance otherwise trans-
fers only implementation and structure.

Though public inheritance expresses subtyping, it also makes a Òlogical copyÓ
of the base class structure and implementation in the derived class. Programmers
can often use this to their advantage. For example, the data common to all Window
abstractions (size, location, and so on) are of interest to all derived classes as well.
Inheriting the base class representation in derived classes relieves derived class
authors of the burden of rebuilding common implementation structures. But
commonality in structure does not always follow commonality in behavior, as
we saw in the Number example of Figure 6.2. Because there is a single mecha-
nism called inheritance that represents two kinds of commonality and vari-
ability in C++Ñbehavior and structureÑwe need exceptional mechanisms if
behavior and structure commonalities and variabilities do not align with each
other.

One solution to this problem is to turn to a language that supports behavior
and structural abstractions separately, as one Þnds in Eiffel [Meyer1992] and Java

6.7 Inheritance 141
[Flanagan1997]. The increasing popularity of Java in particular, and its provision
for interface intentionalilty, have made this a more accessible and common design
style. The C++ language itself offers similar solutions based on multiple inherit-
ance; Section 6.12 discusses these in more detail. Design patterns are another solu-
tion. Such patterns are described well by Gamma, Helm, Vlissides, and Johnson in
their patterns book [Gamma1995]. Their class structural patterns in Chapter 4 of
[Gamma1995] address just this problem. In particular, the pattern BRIDGE solves
the Number problem directly, as shown in Figure 6.4. The programmer creates sep-
arate inheritance hierarchies for the interface and the implementation. Instances
from these hierarchies are paired by ÒbridgesÓ from the interface class objects (on
the left) to the implementation class objects (on the right). This is similar to the
envelope/letter idiom of [Coplien1992].

This pattern doesnÕt happen to Þnd natural expression in C++, though there is
no reason a programming language couldnÕt express such rich commonality and
variabilities. Even though the C++ language canÕt express patterns in closed form,
we can still think of them as a language or implementation technology in their
own right. Section 6.12.2 looks at multi-paradigm development and patterns in
more depth. Without such patterns, we must stick to the C++ model of inherit-
ance.

Because the semantics of private inheritance are HAS-A rather than IS-A, most
programmers (especially the purists) prefer to explicitly use encapsulation rather
than private inheritance, as shown in Figure 6.5.

Figure 6.3: Inheritance to reuse implementation and structure, not behavior.

template <class T>
class Set: private List<T>
{
public:

void add(const T&);
T get();
void remove(const T&);
bool exists(const T&)

const;
using List<T>::size;
. . . .

};

void Set<T>::add(const T &e)
{

if (!exists(e))
List<T>::put(e);

}

template <class T>
class List: public Collection<T>
{
public:

void put(const T&);
T get();
bool hasElement(const T &t)

const;
int size() const;
. . . .

private:
T *vec;
int index;

};

void List<T>::put(const T &e)
{

vec[index++] = e;
}

Solution Domain Analysis142
If a class participates both in a subtyping hierarchy and in an implementation
hierarchy, public inheritance can be used for subtyping, while private inheritance
is used for implementation. This can be implemented using multiple inheritance,
per the ADAPTER pattern, as Figure 6.6 shows. The more common alternative is to
use an extra level of indirection, per the BRIDGE pattern, as illustrated in Figure 6.7.

operator+, etc.

Number

operator+, etc.

Implementor

operator+, etc.

ComplexRep

operator+, etc.

IntegerRep
Complex

Integer

Figure 6.4: A BRIDGE pattern for Number, adapted from [Gamma1995].

Figure 6.5: Encapsulation to reuse implementation and structure, not
behavior.

template <class T>
int Set<T>::size() const {

// extra function call
// beyond what is used
// with private
// inheritance
return theList.size();

}

template <class T>
void Set<T>::add(const T&e)
{

if (!exists(e))
 theList.push_front(e);

}

template <class T>
class Set
{
public:

void add(const T&);
T empty() const;
void remove(const T&);
bool exists(const T&) const;
int size() const;
. . . .

private:
list<T> theList;

};

6.7 Inheritance 143
Variability: Structure or algorithm. C++ inheritance inseparably
expresses commonality and variability in both behavior and structure.
We can use inheritance to express both either together when they align
or separately when there is no variability in the other.

Figure 6.6: Multiple inheritance for implementation and interface.

class RealRep {
friend class Real;
friend class Complex;

double rpart;
. . . .

};

class ImaginaryRep {
friend class Complex;

double ipart;
. . . .

};

class Complex: public Number,
private RealRep,
private ImaginaryRep {

public:
. . . .

};

class Real: public Number,
private RealRep {

public:
. . . .

};

Figure 6.7: Separate implementation and subtyping hierarchies using BRIDGE.

class Complex: public Number {
protected:

NumberRep *rep;
Complex (NumberRep *r):
 rep(r) { }

public:
Complex():

rep(new ComplexRep) { }
. . . .

};

class Real: public Complex {
public:

Real(): Complex
 (new RealRep) {

. . . .
}
. . . .

};

class NumberRep {
. . . .

};

class RealRep: NumberRep {
friend class Real;
friend class Complex;

double rpart;
. . . .

};

class ComplexRep: NumberRep {
friend class Complex;

double ipart;
. . . .

};

Solution Domain Analysis144
There is an interesting subtlety to the variability analysis. A class may exhibit
positive variability (see Section 3.3) from other classes in the family established
during commonality analysis. The stronger the positive variability, the further the
class should be pushed from the apex of the class inheritance hierarchy. This is
consistent with the deÞnition of subtype and in good keeping with the Liskov
substitution principle [Liskov1988]. For example, OrderedCollection might sup-
port a sort operation, while its base class, Collection, does not. And Set<int>,
derived from OrderedCollection, may support an operation that adds all of its
elements together into a single sum, as well as a sort operation, while these oper-
ations disappear nearer the top of the hierarchy.

If a class demonstrates strong enough negative variability against other classes in
the family, it may not belong to that family. Negative variability in a family based on
commonality in type points to inheritance with cancellation; this should generally be
avoided ([Coplien1992], 237Ð239). The classic example of this problem can be
found in the work of inexpert object-oriented programmers, who derive Set from
List (or vice versa). Because a List can be sorted, it cannot be the base class for
Set, which cannot be sorted (because there is no notion of ordering). And because
Sets guarantee that their members are unique, and Lists donÕt, Set cannot be the
base class for List. Both should be derived from a more general Collection class.

Binding: Compile time. C++ inheritance hierarchies are bound at com-
pile time (but see the next section).

6.8 Virtual Functions

Virtual functions form families within a class hierarchy, and form much of the basis
for commonality between inherited classes. They are the primary C++ mechanism
that supports ADTs.

Commonality: Names and behavior. Virtual functions can be grouped
in either of two ways. First, we group functions into classes that imple-
ment the abstract data types of the application domain. Second, we
group functions from different classes into a single inheritance hierarchy.
The grouping in class hierarchies captures the common relationship
between the functions and the domain of the hierarchy, as well as their
more obvious commonality of signature. A signature describes the name
and argument types of a function. Furthermore, C++ supports co-vari-
ant return types in a family of functions related by signature in an inher-
itance hierarchy (see the discussion on page 74). Related virtual
functions all have the same name and apply to similar objects whose
classes form an inheritance hierarchy.

6.8 Virtual Functions 145
The members of a family of virtual functions usually share the same signature.
However, the return type in the derived class signature can be no less restrictive
than the corresponding base class signature and the member function formal
parameters in the derived class signature can be no more restrictive than those in
the corresponding base class signature. The return types for derived class member
functions must support at least the member functions supported by the base class
return types. The formal parameters for base class member functions must sup-
port at least those member functions that the derived class formal parameters
support.

In short, virtual functions share externally observable behavior, or meaning, in
common. For example, classes that form a hierarchy under class Shape all share a
draw member function, as well as many others. The ability to be drawn is a
behavior shared by all shapes, they are like overloaded functions in this regard.
The difference between overloading and virtual functions, from a design perspec-
tive, is that virtual functions are tied to a larger abstraction (a class) such that each
family member (individual virtual function instance) is in a different class. Those
classes are related by inheritance. Overloaded functions are less obviously tied to
other abstractions or design relationships.

Variability: Algorithm implementation. Though virtual functions
share the same behavior, each one implements its behavior in its own
way that is suitable to the class to which it belongs. The draw member
function for Circle is certainly different than that for Rectangle. It is
often useful to view this variability as an implementation detail. So vir-
tual functions are a construct to express implementation variability for
a behavior that is common to several related classes.

Inheritance lets the programmer bundle related algorithmic variabilities. If sev-
eral algorithms vary together, they can be packaged into a single derived class.
Such derived classes can be administrative units in their own right that become
higher-level values for a conceptual parameter of variation. For example, we
might deÞne a class that implements behaviors for three levels of fault recovery;
its derived classes might be implemented for a wide variety of recovery strategies.
Classes (or subsystems) that need fault recovery support would take such an
object (or class) as a parameter of variation. Inheritance, used to factor out algo-
rithmic differences in this way, can be contrasted with techniques such as the
STRATEGY pattern, which are tuned to deal with functions one at a time.

Binding: Run time. How does a program select from a virtual function
family, all of whose functions share the same name and same class hier-
archy? The selection is done at run time based on the type of the object
for which the function is called.

Example: Shapes in a graphics package are the stereotypical example of
interchangeable family members related by inheritance.

Solution Domain Analysis146
6.9 Commonality Analysis and Polymorphism

Polymorphism [CardelliWegner1985] means Òmany forms.Ó Adapting our perspec-
tive of commonality and variability, we can just as well say that polymorphism
means that there is something common to several related forms but that each form
is distinct. C++ supports several forms of polymorphism; in fact, they have been
the titles of the Þve preceding sections:

¥ Overloading

¥ Class templates

¥ Function templates

¥ Inheritance

¥ Inheritance with virtual functions

Wegner [Wegner1987] has characterized polymorphism itself as a family of
four members structured into two groups, universal and ad hoc (Figure 6.8). In his
model, objects are the artifacts of interest. Overloading describes a family of related
functions having the same name and semantics but operating on objects of dif-
ferent types. Casting transforms one type of object into another; for example, one
can cast between short and long integers. Parametric polymorphism means that the
variability of an abstraction described in a single, closed form can be controlled
through a parameter list. Inclusion polymorphism describes a hierarchy of sets of
abstractions that include each other, all of which can be treated in terms of the
properties of the most enclosing set. It is what we know as C++ inheritance hierar-
chies and virtual functions.

Figure 6.8: The Wegner polymorphism taxonomy.

General

UniversalAd hoc

Overloading Casting
Inclusion Parametric

inheritance templates

6.10 Preprocessor Directives 147
6.10 Preprocessor Directives

Preprocessor directives, such as #ifdef, #ifndef, #if, and the terminating #endif
are commonly used for any Þne-grain program changes. Because they are a pre-
processor construct, they apply equally well to data structure and algorithms (code
structure). Though they are deÞned as part of the C++ language, many program-
mers do not consider them full, Þrst-class language features. This is because of rel-
atively weak integration with the rest of the language and because of a common
lack of symbolic tool support for them. They should be used selectively and with
care.

Inheritance versus #ifdef

Notice that inheritance (Section 6.7) can also be used for Þne changes in data and
algorithm structure. What is the difference? Preprocessor directives can efÞciently
handle the Þnest level of granularity in a program. Inheritance can deal with Þne
data granularity, but that often comes at the expense of some overhead (for
example, from C++ data type alignment constraints). The function is the unit of
code granularity under inheritance; preprocessor directives can address arbitrarily
Þne code granularity.

Some design patterns manage arbitrarily Þne code granularity by building on
inheritance and virtual functions. That makes it possible to have arbitrarily Þne
code variability with run-time binding. The ßexibility comes at some expense in
efÞciency; see Chapter 10.

Preprocessor directives are most useful to express negative variability: excep-
tions to the rule. When a line of code must be present most of the time, but absent
in one or two cases that can be known at compile time, preprocessor directives are
often a viable solution. Negative variability is discussed in more detail in
Section 3.3.2 and in the following section.

6.11 Negative Variability

Positive and negative variability were introduced in Section 3.3. It is important to
look for negative variability during application analysis. Having then found it, we
must understand how to capture it in implementation. We can express negative
variability in C++ by using techniques usually reserved for Þne-tuning and imple-
mentation details. These techniques include template specialization, argument
defaulting, indirection (for data member cancellation), private inheritance (for
behavior cancellation), unions, and #ifdef. C++ was the Þrst to contribute two lan-
guage features that express negative variability: private base classes (in 1982) and
template specialization (in 1987).

Solution Domain Analysis148
We can think of each of the paradigms of C++ as having a rule of variation. For
the Òobject paradigm,Ó the rule of variation says that family members can add
new functions or data to the commonalities captured in a base class. The variabili-
ties of most paradigms leave the commonalities untouched. Negative variability
violate rules of variation by attacking the underlying commonalityÑthey are the
exceptions to the rules.

6.11.1 Deciding When to Use Negative Variability

For positive variability, we choose the appropriate C++ language feature according
to the underlying commonality and the nature of the variability. We deal with neg-
ative variability in the same way. During variability analysis, how do we know
whether to use positive variability or negative variability?

¥ If a parameter of variation can change only in ways that leave the underly-
ing commonality untouched, then use positive variability. For example, a
function may have the same logic for all of its applications, but it may need
to use different type declarations for different applications. A template func-
tion would be one way to capture this positive variability.

¥ If some range of values of a parameter of variation leads to structures that
violate the overall commonality, then use negative variability. For example,
if a function needs to be slightly different for some set of target platforms,
use #ifdef to demarcate the differences.

¥ Sometimes the variation becomes larger than the commonality. The design
should be refactored to reverse the commonality and the variation. For
example, a function has a body that must be substantially different on each
of several platforms. Assuming negative variability, we initially use #ifdef
to demarcate the differences. If we want run-time binding, we should use
simple conditionals instead of #ifdefs. If we want source-time binding, we
should capture the common name and semantics in a family of overloaded
functions (possibly adding an additional function argument to serve as the
parameter of variation) so that the implementations can vary freely. Or we
can circumvent the whole issue of variability by using different source and
presuming that the commonality is only incidental. For example, consider a
machine-dependent function that we implement for several different
machines. This is an administrative solution to what we are otherwise treat-
ing as a language problem, and it has the liability of lacking language sup-
port for consistency.

The overriding principle here is that negative variability language features
should be used to maximize the expression of commonality.

6.11 Negative Variability 149
A Template Example

Consider a Stack abstraction as a simple example. Most Stacks share a similar
data structure, as shown in Figure 6.9. This implementation is fully general. It
doesnÕt require that the stacked items have a default constructor, can handle poly-
morphic data types, and it can easily grow as large as needed. But this implemen-
tation adds a lot of overhead to the memory consumed by the objects it manages,
particularly if the managed objects are small. We can adopt a more efÞcient imple-
mentation for some Stacks, such as Stack<int>, by using a simple vector, as
shown in Figure 6.10. If we know we need an integer stack, then we donÕt need the
generality that supports polymorphism and we can remove the data structure
overhead of all of those pointers. We pay a price for this efÞciency when the stack
grows, but thatÕs acceptable for most applications.

Figure 6.9: A common Stack data structure.

template <class T>
class Stack {
 StackRep<T> *rep;

};

Stack<X> s;
next next
X *rep X *rep

rep

X X

template <class T>
class StackRep {
friend class Stack<T>;
 StackRep<T> *next;
 T *rep;
};

StackRep<X> StackRep<X>

Figure 6.10: A simple stack.

Stack<int> s;

rep

int[10]

template<> class Stack<int> {
 int *rep;

};

Solution Domain Analysis150

Commonality analysis Þnds that most

Stack

s share the same structure, as well
as the same code structure and the same external behavior. We look at one param-
eter of variation,

E

LEMENT

 D

ATA

 T

YPE

Ñthe type of the element stored by the stackÑ
to evaluate whether it violates any of the commonalities.

Stack<int>

 violates the
structure commonality, and some of the code structure as well. If we decide that
this exception affects only a small set of choices for the

E

LEMENT

 D

ATA

 T

YPE

 param-
eter of variation, then we treat it as a negative variability.

We choose an appropriate C++ language construct according to the common-
ality and variability. A given pair of commonality and

positive

 variability uniquely
selects a C++ construct. For the corresponding negative variability, we choose a
C++ language construct that usually is related to the associated positive vari-
ability. For the commonality and positive variability that suggest templates as an
implementation technique, we use template specialization for the associated neg-
ative variability. That is the technique we use for

Stack<int>

.

An Example of Argument Defaulting

Argument defaulting is another construct that can express a form of negative vari-
ation. Consider what to do if there is a predominate commonality in algorithm but
minor variations in values used by that algorithm.

For example, assume we have an application that simulates chemical reactions.
Some molecules have a member function called

hydrate

. Normally, we want to
hydrate molecules with ordinary water, but we reserve the option to use heavy
water in unusual circumstances. We would declare the function

void Molecule::hydrate(hydrationMolecule = Water)
 { }

and could call it using either of these forms:

Molecule *m;
. . . .
m->hydrate(); // normal use
m->hydrate(HeavyWater); // negative variability

An Example of Data Cancellation

LetÕs say that weÕre building a text editor and we decide to use a text buffer to hold
text being edited. The class might look like this:

template <class CharSet>
class TextBuffer {
public:
 Line<CharSet> getLine(const LineNumber &);

private:

6.11 Negative Variability 151

 LineNumber firstLineInMemory, lastLineInMemory;
 int currentLineCapacity;

};

TextBuffer

 may have several interesting derived classes:

¥

PagedTextBuffer

, which maintains a working set of lines in primary mem-
ory

¥

LazyTextBuffer

, which reads in lines as needed and retains them until they
are written out.

¥

SimpleTextBuffer

, which always keeps the entire Þle image in primary
memory

Those classes can use straightforward inheritance. But letÕs say that we want
to introduce a

SingleLineTextBuffer

, which we may use to edit the command
l ine or for dia logue boxes instant iated by the edi tor. I f we der ive

SingleLineTextBuffer

 from

TextBuffer

, it will inherit many data members that
it will never use (or that it will use only in a degenerate way, such as the case
where

firstLineInMemory

,

lastLineInMemory

, and

currentLineCapacity

 are all
set to 1). We canÕt ÒcancelÓ the base class members in the derived class. We can
deal with this problem by factoring the data of both base and derived classes into
separate structures that maintain a relationship to the original abstractions
through a pointer. First, consider a hierarchy of classes used for the implementa-
tion of a family of

T

EXT

 B

UFFERS

, in an application such as a text editor (the following
classes are body class objects in handle/body pairs):

template <class CharSet>
class TextBufferRep {
public:
 void appendChar(const CharSet&);

};

template <class CharSet>
class PagedTextBufferRep:
 public TextBufferRep<CharSet>
{
 friend class PagedTextBuffer<CharSet>;
 LineNumber firstLineInMemory, lastLineInMemory;
 int currentLineCapacity;

};

template <class CharSet>
class LineTextBufferRep:
 public TextBufferRep<CharSet>

Solution Domain Analysis152

{
. . . .

};

The following classes are the corresponding handle classes, which present the
user interface through which the implementation is managed. The common

rep

pointer in the base class

TextBuffer

 points to the body class, declared as a pointer
to the (generic) type

TextBufferRep<CharSet>

:

template <class CharSet>
class TextBuffer
{
public:

Line<CharSet> getLine(const LineNumber &);
. . . .

protected:
TextBufferRep<CharSet> *rep;
TextBuffer(TextBufferRep<CharSet>*);
~TextBuffer();

private:
// encourage heap allocation - disallow instance copies
TextBuffer(const TextBuffer<CharSet> &) { }

};

Each of the following classes inherit the rep pointer, but each may choose to
point at the appropriate variant of TextBufferRep suitable to its own role:

template <class CharSet>
class PagedTextBuffer: public TextBuffer<CharSet>
{
public:

PagedTextBuffer():
TextBuffer<CharSet>
 (new PagedTextBufferRep<CharSet>) {
. . . .

}
. . . .

};

template <class CharSet>
class LineTextBuffer: public TextBuffer<CharSet>
{
public:

LineTextBuffer():
TextBuffer<CharSet>(new
 LineTextBufferRep<CharSet>) {
. . . .

}
. . . .

};

6.11 Negative Variability

153

The pedagogical Complex example from Section 6.7 can be motivated from the
perspective of negative variability. Consider this straightforward (but perhaps
unrealistic) attempt at the design of a Complex hierarchy:

class Complex: public Number{
public:

. . . .
private:

double realPart, imaginaryPart;
};

class Imaginary: public Complex {
public:

. . . .
private:

?
};

class Real: public Complex {
public:

. . . .
private:

?
};

We want to cancel the imaginaryPart data member of Complex in the derived
class Imaginary . The most ßexible solution is to use the BRIDGE pattern
[Gamma1995] to factor the data representation into two structures that are related
by a common base structure, as in Figure 6.7. From the perspective of multi-para-
digm design, we can view it as a special kind of negative variability that preserves
commonalty in behavior but not structure or that preserves commonality of struc-
ture but not behavior. This thesis further addresses the ties between multi-para-
digm design and patterns in Section 6.12.2.

An Example of Behavior Cancellation

Behavioral cancellationÑusually called inheritance with cancellationÑis the most
infamous example of negative variability in object-oriented design. Novice
designers sometimes presume that C++ allows them to cancel a public virtual
function in a derived class. The C++ type system does not allow this, thereby
enabling it to check for compile-time violations of subtype substitutability. It
should be possible to use an instance of a derived class in contexts in which an
instance of a base class is expected. This is called the Liskov Substitutability Principle
[Liskov1988].

The C++ type system supports Liskov substitutability when public inheritance
is used and disallows the cancellation of behavior in publicly derived classes. We

Solution Domain Analysis154
can express inheritance with cancellationÑcancellation of behaviorÑby using
private inheritance. If we do this, we, of course, forfeit the right to use derived
class instances in base class contexts (and the compiler ensures that no privately
derived class object can ever appear in a base class context). However, we can
create a new abstraction whose functionality is almost the same as the base class
but with less speciÞc operations. In Section 6.7, we viewed this as a way to reuse
implementation without inheriting the behavior. Here we want to reuse selective
parts of the behavior and implementation:

template <class T>
class List {
public:

T front() const;
T back() const;
int size() const;
bool exists(const T&) const;
void insert(const T&);
. . . .

};

template <class T>
class Set: private List<T> {
public:

using List<T>::size; // same--uses base class
 // implementation
using List<T>::exists; // same--uses base class impl.
void insert(const T&); // different--check for
 // uniqueness
. . . .

private:
// class qualification here is just for documentation
using List<T>::front;
using List<T>::back;

};

Good uses of behavior cancellation are rare. A design refactoring should almost
always be used instead (see Section 6.11.2).

An Example of Contravariance

Contravariance is a relationship between the argument types for a base class
member function and the derived class member function that overrides it. The
arguments for a derived class member function are usually the same as those in the
corresponding base class member function. Consider the case in which the derived
class arguments are more restrictive than those in the base class:

class GIFImage{
// a class for general GIF images

6.11 Negative Variability 155
. . . .
};

class InterlacedGIFImage: public GIFImage {
// a class specialized for interlaced GIF images
public:

. . . .
};

class GIF89aImage: public GIFImage {
// a specific format of GIF images
public:

. . . .
};

class Window {
// a general window abstraction
public:

. . . .
virtual void draw(const GIFImage &, Point loc);
. . . .

};

class HTTPWindow: public Window {
// a proxy object for a Web window
public:

. . . .
void draw(const InterlacedGIFImage &, Point loc);
. . . .

};

Now consider the following code:

Window *newWindow = new HTTPWindow;
GIF89aImage picture;
. . . .
newWindow->draw(picture, loc); // woops

Imagine that the last line calls HTTPWindow::draw. That function expects an
argument that can support at least the member functions of InterlacedGIFImage,
and the actual parameter of type GIF98aImage presents a problem. C++ solves this
problem by short-circuiting the virtual function mechanism when a member func-
tion argument is more restrictive in the derived class than in the base class. Thus
Window::draw would be called in the last line of the previous code segment. (In
this example, a good compiler will warn that HTTPWindowÕs draw member function
doesnÕt override the base class version.)

Contravariance can be treated as a special case of inheritance with cancellation,
usually addressed with a pattern such as VISITOR [Gamma1995] or by refactoring:

Solution Domain Analysis156
class Window {
public:

// handles GIF & GIF89a
virtual void draw(const GIFImage &);

// handles InterlacedGIFImages. In the base class
// default behavior we do no interlacing, but derived
// classes can override this behavior
virtual void drawInterlace(const InterlacedGIFImage
 &image) {draw(image);}

};

class HTTPWindow: public Window {
public:

// perhaps a special version for GIFs on a Web window
void draw(const GIFImage &);

// interlace interlaceable GIFs on a Web window
void drawInterlace(const InterlacedGIFImage &image) {

// code for interlacing
. . . .

}
. . . .

};

An Example of #ifdef

One goal Stroustrup had in mind for C++ was to eliminate the C pre-processor.
Language features such as the const type modiÞer and inline functions attest to
this goal. The only preprocessor features not attacked directly by the language are
those supporting conditional compilation: #ifdef, #ifndef, #if, #else, and
#endif, and the administrative construct #include. We use these constructs to
selectively introduce algorithmic or data structure fragments into the program.
Many compilers attempt to optimize if statements so that they incur no more
overhead than do preprocessor conditional compilation directives. However, if
statements may be used only for algorithm structure, not for code structure, so pro-
grammers often resort to #ifdefs for small changes. Debugging code provides a
typical example:

#ifdef TRACE_ON
#define TRACE_INIT_CALL_COUNT \
 static int trace_call_count = 0
#define TRACE(F) trace_show(#F); \
 ++trace_call_count
#else
#define TRACE_INIT_CALL_COUNT
#define TRACE(F)
#endif

6.11 Negative Variability 157
void f(void) {
TRACE_INIT_CALL_COUNT;
TRACE(f);
. . . .

}

Notice that you cannot use preprocessor directives for data variability within a
program. Consider a program that uses #ifdef to implement two different family
members that have different data structures (for example, different versions of the
same class), selecting between alternatives according to a parameter of variation.
No single program may contain both family members; C++ depends on a consis-
tent representation of data layouts within a program.

6.11.2 Negative Variability versus Domain Splitting

The techniques of the preceding section apply to small negative variabilities. As a
negative variability becomes larger, it ceases to characterize the variant: It becomes
a commonality, and its complement becomes the variability! Large negative vari-
abilities should often be treated as positive variabilities.

An Example of Behavior Cancellation

The most common example again relates to the problem of inheritance with cancel-
lation in object-oriented design. Instead of cancelling the assumed base class com-
monality in the derived class, we can instead factor the commonality into a higher-
level base class. Redoing the previous example, we introduce a (not very realistic)
Collection base class:

template <class T>
class Collection {
public:

int count() const; // common to all derived
bool has(const T&) const; // classes, so not
// virtual. insert is deferred to the derived class if
// one likes, one can declare a placeholder here, to
// capture the fact that the behavior is common to all
// family members
virtual void insert(const T&) = 0;
. . . .

};

template <class T>
class List: public Collection<T> {
public:

T head() const; // peculiar to List;
T tail() const; // this, too

Solution Domain Analysis158
using Collection<T>::count; // just use the
using Collection<T>::has; // base class
 // version
void insert(const T&); // simple list
 // insertion
. . . .

};

template <class T>
class Set: public Collection<T> {
public:

// no head, tail -- not meaningful for Sets
using Collection<T>::count; // just making the
 // default
using Collection<T>::has; // explicit (good
 // documentation)
void insert(const T&); // different--must
 // check
. . . . // for uniqueness

};

That is, instead of using a relatively narrow List abstraction as the com-
monality base for Set and expressing Set as a variant of List with negative
variability, we create a broader base abstraction Collection, which is common
across both List and Set. Both List and Set can be described in terms of Collec-
tion by using only positive variability.

A Template Example

Template specialization admits a broad variety of changes in implementation code
and data structure. This degree of ßexibility integrates the expression of the excep-
tional case with the common case, a win for intentionality. For example, a typical
vector might look like this:

template<class T, int size = 50>
class vector {
public:

. . . .
T operator[](unsigned int index)
 { return rep[index]; }
. . . .

private:
T *rep;

};

However, the implementation of the specialized bit vector might look com-
pletely different. We capture the difference with a straightforward application of
template specialization:

6.11 Negative Variability 159
unsigned short vectorMasks[16] = {
0000001,
. . . .
0100000

};

template<int size = 50>
class vector<bool, size> {
public:

. . . .
bool operator[](unsigned int index) {

return rep[index / (8 * sizeof(unsigned short))] &
vectorMasks[i % (8 * sizeof(unsigned short))];

}
. . . .

private:
unsigned short *rep;

};

An Example of Data Cancellation

The technique described previously in the section, ÒAn Example of Data Cancella-
tionÓ (in Section 6.11.1) is intentionally broad enough to handle both isolated can-
cellation of data members and completely unrelated data layouts across family
members. Even if the data are completely different for every layer of an inheritance
hierarchy, the extra level of indirection accommodates the variability.

An Example of #ifdef

Sometimes variability leaves a single procedure with little common codeÑall of
the code goes into the variant part:

void f() {
#if C1

 // lots of code
#else

 // lots of code
#endif
}

Conditional compilation constructs can be used to express almost any vari-
ability. They should be used sparingly, if at all. Other techniques, such as the fac-
torings available through inheritance, function overloading, and sometimes
templates, are often more suitable than conditional preprocessor constructs. In
extreme cases the semantics of conditional compilation can be supported with
extra-linguistic tools such as makeÞles and preprocessors; however, these tend to

Solution Domain Analysis160
reduce intentionality and integratedness. There are many idiomatic preprocessor
techniques that are only on the fringe of language concerns. For example, in the
previous case, we might create two complete and separate functions that would
be put in header Þles as static functions. To select the appropriate function, just
#include the appropriate header (perhaps using a #ifdef).

6.11.3 A Summary of Negative Variability

Table 6.1 summarizes negative variability and how it interacts with C++ features
used to express commonality and variability. The Þrst two columns reßect the com-
monality and nominal variability from the domain analysis. The third column
recalls the C++ feature used for the commonality/variability pair, and the last
column prescribes a remedy for exceptions to the variability. The Þrst three col-
umns are expanded in more detail in Table 6.2.

The table does not cover the situations in which variability Òtakes overÓ and
becomes the commonality. Those should be handled on a case-by-case basis
according to the analyses of Section 6.11.2.

In addition to the C++ language features that express negative variation per se,
there are patterns that express common conÞgurations of negative variationÑin
fact, thatÕs what much of what common object-oriented patterns do. This aspect of
negative variability is presented in Section 6.12.2 below in the context of the
more general discussion on patterns.

6.12 Extended Solution Domain Constructs

Conspicuous by their absence from the above presentation are multiple inheritance
and patterns. In this section, we place these techniques in the context both of multi-
paradigm design and in the broader context of software design.

6.12.1 Multiple Inheritance

Multiple inheritance is a language feature that we can think of in several different
ways. The canonical use of multiple inheritance relates to the classiÞcation hier-
archy germane to straightforward object-oriented design. If a given type belongs to
a category, it should be expressed as being a subtype of that category. Perhaps a
given type can be in several categories in which case it might be a subtype of sev-
eral categories.

First case: Multiple Domains

Consider a simple example based on text editing. Consider that we have a domain
called TEXTEDITINGWINDOWS, which might be embodied as a class that implements
the type corresponding to that domain. It might look like this:

6.12 Extended Solution Domain Constructs 161
class TextEditingWindow: public Window {
public:

void refresh();
LineNumber topLine() const;
void setLine(const LineNumber);
....

Kind of
Commonality

Kind of
Variability

C++ Feature
for Positive
Variability

C++ Feature for
Corresponding
Negative
Variability

Name and behavior Gross structure
or algorithm
controlled by a para-
metric type
or value

Templates Template
specialization

Structure, algorithm,
name, and behavior

Fine structure,
value, or type

Templates Template argument
defaulting

Enclosing overall data
structure (location), and
name

Fine structure and
overall ÒtypeÓ

Inheritance union

Semantics and name
(of function)

Default value in
a formula or
algorithm

Function
argument
defaulting

Supply explicit
parameter

Signature Overloading Overloading

Commonality in
some data structure;
perhaps in algorithm

Membership in
data structure

Inheritance,
adding data
members

Refactor using
pointers to
alternative
implementations

Some commonality
in structure and
algorithm

Behavior Inheritance,
overriding, or
adding virtual
functions

Private inheritance
or HAS-A
containment

Most source code Fine algorithm #ifdef #ifdef

All others All others Usually none See Section 6.12.2

Table 6.1: Choosing C++ Features for Negative Variability

Solution Domain Analysis162
Commonality Variability Binding Instantiation
C++
Mechanism

Function name
and semantics

Anything other
than algorithm
structure

Source time n/a template

Fine algorithm Compile time n/a #ifdef

Fine or gross
algorithm

Compile time n/a Overloading

All data structure Value of state Run time Yes struct,
simple types

A small set of
values

Run time Yes enum

(Optionally,
related
operations,
too, for this
row)

Types and
values, as
well as state

Source time Yes template

Related
operations
and some
structure
(positive
variability)

Value of state Source time No Module (class
with static
members)

Value of state Source time Yes struct, class

Data structure,
as well as state

Compile time Optional Inheritance

Algorithm
(especially
multiple), as
well as
(optional) data
structure and
state

Compile time Optional Inheritance
(compare with
STRATEGY)

Algorithm, as
well as
(optional) data
structure and
state

Run time Optional Virtual
functions

Table 6.2: Commonality and Positive Variability in the Domain of the C++
Programming Language

6.12 Extended Solution Domain Constructs 163
};

Sibling classes of TextEditingWindow may include GraphicsEditingWindow,
ScrollWindow, and others. We may also have a seemingly unrelated collection of
classes such as these:

class XWindow: public Window {
public:

void refresh();
void drawText(Position, string);
. . . .

};

class NTWindow: public Window {
public:

void refresh();
void drawText(Position, string);
. . . .

};

We can now synthesize the class:

class EditingXWindow: public EditingWindow, public XWindow {
public:

void refresh();
LineNumber topLine() const;
void setLine(const LineNumber);
void drawText(Position, string);
. . . .

};

There are commonalities and variabilities here; we recognize most of the com-
monalities and variabilities germane to inheritance. The essence of the semantics
of multiple derivation here is that the two base classes are semantically disjoint.
Good multiple derivation minimizes the commonality between the base classes.

There are two kinds of commonality to worry about: commonality in state and
commonality in behavior. Consider Þrst commonality in state. If both Editing-
Window and XWindow have a data Þeld called lineNumber, something is likely to go
wrong. The code in each of the classes is ignorant of the Þeld in the other. We can
solve the scoping and protection issue by moving lineNumber up to class Window,
but the question still arises about how many copies of lineNumber exist in the
EditingXWindow object: one from each of the lines of derivation, or just one shared
instance? C++ allows either; the former resulting from ordinary derivation as
above, and the latter resulting from virtual derivation:

class EditingXWindow:
public virtual EditingWindow,
public virtual XWindow

Solution Domain Analysis164
{
public:

void refresh();
LineNumber topLine() const;
void setLine(const LineNumber);
void drawText(Position, string);
. . . .

};

Which of these is appropriate depends on deep domain knowledge. Consider a
SeaPlane (admittedly only a pedagogical example and one with dubious worth at
that), derived from Boat and Plane, each of which inherit a seat and an engine
from Vehicle. We might want just one seat, but two engines, so the decision about
whether to share (i.e., to use virtual derivation), which should be made at the
point of deriving SeaPlane from its base classes, is made at the point of deriving
the two bases from their own base, and canÕt be made in a way that meets the
needs of the SeaPlane class.

Commonality and variation shed light on this design, as might be apparent
from this short example. But the choice of whether to use multiple inheritance, or
whether to use virtual or non-virtual inheritance, is dependent on deep domain
semantics that involve many trade-offs. For this reason, multi-paradigm design
defers multiple inheritance to the realm of domain experience, perhaps best to be
captured in pattern form.

If each of multiple base classes is devoid of data and has only pure virtual func-
tions, then multiple inheritance can be used in the way interfaces are used in Java
[Flanagan1997]or that roles are used in the OORAM design method
[Reenskaug1996]. In some sense, C++ multiple inheritance is a generalization of
the domain-mixing style, of the role style, and of the mix-in style, though the dif-
ferences come by convention rather than by the more intentional expression in
other formalisms.

Second case: Mix-ins

The more common use of multiple inheritance is even more idiomatic, the use of
mix-ins. Consider the well-know Shape class:

class Shape {
public:

virtual AreaUnits area() const;
virtual LinearUnits circumference() const;
virtual LinearUnits xspan() const;
virtual LinearUnits yspan() const;
virtual Position position() const;
virtual void move(const Position);
....

};

6.12 Extended Solution Domain Constructs 165
Notice that for this expression of Shape, we communicate that the Shape
domain has nothing to do with drawing things visually on a screen. The domain
captures pure geometry. We may have a geographical database that manipulates
land titles, and uses Shape to calculate taxes, but which never has a need to draw
Shapes. So why clutter the program with drawing code?

Instead, we build on the separate GRAPHICS domain:

class Drawable {
public:

virtual void draw() = 0;
virtual void rotate(const Degrees) = 0;
virtual void move(const Position) = 0;

};

Now we can have a drawable shape:

class Ellipse:
public Shape,
public Drawable

{
virtual void draw();
virtual void rotate(const Degrees);
virtual AreaUnits area() const;
virtual LinearUnits circumference() const;
virtual LinearUnits xspan() const;
virtual LinearUnits yspan() const;
virtual Position position() const;
virtual void move(const Position);
....

};

This construct has much weaker ties to commonality and variation, but is an a
practice germane to the object paradigm alone, implemented with deep domain
knowledge. Again, it is best dealt with as a pattern rather than as an integrated
part of multi-paradigm design. As a pattern, it might be useful for combining
multiple domains in a way that extends the multi-paradigm practices of Chapter
9. As a pattern, it goes beyond the scope and focus of this thesis.

6.12.2 Design Patterns

There are some patterns, however, that fall within the purview of commonality
and variability analysis and which are within the scope of this thesis. This is an
interesting, valuable, and perhaps surprising Þnding: that many of the popular
contemporary design patterns are little more than stereotyped conÞgurations of
commonality and variability. Armed with that realization, a design method could
fold many patterns into the realm of commonality analysis instead of dealing with

Solution Domain Analysis166
them as exceptions that must be individually remembered and applied (as I sug-
gest must be true for multiple inheritance in the preceding section).

Software patterns solve recurring software problems. Patterns are a useful
companion to most formal design methods, Þlling in holes that some methods
leave unÞlled. No common design method would lead directly to all of the pat-
terns described in the Design Patterns book by [Gamma1995]. They provide key
structures used by experienced designers to supplement the structures produced
by object-oriented design methods. Some of these structures supplement the
structures created by multi-paradigm design, and some of them are closely related
to the structures produced by multi-paradigm design. This chapter explores the
intersection between design patterns and multi-paradigm design.

Design patterns are not just an interesting adjunct to multi-paradigm design
but are intrinsically linked to commonality and variability analysis. Patterns
themselves are recurring units of design that are common to many programs, so it
pays to add them to the commonalities we expect to Þnd in the solution domain.
Many patterns factor the variability out of commonly recurring design structures
to accommodate frequently recurring changes. For example, the BRIDGE pattern of
[Gamma1995] factors changing representations from a common interface. Gamma
et al. use design variabilities to tabulate design patterns early in the Design Pat-
terns book ([Gamma1995], p. 30); we return to that table frequently in this chapter.
Wolfgang Pree calls these loci of change Òhot spotsÓ [Pree1995], which are similar
to parameters of variation in multi-paradigm design.

Patterns Beyond Language

Patterns often express what programming languages cannot directly express.
Whereas multi-paradigm design builds solutions only at the level of language fea-
tures, patterns are much more explicit about how to solve problems and are rich in
design insight. Good patterns instruct the reader what to do, why to do it, and
what the consequences might be. Patterns come in many forms, but all patterns
describe a problem and a solution. Most good patterns discuss design trade-offs
commonly called forces. A pattern should discuss how it transforms a design and
what complementary patterns should be considered, as well as the beneÞts and lia-
bilities of the pattern. A pattern is a much richer solution than a simple language
technique, and weÕd like to take advantage of patterns where we can.

Many patterns capture commonalities and parameterize variabilities, but we
shouldnÕt interpret all software patterns as commonality/variability encodings. A
pattern is just a documented solution to a problem in a context. There is no reason
to believe that, by such a broad deÞnition, any pattern should Þt any commonality
category of multi-paradigm design. Patterns are much more general. For example,
the pattern LEAKY BUCKET COUNTER [PLoP1996] tells how to manage an error
counter that is periodically decremented to offset error count increments. The
counter can reach a threshold only if the error frequency is sufÞciently high. This

6.12 Extended Solution Domain Constructs 167
is a pattern we surely can implement in C++, but it isnÕt really a structural pattern.
Further, it is difÞcult to talk about it in terms of commonalities and variabilities
(except within the domain of leaky bucket counters themselves, where leak rates
and frequencies become the Òhot spotsÓ of design).

More generally, multi-paradigm design tends to overlap with patterns that lie
in the middle of the software abstraction spectrum. We can casually divide pat-
terns into three categories: framework patterns, design patterns, and idioms.
Framework patterns, such as CLIENT/SERVER, are usually distant from program-
ming language considerations. At the opposite end of the spectrum, idioms are
closely tied to programming language constructs that the designer must face in
implementation. Design patterns live in that middle ground, where we align
application structure with solution structuresÑthe same transformation
addressed by multi-paradigm design.

Patterns and Multi-Paradigm Design

So if patterns address these issues, why bother with multi-paradigm design? Pat-
terns solve recurring problems that are speciÞc to a domainÑeither application or
solution. Multi-paradigm design, on the other hand, doesnÕt rely on previous solu-
tions and is indifferent to the application domain. Most patterns donÕt deal with
the mapping between these domains. Multi-paradigm design beats the application
and solution domains against each other to converge on a structure that balances
the forces of each. Patterns provide a large (but Þxed) number of solutions that we
can combine in inÞnitely many ways; multi-paradigm design builds its solutions
from a small set of programming language constructs. In one sense, multi-para-
digm design is more general than any collection of patterns can be. To be as general
as multi-paradigm design, a pattern catalog would have to be very large and thus
would be difÞcult to search.

If we can recognize commonalities and variabilities well-served by a speciÞc
pattern, then the design can beneÞt from the supporting material in the pattern
description: the rationale, suggested implementation structures, alternative solu-
tions, performance ramiÞcations, and other trade-offs. Just as we used common-
ality analysis in early design to justify the use of the object paradigm in an
example in Chapter 5, here we use commonality analysis to point to general pat-
terns. The pattern descriptions offer insights into more specialized design and
implementation details.

So how do patterns and multi-paradigm design relate to each other? We can
view their relationship from three perspectives of how patterns are used:

1. As aliases for commonality/variability pairs that emerge from the
solution domain analysis

2. As abstractions that are more abstract than the C++ constructs
beneath them

Solution Domain Analysis168
3. As a powerful mechanism to deal with negative variability

Beyond these relationships, patterns cover many design structures that have
little to do with multi-paradigm design. We donÕt explore such patterns here. More
broadly, patterns complement multi-paradigm design. In this chapter, we discuss
only the intersection of these two design techniques.

Aliases for Solution Domain Constructs

Commonality and variability are a staple of most design methods and tools. Many
recurring patterns of commonality and variability make it into programming lan-
guages so as to support design styles we call paradigms. Some combinations of
commonality and variability are not common enough to make their way into a pro-
gramming language, but they are common enough to be in our design vocabulary.
These constructs become patterns that complement the dominant abstractions of
common application domains and solution domains.

TEMPLATE METHOD [Gamma1995] is one such pattern. We Þnd the roots of this
pattern in the private virtual function idiom ([Coplien1992], Section 11.1) and in
other early C++ practice. A template method is an algorithm (function) that has a
common overall structure with speciÞc steps that vary across applications. Most
programming languages canÕt easily express Þne-grain run-time variations in
algorithms (particularly those variations smaller than a function). The trick is to
express the main algorithm in terms of Þner-grained algorithms that are called
from the main algorithm and that can be dynamically dispatched. The main algo-
rithm encodes the commonality. The variation in algorithm can be factored into
inheritance hierarchies by using virtual functionsÑsomething most object-ori-
ented programming languages support well.

Pree [Pree1995] explicitly recognizes TEMPLATE METHOD as a case of common-
ality and variability analysis. Hot spots is a term he uses to describe the sites of
variation, such as the algorithmic variation of TEMPLATE METHOD, that we want to
parameterize in a robust design. PreeÕs HOOK pattern is closely related to TEMPLATE

METHOD. Both of these patterns capture algorithmic structure as a commonality
and variability category.

Not all combinations of commonality and variability merit nicknames. What is
the name for a technique that overloads the same function in the same way in
each class of an inheritance hierarchy? WeÕd generate an encyclopedic vocabulary
if we enumerated all of these combinations. And not all patterns build on com-
monalities and variabilities in the sense that we use the terms in multi-paradigm
design.

6.12 Extended Solution Domain Constructs 169
Higher-Level Than Programming Language Constructs

Consider the ITERATOR pattern [Gamma1995] as another pattern that captures
design commonality and variability. What is common is the need to iterate over a
collection no matter how it is represented. What varies is the implementation of the
collectionÕs structure and the types of the elements it contains. Most object-oriented
programming languages have aggregate types, and iterators are a common and
convenient way of interacting with aggregates. A few languages (such as Lisp)
have built-in iteration constructs, but most languages build iteration into library
abstractions using a common pattern.

In most cases, we think of list iteration as a more general concept than the con-
cepts expressed in the syntax of a particular programming language. Patterns pro-
vide a ÒstandardÓ for the semantics of iterators and other high-level design
constructs that is abstract enough to port across programming languages.

Note that many of these Òhigh-levelÓ patterns can be thought of as nicknames
for constructs that are part of a programming language culture but not part of the
language itself, as in the previous section.

Table 6.2 tabulated the C++ solution domain structure. To the C++ solution
domain we add the Òpattern solution domain,Ó which can represent rich combina-
tions of commonality and variability that support the solution domain with con-
structs that go beyond natural expression in the language. A summary can be
found in Table 6.3. Think of this table as an extension of the C++ solution domain
table, so both are considered as one when doing transformational analysis.

Table 6.3 does not, of course, encode all useful patterns. Many patterns go
beyond the commonality and variability structure of multi-paradigm design to
address problems ranging from implementation efÞciency (as in the FLYWEIGHT

pattern) to common system-level architectures (such as CLIENT/SERVER patterns).
Such patterns can be used as adjuncts to multi-paradigm design, just as they can
be an adjunct to any design method. Even the design patterns of [Gamma1995]
can be thought of as adjuncts to object-oriented methods. We can look at the
BRIDGE pattern as an example.

BRIDGE, whose general structure appears in Figure 6.11 breaks the Òbinding
between an abstraction and its implementationÓ ([Gamma1995], 153). This hides
the implementation from clients, both by removing details from the class that rep-
resents the abstraction and by breaking compilation dependencies through the
pointer in the client-visible abstraction. This is also known as the handle/body idiom
[Coplien1992]. The Design Patterns book [Gamma1995] relates that the variability
captured by BRIDGE is Òthe implementation of an objectÓ but, as for all of the
bookÕs patterns, the commonality isnÕt explicitly tabulated.

One way to think of BRIDGE is that it presumes no commonality in structure
across family members. Each family member brings its own structure that builds

Solution Domain Analysis170
on an empty foundation. That means that family members can exhibit structures
that are completely unrelated to each other and that we need not worry about the
problems of negative variability. Commonality comes from the broader context of
the related signatures of family members (the base class interface).

Negative Variability

Section 5.1.4 discussed a common commonality/variability pair that leads to a spe-
cial kind of negative variability. Many classes may share common behavior, but
they may have different structures. A special case of this problem appears in this
code:

Commonality Variability Binding Instantiation Pattern

Function name
and
semantics

Fine
algorithm

Run time N/A Template
Method

Algorithm Run time
with
compile
time default

N/A UniÞcation +
Template
Method

Algorithm:
Parameter
of variation
is some state

Run time Yes State

Related
operations
and some
structure
(positive
variability)

Gross
algorithm

Run time N/A Strategy

Value of
state

Source time Once Singleton

Gross
algorithm

Source time
(or compile
time)

N/A Strategy (using
templates) or
UniÞcation

Related
operations
but not
structure

Incompatible
data
structure

Any Yes Bridge or
Envelope/Letter

Table 6.3: Factoring Commonalities and Positive Variabilities into Patterns

6.12 Extended Solution Domain Constructs 171
class Complex { // size = 16 bytes
private:

double realPart, imaginaryPart; // 16 bytes of space
public:

Complex &operator+=(const Complex &);
friend Complex operator+(const Complex &, const
 Complex &);
. . . .

};

class Real: public Complex { // size should be 8 bytes
private: // (presuming implementation
 // as a double)

// ??? add a real part and waste base class data?
// make base class data protected, and waste
// imaginaryPart?
. . . .

};

Not only are the implementations of Real and Complex different, but it isnÕt
possible to construct the implementation of Real in terms of Complex. The external
behaviors of these two classes are nonetheless the same and obey all reasonable
laws of subtyping. The C++ language uses a single language constructÑinherit-
anceÑfor both of these; here, the coincidence does not serve us well. This shows
up in multi-paradigm design as a negative variability because the derived class
Real must violate the commonality of the ostensibly more abstract Complex base
class. Looking back to Table 6.2, we see that multi-paradigm design provides no
C++ language solution to this pairing. So, we turn to patterns.

One solution is to break implementation and interface into separate hierarchies
tied together by pointers: the BRIDGE pattern of [Gamma1995]. In addition to being
a pattern that handles positive variability, BRIDGE handles implementation varia-

Figure 6.11: Structure of the BRIDGE pattern (adapted from [Gamma1995],
p. 153).

Operation()

Abstraction

OperationImp()

Implementor

RefinedAbstraction OperationImp()

ConcreteImplementorB

imp->OperationImp();

OperationImp()

ConcreteImplementorA

Solution Domain Analysis172
tions that violate prevailing commonality. In fact, it is best to think of BRIDGE as a
negative variability pattern for which positive variability is a special case. Positive
variability is the total cancellation of common structure, followed by the addition
of new structure. The solution to the above problem looks like this:

Complex operator+(const Complex &n1, const Complex &n2) {
// machinery to orchestrate multiple dispatch
// see [Coplien1992], sec. 9.7
. . . .

}

class NumberRep { };

class ImaginaryRep: public NumberRep {
friend class Complex;
friend class Imaginary;

double imaginaryPart;
ImaginaryRep &operator+=(const ImaginaryRep&);
. . . .

};

class ComplexRep: public NumberRep {
friend class Complex

double realPart;
ComplexRep &operator+=(const ComplexRep&);
. . . .

};

class Complex {
public:

Complex(): rep(new ComplexRep()) { }
~Complex() { delete rep; rep = 0; }
Complex &operator+=(const Complex &c) {

(static_cast<ComplexRep *>
 rep)->operator+=(c.rep);
return *this;

}

protected:

Complex(NumberRep *); // for use by derived
 // classes
NumberRep *rep; // the Bridge pointer

};

class Imaginary: public Complex {
public:
 Imaginary(): Complex(new ImaginaryRep()) {

. . . .
}

6.12 Extended Solution Domain Constructs 173
~Imaginary() { }

};

This brings to closure the problem presented in Section 6.7. You can Þnd analo-
gous examples below in Figure 6.4 and under ÒAn Example of Data CancellationÓ
in Section 6.11.1.

Table 6.3 captures the patterns for positive variability against some backdrop of
commonality. Just as we developed a similar taxonomy for language features that
capture negative variabilities, so we can develop an analogous table for patterns
of negative variability. Table 6.4 captures a couple of interesting cases in which
patterns express negative variability well.

Notice that the format of Table 6.3 is similar to that of the C++ solution domain
variability table, Table 6.2. Binding, instantiation, and commonality categories are
important to both. In one case, we can capture the structure with language fea-
tures; in the other, we can capture the structure with a pattern. Table 6.3 takes
more liberty with the variability description because the commonality catego-
riesÑor those of the C++ language aloneÑarenÕt powerful enough to capture the
semantics.

BRIDGE can be used to factor out function membership as well as data member-
ship. Consider a family of Message abstractions that usually require checksums,
with the exception of single-byte ACK and NAK messages. We could use BRIDGE to
factor this variability into an implementation ÒhelperÓ class, MessageBody. Here,
we use private multiple inheritance (a mix-in) to factor the checksum function; we
could have factored this function into another level of the class hierarchy:

class CheckSummedMessageBody: public MessageBody {
. . . .

};

Kind of
Commonality

Kind of
Variability Binding Instantiation Pattern

Some
structure and algo-
rithm

Function name
or semantics

Compile or
run time

Optional Adapter

Related
operations but
not structure

Cancellation
of class
membership

Any Yes Bridge or
Envelope/
Letter

Table 6.4: Factoring Commonalities and Negative Variabilities into Patterns

Solution Domain Analysis174
Here is the implementation side of the BRIDGE hierarchy:

class MessageBody {
public:

virtual void dispatch() = 0;
};

class CheckSummable { // mix-in class
public:

long checksum(const unsigned char*);
};

class FilePacketBody: public MessageBody,
private CheckSummable {
// CheckSummable is a mix-in

public:
. . . .

private:
using CheckSummable::checksum;

};

class AckBody: public MessageBody {
public:

. . . .
// no checksum member
void dispatch() { }

private:
. . . .

};

There is a parallel structure on the application interface side:

class Message {
public:

Message(const unsigned char *);
void send() {

. . . .
implementation->dispatch();
. . . .

}
. . . .

protected:
MessageBody *implementation; // the bridge

};

class AckMessage: public Message {
public:

AckMessage(const unsigned char *c): Message(c) {
. . . .
implementation = new AckBody. . .

6.13 A Summary of the C++ Solution Domain: A Family Table 175
}
};

. . . .

Clearly, pattern solutions are related to multi-paradigm designÑthey solve
similar problems, at least in some cases. In fact, some design patterns can more
formally be linked to multi-paradigm design as speciÞc conÞgurations of com-
monality and variability. Said another way, we can use multi-paradigm design to
regularize a subset of commonly used design patterns.

Multi-Paradigm Tools as a Patterns Adjunct

Most of this section has portrayed patterns as an adjunct to multi-paradigm design.
Turnabout is fair play, and patterns might beneÞt from multi-paradigm design prin-
ciples. Gamma et al. take a step in this direction when they tabulate design pattern
variabilities ([Gamma1995], p. 30), but their taxonomy falls short of the broader
design space of multi-paradigm design. Commonality/variability pairs might
serve as a good organizing principle for patterns, thus complementing taxono-
mies like those of Buschmann, Meunier, et al. ([PLoP1995], pp. 134Ð135, 428Ð
430).

Consider TEMPLATE METHOD, STATE, and STRATEGY. TEMPLATE METHOD and
STRATEGY vary in their granularity of variability but otherwise are similar. The Þrst
implementation of STRATEGY is similar to STATE, with a subtle difference in binding
times. (STRATEGY is usually a bind-once pattern, whereas STATE is more dynamic.)
From the perspective of multi-paradigm design, there is probably more variation
between the two implementations of STRATEGY than between STRATEGY and STATE

because of the stark contrast in binding times. Patterns donÕt emphasize that dis-
tinction; multi-paradigm design makes it explicit.

Multi-paradigm design helps the designer look at these patterns as families of
related solutions rather than as speciÞc design tricks that solve speciÞc problems.
Commonality and variability help elicit the design principles that underlie many
(but not all) patterns. Just as patterns help orient multi-paradigm design in the
larger context of codiÞed design experience, multi-paradigm design helps orient
the software designer by exposing the commonality and variability categories that
form the heart of design patterns.

6.13 A Summary of the C++ Solution Domain: A Family Table

We can summarize the C++ solution domain in Table 6.2 that provides a uniform
view of how the language features relate to each other. At one level, this table sum-
marizes the value of speciÞc C++ language features. It is a useful tool for program-
mers to learn the language from a design perspective once theyÕre beyond the

Solution Domain Analysis176
novice stage. But at a higher level, weÕll use this table as the Òvirtual machineÓ that
will guide design decisions that start at higher levels of analysis and design. Some
language features seem to apply better at high levels than others do. For example,
we think of templates and derived classes as powerful architectural constructs,
while we rarely think of conditional compilation constructs or argument
defaulting in the same way.

The design model now in hand, we can move to the next chapter and use it to
design systems using multiple paradigms.

6.14 Relative Power of Paradigms

This thesis introduces several paradigms as though they stood on an equal footing,
uses them, reduces each to the same basic terms of commonality and variation, but
presents them on an unequal footing, highlighting obscure ones because they are
novel and more likely to convey new insights than if the text dwelt on the obvious.
To overcome the impressions one might mistakenly gain from the latter pedagog-
ical strategy, I have added this section to set your mind at ease that I really do
believe some paradigms have more intrinsic value than others.

Of course it is impossible to objectively create a universally applicable partial
ordering of the power of paradigms, since the power of a paradigm is relative to
the problem being solved; in fact, thatÕs a rather central point of the multi-para-
digm approach to design. For example, function overloading is an amazingly
powerful paradigm for the problem of automatic differentiation (Section 7.5).
Also, ÒpowerÓ can mean different things: a given paradigmÕs support for inten-
tionality and ßexibility may be different in any given situation, for example. The
problem is further complicated by the inability to perfectly separate language fea-
tures from paradigms: nested classes, though just classes, have powerful idiom-
atic uses; and C++ templates, apart from being abstractions that support
parametric substitution, are a Turing-powerful language in their own right. And
things are yet further complicated because the paradigms arenÕt completely sepa-
rable: for example, virtual functions depend on inheritance.

One can imagine objective measures of the power of paradigms, such are being
considered in the (yet unpublished) joint research on group theory models of pro-
gramming language I am doing with Liping Zhao. That research postulates that
the power of a paradigm is related to the kinds and numbers of symmetries a par-
adigm can represent, and what happens when the paradigm is stretched to the
point of symmetry-breaking. Yet that research is not mature, and so this is at best a
subjective characterization of the relative merits of these paradigms.

1. virtual functions: These are Þrst largely because they support the most
dynamic substitutability of any C++ language feature.

6.14 Relative Power of Paradigms 177
2. template: An underrated feature that supports amazingly ßexible substitut-
ability even without programmatic features like IF.

3. overloading: I rate this above struct because it supports substitutability

4. struct: Important because it is so basic: the concept of multiple instantia-
tions with variable values.

5. module: More restrictive than the structuring of a struct.

6. preprocessor: This one has many traps, mainly in the performance of the
development environment and in support tools such as debuggers. But it
still has important and valid uses, particularly for expressing the Þne-grain,
low-level compile-time-bound data variability that is important to some
domains.

7. union: have such little common use that canÕt be dealt with using inherit-
ance that theyÕre usually not worth worrying about.

8. inheritance without virtual functions: This really is of little use other than to
implement the semantics of containment. It can be used for incremental
extension in some rare instances, but the maintenance nightmare it creates
probably outweighs its value in ease of extension. One important idiomatic
use is for creating multiple types that share the same structure.

The astute designer uses this list to weight the choice of paradigms suggested
by multi-paradigm analysis. This brings us to the issue of good taste. Multi-para-
digm design can only suggest a paradigm; experience and good taste may suggest
something different. Design not being a science, but an art, experience should
almost always be given the upper hand.

On the other hand, part of the art of choosing a good paradigm is to assess
ÒÞt.Ó Great architecture is about Þnding good ÒÞt,Ó and the grounding of para-
digm in commonality and variation supports intuition that goes beyond the usual
selection criteria for paradigms, which are based on hype or currency of ideas.

Solution Domain Analysis178

Chapter 7

Simple Mixing of Paradigms
In this chapter, we break a problem into parts so that each part can be designed
with a single paradigm. This Òdivide-and-conquerÓ approach is the simplest form
of multi-paradigm development.

7.1 Putting It All Together: An Overview
of Multi-Paradigm Design

Most software projects require multiple paradigms. Even on the most ÒpureÓ
object-oriented projects, we fall back on procedural thinking inside individual
methods or member functions, both for the logic of the code and for common
engineering practices such as loop optimizations. Multiple paradigms often sur-
face to the highest levels of design in complex applications; templates, over-
loading, and other C++ language features may appear as Þrst-class architectural
abstractions. Multi-paradigm design can help us choose which C++ paradigms to
use. In previous chapters, we established a foundation of commonality and vari-
ability analysis as building blocks for multi-paradigm design. Now, itÕs Þnally
time to move into design and create some abstractions!

In this section, weÕll brießy preview ways to use multi-paradigm design and
deÞne the steps that take us from commonality analysis to implementation.

7.1.1 One Size Does Not Fit All

Chapter 1 motivated the need for multiple paradigms. Even if we have an exten-
sive palette of paradigms at our disposalÑas we do in C++Ñwe still need tech-
niques to combine these paradigms in implementation. There are different ways to
mix paradigms. The most intricate techniques are those that weave together the
paradigms of multiple subdomains as described in Chapter 9. If we are building a

Simple Mixing of Paradigms180
framework as a reusable module that wonÕt be further subdivided, then the
internal coupling incurred by multi-paradigm design is justiÞed by the increased
expressiveness and ease of evolution in the frameworkÕs external sites of parame-
terization and extension.

It is often possible to cleanly partition a system so that paradigms donÕt cut
across the design partitioning. This can be true at many levels of design, even at
the highest levels of architecture. Sometimes, major system chunks are GUI or
database librariesÑimplementation paradigms foreign to C++. WeÕll explore such
Òoutboard paradigmsÓ in Section 7.6. In the more detailed levels of implementa-
tion, we may Þnd large sections of regularly structured designs that can easily be
treated with a single paradigm. That paradigm is often the object paradigm;
sometimes it is procedures; and sometimes it is modules. Though a single overall
design may need to be attacked with several paradigms, we often can divide and
conquer so that individual pieces can use a single paradigm and its methods. It is
this common case of homogeneous subdomains that we take up in this chapter.

One goal of design is to minimize coupling between parts and to maximize
cohesion within them. Close attention to commonalities can help us achieve these
ends when we partition a domain into subdomains. We Þnd subdomains by
grouping the domainÕs family members along the lines of commonality that naturally
can be expressed in the implementation technology. We start with simple commonality
analysis. When that is complete, we make sure that we can express those com-
monalities in the programming language. For example, if we Þnd that family
members share common data structure, we look for a way to express that in C++
and Þnd that inheritance Þts the bill. If we Þnd that family members share the
same interface, with each one implementing it differently, we might use inherit-
ance with virtual functions. If we Þnd common code structure and behavior but
variability in the interface, we might use templates.1 This process may repeat
recursively.

For example, consider the domain of matrices and vectors. We may Þrst group
all matrices together because they share common behaviors, and may likewise
group all vectors. Vectors and matrices are each a subdomain in their own right.
We may also note families of functions: multiplication (for vectors and vectors,
matrices and vectors, matrices and matrices, sparse matrices and vectors, vectors
and diagonal matrices, and so on), division (likewise), addition (likewise), and
subtraction (likewise). Each basic operation becomes a subdomain whose mem-
bers can be expressed using overloading.

Though coupling and cohesion are applied as design or architecture principles,
they directly beneÞt the quality of the code less than the quality of life of people
that maintain the code. Good decoupling makes it possible for teams or individ-
uals to work independently. Tighter coupling makes it difÞcult for small teams to

1See an analogous example (number 42) in Scott MeyersÕs Effective C++ [Meyers1992].

7.1 Putting It All Together: An Overview of Multi-Paradigm Design 181
maintain their code independently; this means that decisions canÕt be made
locally, and so productivity suffers. Software decoupling is the means; team
decoupling is the end. If politics, culture, policy, or history dictate a team structure
independent of software considerations, then the software structure should
follow the organization, not vice versa.2 This means that the best (pragmatic)
domains often come from an intuitive market or business perspective rather than
from the domain analysis principles of commonality and variability. So not only is
it true that any single paradigm should yield to multi-paradigm design driven by
a good domain analysis, but also that multi-paradigm design should yield to
common sense and the prevailing structures of the business. There just isnÕt a
single recipe that works all of the time.

One example is the domain of auditing in fault-tolerant systems. Audits exist to
glean data structures to detect problems and escalate recovery actions to restore
the system to a consistent state. A simple commonality analysis might note that
critical data structures have both ordinary traversal methods and auditing
methods and that each of these methods references internal data structures in
detail. There is likely to be commonality there. The variability is in the style of tra-
versal, and we can well imagine using an iterator to visit each element in turn to
apply a function that is selected according to a parameter (ÒauditÓ or ÒtraverseÓ).
This approach is sometimes called delegated audits, in which audits are not a
domain in their own right but a responsibility of critical data structures. Auditing
has historically been a domain in its own right in many of these systems. There are
some plausible technological arguments for factoring audits into a separate
domain. First, it is sometimes necessary to audit data structures against each
other. This means that there needs to be an independent agent that audits multiple
data structures against other aspects of system state. Second, audits use their own
clever strategies and tricks for auditing, tricks that build on domain knowledge
speciÞc to auditing itself, tricks that go beyond the expertise of the designers of
the data structures. Such tricks might depend on the underlying hardware or soft-
ware platform, and it is best to factor them into a domain of their own instead of
distributing the knowledge about the system. Third, audits need to be scheduled
like any other system activity and audit scheduling needs its own locus of control.
Even if these reasons are lost to history, one might take a cue from the presence of
a well-formed audits organization in historical developments for a given product
line and follow such strong traditions instead of submitting to overly technical
analyses. As a rule of thumb, itÕs easier to deal with imperfect software structures
than to change an organization. That rule of thumb sometimes guides domain for-
mulation.

2For more on the relationship between organization and architecture, see the patterns ÒOrganiza-
tion Follows LocationÓ and ÒConwayÕs LawÓ in [Coplien1995a], or see [Conway1968].

Simple Mixing of Paradigms182
When we talk about variability, the backdrop of commonality is often implicit.
That means that the vocabulary of the variabilities in the application sometimes pro-
vides hints about commonalities in the implementation. Variability in implementa-
tion, assuming common behavior, points to inheritance. For example, all matrix
abstractions (sparse, identity, upper- and lower-diagonal, and so on) behave alike
(all can be added, multiplied, and divided with other matrices) but implement
their operations and data structures differently. Therefore there should be an
inheritance relationship between matrix abstractions. If we talk about variations
in the signature of a function, we imply some commonality. We might capture that
commonality as a family of overloaded functions, all sharing a common name (as
with the algebraic operations for matrices).

7.1.2 Degrees of Complexity

Designers face problems that cover a wide range of complexity. Simple design
problems can be coded up directly; difÞcult ones require more planning, introspec-
tion, and analysis. We can develop a simple model of complexity (Òall models are
lies, many models are usefulÓ) to illustrate how multi-paradigm design contributes
to design robustness.

We often think of complexity in terms of scale, either in lines of code or num-
bers of people. But some voluminous projects are conceptually simple (large data-
bases of satellite data still use proven database techniques), and populous projects
vary in what we intuitively call complexity. What makes a project complex?

We use abstraction to address complexity. The more complex a problem is, the
more we must use abstraction to understand it. Some projects seem easy to
decompose into abstractions. Most design methods use hierarchical reÞnement,
building either on top-down or bottom-up strategies. Hierarchical organization
seems to be hard-wired into the Western mind; it dominates the way we formulate
abstractions and organize the world. If a project lends itself well to hierarchical
reÞnement, it really doesnÕt look that complexÑwe can choose to view it from an
arbitrary level of detail.

There are many kinds of design hierarchy. First and foremost came procedural
decompositionÑalgorithms building on other algorithms. A related but richer
hierarchy can be found in block-structured design, whose primary structure fol-
lows procedural decomposition, but whose design rules accommodate the
scoping of data along with the procedures. Object-based programming uses
Òimplementation hierarchyÓ [Booch1994] to build hierarchies of objects. Object-
oriented programming augments object-based programming with hierarchies of
classes that comply to a common interface.

We also Þnd paradigms that are less hierarchical in nature. Among these is the
seldom-practiced functional paradigm (though it is making a resurgence in the
domain of the C++ library [Musser+1998]), which serves languages such as FP,
ML, and Tim BuddÕs leda language [Budd1995]. But itÕs important to remember

7.1 Putting It All Together: An Overview of Multi-Paradigm Design 183
that many popular paradigms, such as relational databases [Date1986], also
depart from the hierarchical model.

Some projects are so complex that they defy common abstraction techniques.
What makes many of these projects complex is their lack of a single hierarchy.
Complex systems exhibit many interacting hierarchies. If we were to use top-
down techniques to formulate abstractions for these systems, we would have to
analyze them from many Òtops.Ó A telecommunications system has a call pro-
cessing top, a billing top, a maintenance top, an operations top, an evolution and
administration top, a fault-tolerance top, and many others. The abstraction trees
beneath these tops interfere with each other in pernicious ways. This is what
makes systems complex. Complexity is proportional to the number of distinct, mean-
ingful views of a system.

We can return to category theory here. Many design techniques have the goal
of creating distinct categories: we talk about dividing a system into modules; we
talk about cohesive objects. The structured paradigm doesnÕt emphasize much
structure beyond that of modules. In the object paradigm, we talk about other
structures, but all of them are hierarchical abstractions of the disjoint objects:
classes classify sets of objects, and class hierarchies classify sets of classes. In mul-
tiparadigm design, the primary abstractions are domains. Most domains are
implemented using a single paradigm. But domains can cross each other. If we
look at the design of simple algebraic abstractions from the ÒtopÓ that describes
the abstractions like complexes, reals, and integers, we see data types. But if we
look at the same design from the perspective of closures and operations, we see
families of functions. In a C++ implementation of a library of algebraic abstrac-
tions, the functions may be part of the data typesÕ implementation, or may show
up as friend functions of the data types. We sometimes allow hierarchies to break
down, the beneÞt being a better expression of the families of concepts that Þnd
natural expression in C++ Ñ and, often, that Þnd better expression in vernacular
descriptions of the domains.

Where does multi-paradigm design Þt into this application taxonomy? We can
use multi-paradigm design in several different ways to tackle different classes of
problems. These problems lie on a spectrum that ranges from uniform application
of a single paradigm in a single domain to the application of multiple paradigms
across multiple, tangled subdomains. Consider the number of meaningful views
for the examples in each of the following cases.

Single Domain, Single Paradigm

This is the simplest case: building a single family of products, all of which obey one
set of commonality and variability categories (commonality and variability catego-
ries were introduced in Section 2.3).

Simple Mixing of Paradigms184
Example: There arenÕt too many real-world examples because the world is rarely
this simple. However, a family of sorting algorithms may fall into this category
if the algorithms are truly independent.

Multiple Decoupled Subdomains, Single Paradigm

Designing a system with multiple domains, all using the same paradigm, isnÕt
qualitatively different from the case for a single domain and paradigm. The project
can still use a single tool set and single training program. Each domain has its own
vocabulary that is relevant to the domainÕs business interests, but all abstractions
are the same Òshape.Ó

Example: Think of software that monitors an industrial control process. Object-
oriented design may be used for the architecture of the software that interacts
with industrial implementation, since the object paradigm is often a good Þt for
physical devices. Object-oriented design may also be used for the system graph-
ical interface, which is a different domain in the same system.

Multiple Decoupled Subdomains,
Single Paradigm for Each Subdomain

Such a project can be run as multiple, independent projects that contract with each
other through well-deÞned interfaces and mechanisms. Each project has its own
tools and design methods. The software of one domain can communicate with the
software of another domain either in terms of the other domainÕs paradigm or
through a globally agreed-upon interaction paradigm (procedures, objects, mes-
sages, database, and so on).

Example: An example is an inventory tracking system, with product lines for
data management (database paradigm) and human interfaces (object para-
digm).

This is the class of problems we focus on in this chapter.

Multiple Decoupled Subdomains,
Multiple Paradigms for Each Subdomain

Many projects fall into this category. Multi-paradigm design helps identify the
parameters of variation for each domain and the paradigms that translate those
parameters into design structures. Multi-paradigm design does not stipulate how
to weave these paradigms together. However, the design dimensions are often
orthogonal, and an experienced C++ designer can usually foresee the ÒobviousÓ
design that mixes the paradigms together.

Example: A FILE domain may have both CHARACTER SET and RECORD FORMATTING

as parameters of variation. CHARACTER SET becomes a template parameter.

7.1 Putting It All Together: An Overview of Multi-Paradigm Design 185
RECORD FORMATTING can be handled with inheritance (both for the supporting
data structures and the algorithms that format those structures to and from
disk). The design looks generally like this:

template <class CharSet>
class File {
public:

virtual int read(const CharSet*);
. . . .

};

template <class CharSet>
class WindowsFile: public File<CharSet> {
public:

int read(const CharSet*);
. . . .

};

We address this level of complexity in Chapter 8.

Multiple Subdomains in a Directed
Acyclic Graph (DAG), Multiple Paradigms

One domain may depend on another. If the dependency graph contains cycles,
then the graph behaves as though it has inÞnitely deep dependencies. There is no
problem as long as subdomain dependencies form a directed acyclic graph (DAG):
Each subdomain can treat other domains as modular, self-contained units.

Example: Consider a compiler example. Both the PARSER and CODE GENERATION

domains depend on the MACHINE ARCHITECTURE domain. The architecture may in
turn have INSTRUCTION MAPPINGS and WORD CHARACTERISTICS as parameters of
variation. WORD CHARACTERISTICS may be a domain in its own right that can be
parameterized as little-endian or big-endian, with a length in bytes and with
speciÞc Þll and alignment characteristics for primitive hardware types.

Circular Subdomains

It is possibleÑand commonÑfor domains to take each other as parameters of vari-
ation. Consider the classic trio of domains MODEL, VIEW, and CONTROLLER (MVC).
The MODEL domain represents application information such as application state
that might be of interest to other clients (usually a person interacting with the soft-
ware). The VIEW domain presents an abstracted view of the MODEL information,
usually on a human/machine interface. The CONTROLLER domain dispatches user
input to the MODEL and the VIEW domains. These classes obey a set of simple
update protocols to keep the VIEW in synchronization with the MODEL. For
example, all interested VIEWs register themselves with the MODELs whose data they
care about; all MODELs notify interested views when an interesting application state

Simple Mixing of Paradigms186
change occurs. These protocols are independent of the application semantics,
which implies that no MODEL, VIEW, or CONTROLLER can depend on any speciÞc ver-
sion of the other two. But these three domains often fall short of this idealized
decoupling because each domain often depends on details in one or both of the
other two domains.

Consider an entry form application,3 perhaps for a spreadsheet, for which the
form itself is a special kind of view. The ENTRYFORM domain takes data Þelds of the
MODEL as parameters of variation; it builds a form so that users can view and
change those data Þelds through the ENTRYFORM view. The model shouldnÕt depend
on a particular ENTRYFORM or controller, though it must support behaviors
common to all models (such as alerting the VIEW when its contents change). The
CONTROLLER depends on the structure of the particular ENTRYFORM, since it must
know where text Þelds, buttons, and slide bars appear on the screen so that it can
dispatch mouse clicks and keyboard events in a sensible way. The ENTRYFORM

depends on the CONTROLLER. This is because it may take mouse input and key-
board input that elicit interactive highlighting or take input from a separate pro-
cess, such as a monitor or a debugger process, for which highlighting should be
disabled. In the standard MVC framework, this causes coupling at the derived
class level; normally, derived classes are coupled only through their base class
level interfaces as shown in Figure 7.1.

These dependencies conßict with the classic MVC architecture, whose domain
dependencies are captured in abstract base class interfaces. Though CONTROLLER

3The example is inspired by an EntryForm pluggable view once posted on the World Wide Web
by Alan Wills, alan@cs.man.ac.uk.

Figure 7.1: Relationships in classic MVC and in the more coupled
EntryForm example.

View

Controller

Interactive
or another
process?

What are
the fields?

Standard MVC dependency
registration

SomeController

Model

SomeModel

EntryForm

7.2 Activities of Multi-Paradigm Design 187
depends on the interface of the abstract base class View, the class EntryFormÑ
which is in the VIEW domainÑdepends on SomeController in the CONTROLLER

domain. This design violates the classic MVC architecture because CONTROLLER

depends on the structure of VIEW (that is, of ENTRYFORM). It goes beyond simple
multi-paradigm design because of the circular dependency between VIEW (ENTRY-

FORM) and CONTROLLER. Designers frequently solve this problem by combining
VIEW and CONTROLLER into a single domain. Here, we try to keep them separate
and to better understand the design relationships between them.

The trick in such designs is to break the dependency cycle. We can use one cou-
pling technique for one direction of the dependency and another techniqueÑusu-
ally based on pointersÑfor the other direction. Here, we might treat CONTROLLER

as a ÒpluggableÓ class that provides an interface that ENTRYFORM can use to teach it
about the screen structure at start-up. ENTRYFORM can interact with different kinds
of CONTROLLERS through a single abstract base class interface that generalizes to all
family members.

Such designs commonly arise from the coupling between application classes
and their I/O interfaces. We defer a more thorough treatment of such designs to
Section 9.1.

7.2 Activities of Multi-Paradigm Design

Earlier chapters in the thesis introduced the building blocks of multi-paradigm
design: commonality and variability analysis, and application and solution
domain analysis. Now that all of the pieces are in hand, we can consider how to
integrate them into a design strategy.

We have studied both application domain analysis and solution domain anal-
ysis in depth. Both are speciÞc applications of domain analysis. Design is the
activity of aligning the structure of the application analysis with the available
structures of the solution domain. Here, weÕll call that activity transformational
analysis. It is an analysis activityÑa study of mapping structuresÑthat deals with
a transformation across domains.

We can assemble the techniques as steps in an overall design method. This is at
least a little misleading, since design rarely proceeds as a predictable sequence of
steps. Many of these steps can and should be done in parallel. StafÞng proÞles
and business needs dictate whether some steps, such as application domain anal-
ysis and solution domain analysis, might be done concurrently. Some steps may
already be complete when a project starts (such as a solution domain analysis of
the C++ programming language), thus making it possible to eliminate or abbre-
viate steps.

As with any method, itÕs dangerous to treat the steps too literally. The team
should engage only in those design activities that carry them to a shared vision of
progress. The techniques in this thesis stand as principles that shape and support

Simple Mixing of Paradigms188
design. The team should use them to support broader schedules and business
objectives that are peculiar to the project or the business. Roughly, these are the
steps of the multi-paradigm design process:

1. Divide the problem into intuitive subdomains (Section 4.1.4).

An experienced designer lets domain experience shape new system
architectures. Most high-level system structuring is intuitive. The
Þrst-cut ÒpiecesÓ are independent business areas, each of which has
its own history and expertise. (See the discussion about this in
Section 7.1.1.)

Once in a while, we build something entirely new and cannot
draw on domain experience for the Þrst-cut architecture. In that case,
we analyze the entire problem using the techniques of Chapter 4 (see
the following step 3). The design team can seek commonalities in the
problem domain and use those commonalities to partition the
problem into subdomains. This activity can help develop intuition
about the domain.

This chapter focuses on domains whose subdomains are largely
decoupled. One major consideration for good subdomains might be
whether they can separately be marketed (Section 4.3.2) or main-
tained, particularly from the perspective of the domain expertise of
independent teams. If domains are tightly coupled to each other,
then they might be combined into a single, larger domain. If there are
market forces or other design considerations that suggest that tightly
coupled subdomains retain their identity, then the techniques of
Chapter 9 apply. Patterns (Chapter 10) may also address this class of
problems, if suitable solutions can be found in the patterns of the
domain of interest.

2. Has this been done before?

Maybe you want to reuse existing designs before starting from
scratch. Multi-paradigm design is a good choice for domains that are
immature and not well understood.

3. Analyze each application subdomain (Chapter 4).

Multi-paradigm design, and in particular the activities of common-
ality and variability analysis, support effective dialogue between
designers and customers and within the design team. Application
domain analysis is in part a marketing activity whose job is to assess
the breadth of the market for the application and to anticipate how
the market will evolve.

Not all domains succumb to multi-paradigm analyses. Some can
be implemented with little or no variation across platforms or mem-

7.2 Activities of Multi-Paradigm Design 189
bers of a product line and with little variation over the life of the
product. These Òmonolithic domainsÓ often adhere to traditional
design practices. We Þnd examples of such domains in embedded
systems, such as overload control, processor maintenance, and other
domains. Commonality analysis can help designers partition these
domains, but they wonÕt have the same kinds of Òhot spotsÓÑ
parameters of variationÑas we Þnd in domains that represent soft-
ware families. Some domains arenÕt easily separated from others,
and the designer must manage the coupling between them using
techniques such as those described in Chapter 9.

Most application domain analysis foresees available solution tech-
niques. This means that application domain analysis should either
proceed concurrently with solution domain analysis or proceed with
an eye to previous solution domain analyses.

A project may renew its application domain analysis on succes-
sive releases.

4. Analyze the solution domains (Chapter 6).

A project typically has many solution domains at its disposal. This
thesis focuses on C++ as a solution domain, and (in Section 6.12.2) it
accommodates common solution domain patterns as well. Both for
C++ and for patterns, the solution domain analysis activities are
complete; for C++, just use Chapter 6. Looking ahead to how you
will align the application analysis with the solution space, famil-
iarize yourself both with relevant solution domain patterns and with
patterns relevant to the application domain. Think of patterns as a
separate kind of solution domain, one that should be considered
early: ItÕs better to build on past successes than to reinvent the expe-
rience yourself. Patterns may not make commonalities and variabili-
ties explicit, even though commonality analysis is one of the
underlying themes of pattern-based design (see Section 6.12.2). You
should not feel compelled to recast patterns into commonality and
variability analysis terms; use them as they stand. However, some
patterns can be captured in the multi-paradigm design framework.

Some solution domains are a better Þt than others for a given
problem domain. A design team can often build on past experience to
select suitable solution techniques. For example, a trouble tracking
system might build on databases as one solution domain and a GUI-
builder as another. This step of multi-paradigm design might take the
solution outside the realm of objects or C++. One could arrive at the
database-and-GUI solution using the techniques developed in this
thesis. However, this thesis can only touch the surface of all available
solution techniques; for example, it doesnÕt have anything speciÞc to

Simple Mixing of Paradigms190
say about databases or GUI-builders. Even if it did, wholesale use of
the formal techniques is overkill. Multi-paradigm design works best
for solution domains that are speciÞc to a programming language,
supporting those design decisions that trade off one language fea-
ture against another.

The design problem is more challenging in new domains. The
application domain analysis often strikes the designerÕs intuition
about a suitable solution domain technique. That technique joins
other stock techniques (such as those analyzed in Chapter 6) as can-
didates for solution domain analysis.

The designer might be tempted to do a comprehensive analysis of
all available solution techniques, testing each for a good Þt to one of
the application domain analyses. Such a blind search is rarely cost-
effective. We should build on experience when possible and on the
intuition of respected designers otherwise. Multi-paradigm design
becomes an audit for that intuition and provides techniques and
vocabulary to regularize the design.

5. Map from application domain analysis onto available solution domain anal-
yses (Chapter 7).

This is the core of multi-paradigm design because it tackles one of
the main problems of design: selecting an implementation structure
that Þts the problem. We analyze each application domain for its
commonality categories, binding time, instantiation, and defaults.
These parameters together direct the designer to a solution para-
digm: objects, templates, template specialization, overloading, or
whatever.

Transformational analysis frequently points to classes and inherit-
anceÑthe object paradigmÑas the appropriate solution domain
technique. There are many tools, techniques, and methods beyond
multi-paradigm design that leverage the object paradigm more fully
than described here. It is wise to build on these mainstream tech-
niquesÑif multi-paradigm design or experience show that they are
applicable to the domain of interest.

Mature solution domains such as client/server architectures,
human interface design, distributed processing, and fault-tolerant
computing now enjoy a growing body of pattern literature
describing stock patterns for general problems [PLoP1995],
[PLoP1996], [PLoP1998]. Patterns can short-circuit much of the effort
of design by raising the level of design reuse.

Any single project may use several solution domain techniques. It
even may be feasible to use multiple programming languages within
a single project. Project management must carefully balance the tech-

7.2 Activities of Multi-Paradigm Design 191
nical suitability of multiple solution domain tools with pragmatic
concerns such as education and tool support.

For more on this approach, see the book by Lai and Weiss
[Weiss+1999].

6. Evaluate opportunities for Application-Oriented Languages (AOLs).

Sometimes itÕs difÞcult to Þnd any implementation domain tech-
nology that Þts the application domain well. The commonalities and
variabilities of the domain may not Þt any existing solution domain
structures. ItÕs often best to build a custom solution domain structure
for such problems, that is, build a new language speciÞcally for the
domain. Such languages are called application-oriented languages
(AOLs) (also Òapplication-speciÞc languagesÓ and Òlittle languagesÓ
[Bentley1988]). This is one of the central strategies of the FAST
method [Weiss+1999] and was discussed brießy in Chapter 1.

Even if existing solution techniques are a good structural Þt for
the problem, they may prove economically infeasible or fall prey to
other pragmatic considerations. For example, we may want to design
a language for a pigment-mixing control language in a fabric dye
application. We could represent pigments as classes and use over-
loading (for example of operator+) to express the mixing of pig-
ments. Some semantics of this problem could be captured by an
AOL, but they can be dealt with gracefully in C++ only at run time.
For example, we might want to include pigment properties such as
acidity and alkalinity in the type systemÑcertain alkaline pigments
should not be mixed with certain acetic pigments! An elaborate class
system might address that. But consider this example: Though pig-
ments of classes A and B may be mixed, and pigments of classes B
and C may be mixed, pigments of classes A and C may never be
mixed. A C++ rendition couldnÕt easily catch this error at compile
time:

A a;
B b;
C c;
Dye d;
d = a; // mix in initial pigment
d = d + b + c; // whoops, mixing pigments

 // we shouldn’t mix

If we parsed this same statement in an AOL, the language pro-
cessorÕs semantic analysis could pick up the errorÑit understands
domain rules that C++ compile-time semantic analysis canÕt.

AOLs can be more expressive than C++; this is particularly impor-
tant for languages targeted to inexpert users. This expressiveness

Simple Mixing of Paradigms192
goes hand-in-hand with convenience. ThatÕs why languages such as
yacc and lex exist. They donÕt do anything that canÕt be done in C++,
but they succinctly (more or less) express the domain semantics in
their syntax.

AOLs are frequently motivated by automatic code generationÑan
unusual motivation if you think about it. The goal isnÕt to generate
lots of codeÑcode takes memory to store and time to run, so more
code means more cost. The insightful beneÞts are convenience of
programming and, in the long term, ease of maintenance.

These beneÞts come with some costs and downsides. A good AOL
is difÞcult to design and expensive to maintain. Time will uncover
opportunities to improve on the initial language design, but itÕs
costly for legacy programs to track changes in the programming lan-
guage in which theyÕre written. Unless language design foresees evo-
lution perfectly, there will be pressure to change the language, and
such change is expensive.

If a project builds multiple AOLs, it raises the issue of interopera-
bility between them. Multi-paradigm design preserves some of the
intentionality of an AOL while preserving all possible interopera-
bility between domains.

A good AOL enjoys a rich support environment with analyzers,
debuggers, and translators that can easily be retargeted across plat-
forms (operating systems, processors, and so on). Each environment
must be kept current with all platforms used by the project; this can
increase the technical head count. The support cost increases with
the number of distinct AOLs that have been deployed. Such costs do
not go to zero over time, as the project takes on new operating sys-
tems and other platform and environmental changes. The beneÞts of
an AOLÑconvenience of programming, static analysis, formal veriÞ-
cation, debugging, automatic documentation generation, and opti-
mizationÑmust outweigh the cost of developing and maintaining it.

7.3 Example: A Simple Language Translator

This example will use procedural design to build a recursive-descent parser, with
object-oriented design for symbol table information. Compilers typically contain
code for multiple well-deÞned subdomains: lexical analysis, parsing, semantic
analysis, code generation, and others. The domains are largely disjointed. And
each of these domains can best be managed using a single mainstream paradigm.

7.3 Example: A Simple Language Translator 193
7.3.1 Partitioning the Domain into Subdomains

As we discussed in Section 4.2, it is important to divide the application domain
into disjoint subdomains. An ideal subdomain contains code that can be reused in
other applications. For example, the symbol table management code written for
the compiler should meet the needs of the link editor, the debugger, and other soft-
ware generation tools.

Choosing a Partitioning

We donÕt use a formal process to factor the problem into subdomains; rather, we
rely on the intuition of experienced designers. As a rule of thumb, subdomains
should be partitioned using criteria similar to those for domain partitioning. A
subdomain reßects an area of expertise or specialization. Such expertise or special-
ization is often embodied in an individual person or in a software development
team, and the business and organizational partitioning should drive the subdo-
main partitioning. Such knowledge may be embodied in a solution domain artifact
or tool, so even knowledge of the solution domain may modulate the subdomain
partitioning (see Section 7.6). Tradition offers many cues and explicit boundaries,
as it does in a highly normative area like compiler design. A designer who has seen
and built many compilers knows the gross recurring patterns of architecture that
most compilers share. These domains typically include the following:

¥ Lexical analysis

¥ Parsing

¥ Semantic analysis

¥ Symbol management

¥ Code generation

¥ Optimization

How do we know that these are good domains and that this is a good partitioning?
Ideally, the partitioning is modular with domains that are cohesive and decoupled.
Some domains may be independently marketable in their own right; that is often a
sufÞcient (though not necessary) condition for a good domain. Domains should
overlap as little as possible and interfere with each other as little as possible. We
donÕt want to Þnd the same commonalities in multiple domains. In a simple com-
piler, lexical analysis, parsing, and semantic analysis are independent Òphases.Ó
Lexical analysis is a cohesive activity; its code does one thing and does it well. In
the ideal case, a lexical analyzer shouldnÕt have to worry about parsing issues. We
can claim that lexical analysis and parsing are decoupled enough to be separate
domains.

Simple Mixing of Paradigms194
In a practical compiler for a rich language such as C++, or even for a portable
assembler such as C, the domains canÕt be perfectly separated. One important
design consideration is the interaction between domains such as lexical analysis
and syntax analysis or between syntax analysis and semantic analysis.

Even at this level, the partitioning may reßect the programming language used
to implement the compiler. A programming language may have primitives for
lexical analysis; for example, it is unlikely that a compiler written in SNOBOL
would have a separate lexical analysis module. Even more language sensitivity
arises at the next level, inside the individual domains. For example, a design
based on a parser generator such as yacc has a much different structure than one
based on a hand-coded recursive-descent parser. But both parsers would have the
same relationship with the symbol table management and code generation
domainsÑunless the parser generator, or other implementation technology, pro-
vides parameters of variations that we would ordinarily ascribe to symbol man-
agement or code generation.

Domain Analysis

We have established a starting point for analysis by dividing the application into
domains based on our experience writing compilers. Now, we need to broaden the
analysis. Broadening the analysis improves prospects for reuse, as described in
[[Coplien1992], Chapter 8]. We can broaden the analysis in two phases. First, we
want to look at the (obvious) application of these subsystems to the family of tools
that work with and support the compiler: the assembler, the link editor, the
browser, and so on. Second, we want to broaden to the families of tools that sup-
port language translation in general, including compilers for other languages.

Assume that the domain analysis was originally done to create a family of C
language support tools. Does it follow that the analysis extends to tools for other
languages? It is difÞcult to regularize the interplay between lexical analysis,
parsing, and semantic analysis that arises from constructs such as typedef. When
we do commonality analysis across languages, we Þnd variability in the parsing
complexity of the language. Some are LL grammars, some are LR(0) grammars,
some are LR(1) grammars, and so on. The parsing complexity of the language
affects context sensitivity and therefore the independence of lexical analysis,
parsing, and semantic analysis. For example, the designer of a C compiler may
choose to push the recognition of typedef names into the lexical analyzer so that
the grammar can deal with typedefs just as it can deal with any other type. For
example, given the statement

typedef int Int;

it follows that the language production

type_name decl_list

7.3 Example: A Simple Language Translator 195
should accommodate both of the following source statements

int a, b;
Int c, d;

The lexical analyzer can identify typedef names by consulting with the parser.
The designer has another alternative, though, by using a grammar that accepts
productions of the form

name decl_list

where the Þrst name is presumed to be a type identiÞer, a presumption that must
be validated in semantic analysis. Such a grammar relieves the lexical analyzer of
the burden of recognizing typedefÕd names as valid type names (perhaps at the
expense of tighter coupling with semantic analysis). Architectural trade-offs such
as this affect the details of the commonality analyses for each subdomain. They
also affect the independence of the subdomains and the modules used to imple-
ment them.

The ÒGlueÓ Domain

Some abstractions transcend individual domains. In a compiler, we will Þnd
string in all subdomains of analysis. Where does it belong? We follow common
sense and put string in a separate domain of basic building blocks. Support for
these abstractions can often be found in standard libraries, in commercially avail-
able support packages, and in common or standard operating system APIs. These
are sometimes called Òtoolkits,Ó as in the GOF book [Gamma1995]. They are usu-
ally familiar enough to merit little formal analysis.

Domain Analysis and Iteration

Once domain analysis is complete, the designer should revisit the subdomains to
ensure that good partitioning criteria are still met. Domain analysis may broaden
or skew abstractions in ways that change the coupling between domains. Such a
shift in coupling may suggest changes in subdomain boundaries. If so, the problem
should be repartitioned into subdomains based on the newfound understanding
(usually by doing some Þne-tuning). The process iterates until it converges.

For example, imagine that the initial compiler design comprised the domains
of PARSER, CODE GENERATION, SYMBOL MANAGEMENT, and others. The hardware archi-
tecture would be one parameter of variability for the CODE GENERATION domain,
but we would presume that other domains are insulated from the hardware.
Design experience might show that the compiler front-end (the parser) can take
advantage of hardware characteristics to generate more compact parse trees,
which in turn result in more efÞcient code. For example, the hardware may pro-
vide instructions that dispatch case statements directlyÑthis would be of value

Simple Mixing of Paradigms196
to the parser. The designer can take advantage of these architectural features by
capturing them in a separate MACHINE ARCHITECTURE domain. Both the PARSER

domain and CODE GENERATION domain can use the MACHINE ARCHITECTURE domain
as a parameter of variation.

7.3.2 Finding the Right Paradigms within a Subdomain

Once we identify subdomains, we must design and implement each one. If we
have chosen our domains well (and if we have the good fortune to work on an
easily partitionable system), most design at this level can proceed without interfer-
ence between domains. Each domain must be partitioned into manageable parts,
such as algorithmic steps and object structures. We may be able to group these
parts into abstractions, such as functions and classes. Both the parts and the associ-
ated abstractions should support product evolution by hiding design secrets (mod-
ularity) and by aligning their interfaces with the stable characteristics of the
subdomain that contains them.

The choice of paradigm within a domain is often obvious for an experienced
practitioner in the domain. But new domains challenge the designer to choose the
right paradigm to meet software maintainability goals. To Þnd the right para-
digm, we analyze the subdomain for commonality and variability using the tech-
niques of Chapter 2. LetÕs investigate the SYMBOL MANAGEMENT subdomain of the
compiler, choose a paradigm, and Þnd the important abstractions of that subdo-
main.

Some paradigms are supported by C++, as we found in Chapter 6. We try to
use those paradigms to express the commonality and variability in the SYMBOL

MANAGEMENT subdomain.

The Domain Vocabulary

The SYMBOL MANAGEMENT domain is an important part of any compiler. We can
think of SYMBOL MANAGEMENT as a module in the sense that it can be separately
designed, developed, and conÞgured. If we use domain analysis to drive analysis
and design, then a well-designed symbol management model suits not only the
compiler, but also the assembler, link editor, debugger, and other tools.

The Þrst step of domain analysis is to capture the domain vocabulary.
Figure 7.2 presents a Þrst-cut at the vocabulary for the SYMBOL MANAGEMENT

domain. These are terms familiar to practitioners in the domain. Many of the
terms are familiar also to external clients of symbol tables: the people who use
compilers, debuggers, and link editors.

7.3 Example: A Simple Language Translator 197
Commonality Analysis of the Domain

Now that we have established a vocabulary, we start looking for structure in the
domain. Some vocabulary items group naturally with others. Each of these group-
ings forms a family of abstractions. The family members share properties in
common and distinguish themselves by their variabilities. If we codify these com-
monalities and variabilities, we can align them with programming language fea-
tures that express these design dimensions directly. We capture that analysis in a
variability table. The result will be a paradigm, or lists of paradigms, suitable to
each domain.

Note that we donÕt go directly from the domain vocabulary to the variability
table. We use our intuition to shape the abstractions of the domain wherever pos-
sible. We can use rules of thumb to guide this intuition by suggesting likely places
to look for abstractions with a broad commonality base. Weiss [Weiss+1999] sug-
gests looking at the design from three perspectives, in the following order:

1. Abstractions in the external interfaces of the domain

2. Units of work in the domain (for example, internal states and state
transitions)

3. Everything else

The symbol domain is simple, and its groupings are intuitive. The vocabulary
entries TYPEDEF, IDENTIFIER, FUNCTION NAME, STRUCTURE TAG NAME, and LABEL are all
kinds of names. They establish a range of values for some parameter of variation,
so each of them probably appears as a single row in a commonality analysis table.
The subdomains SCOPE, ALIGNMENT, SIZE, OFFSET, LINE NUMBER, STORAGE CLASS, and
ADDRESS are all attributes of symbol table entries. We may think of a LINE NUMBER

as a special (implicit) kind of label that delineates a place in the code (things like
#line); for the time being, we can think of it as a degenerate kind of NAME.

Figure 7.2: SYMBOL MANAGEMENT vocabulary.

Typedef: A typedef clause, alias for
another type

IdentiÞer: Any identiÞer for a user-
deÞned type, function, Òvariable,Ó or
label

Function name: The fully qualiÞed name
for a freestanding or member function

Line number: Source line number within
a compilation unit

Label: For goto
Size: Size, in bytes, of a data element
Structure tag name: . . .
Address: . . .
Offset: . . .
Storage class: . . .
Scope: . . .
Alignment: . . .

Simple Mixing of Paradigms198
We follow our intuition and establish NAME as a commonality domain. NAMEs
are an abstraction over the entries TYPEDEF, IDENTIFIER, FUNCTION NAME, STRUCTURE

TAG NAME, and LABEL that we Þnd in the domain dictionary. All NAMES are the
same in many respects. We want to capture and characterize that commonality to
drive the commonality analysis. What characteristics do all NAMEs share? They all
behave similarly, and we can store them in the symbol table, organize them into
search tables, ask for their name string, and so on. We Þnd commonality of
behavior. Following business intuition, we derive the primary commonalities from
abstractions in the published (external) interface of the domain.

Our experience and intuition may tell us that LINE NUMBERs and LABELs are not
part of the NAMEs subdomain. A LINE NUMBER just isnÕt a NAME! We can think of a
broader domainÑperhaps SYMBOLÑthat accommodates both LINE NUMBERs and
the other symbol table attributes we ascribed to the NAMEs subdomain. At this
point in analysis, we could yield to this intuition and abstract one level higher. If
we treated all these vocabulary entries as SYMBOLs, we miss an important axis of
commonality that ties NAMEs together. So we still treat NAMEs as a subdomain and
will come back and either Þt NAMEs into the more abstract SYMBOL domain along
with LINE NUMBERs and LABELs or deal with LINE NUMBERs and LABELs as negative
variabilities.

We also know that most (though perhaps not all) NAMEs have some form of
address or offset and some designation of the scope in which they are found.
These are structural elements or data Þelds common to all NAMEs. We Þnd com-
monality of structure. This follows WeissÕs suggestion about the second place to
look for commonality: internal state. Another facet of internal structureÑthe algo-
rithms used to build disk representations of NAME structuresÑcan be thought of
either as common internal structure or as common external behavior. Both sug-
gest the same grouping around the NAME abstraction.

Does the solution domain offer mechanisms to express these commonalities? If
we look at the Commonality column of Table 6.2, we Þnd an entry for ÒRelated
Operations and Some Structure.Ó C++ can capture and express that commonality,
so we go with it.

We now understand how NAMEs are alike. How are they different? Even though
all NAMES use the same rudimentary routines that format symbol table entries for
the disk image, we Þnd a family of algorithms whose members vary with the type
of symbol table entry.

We capture the differences, or variabilities, in a commonality table as in
Table 7.1. The major variability is the kind, or type, of symbol: typedef, identiÞer,
function name, label, line number, or structure tag name. We bind the type to a
given family member at run time; this allows us to reason more abstractly about
the type in the application code that uses symbol abstractions. Looking again at
the ÒRelated Operations and Some StructureÓ row in the language commonality
table (Table 6.2), we see that for a variability in algorithm, data structure, and state

7.3 Example: A Simple Language Translator 199
and for run-time binding, we should use C++ virtual functions. The main para-
digm we will use for this design will be the object paradigm. We record that map-
ping as an italicized annotation in the Þnal column of the SYMBOL TYPE row of
Table 7.1. (Italicized items in the table are annotations we add to the table during
transformational analysis.)

We go through the remaining rows of Table 7.1 in the same way. We deal with
SCOPE using enums, with LAYOUT using inheritance, with ALIGNMENT using simple
data value variation, and with STORAGE CLASS again using enums. Because we
choose virtual functions to support the previous type variability, inheritance is
already implied. The inheritance that supports variability in layout falls along
exactly the same lines as the inheritance that supports the virtual function vari-
ability that expresses different symbol types, so there is nothing new we need to
do for LAYOUT. Dealing with data value variation is always trivial; note that the
design accommodates data structure and state in the row we had chosen from
Figure 6.2. Enumerations behave much like data values: They just Ògo along for
the rideÓ in the classes that we organize into the inheritance hierarchies.

Note that two rows of the table are almost the same. The second row captures
the variability by symbol type: typedef, identiÞer, function, and so on. The last
row captures the variability in formatting algorithms. Each row deÞnes a separate
range of variability. However, these two parameters of variation cause the same
kinds of changes in the design: run-time structure and formatting. We say the two
parameters of variation are covariantÑthe formatting algorithm is germane to the
symbol type. Both rows suggest the same paradigm (virtual functions) as a solu-
tion, so we can think of one of the rows as being superßuous (either the Þrst or the
last, but not both). Project documentation should capture the description of both
parameters if the rows are folded together. Or the table can be left as shown.

We depict this condensation graphically using a variability dependency graph as
in Figure 7.3. The nodes of the graph are subdomains. The central node represents
the focus of the current analysis, the NAME domain. The surrounding nodes repre-
sent the parameters of variation, labeled with the parameter names. Later (in
Section 9.1), we treat parameters of variation as subdomains in their own right,
and the arcs in the graph capture domain dependencies. Parameters of variation
do correspond to domains, even here, but for the time being weÕll call on the nota-
tion only to capture the relationships between a domain and its parameters of
variation. I have omitted the variabilities we can express as differences in data
value, since they donÕt affect the structure of the abstraction.

In addition to the explicit dependencies in the variability table, there are addi-
tional dependencies between rows in the table. Figure 7.3 includes arcs between
LAYOUT and SYMBOL TYPE and between SYMBOL TABLE FORMATTING and SYMBOL TYPE

to show the dependency between those domains. In fact, SYMBOL TABLE FORMAT-

TING depends only on SYMBOL TYPE. The parameters of variation SYMBOL TABLE FOR-

MATTING and LAYOUT are covariant. When two parameters are covariant, we can

Simple Mixing of Paradigms200
Parameters of
Variation Meaning Domain Binding Default

Symbol value
Object value

The actual name
of the function,
identifier, and so
on.

[a-zA-Z_]
[a-zA-Z0-9_]*

Run time None
Value of state

Symbol type
Structure,
Algorithm

A major
category of the
symbolÕs use
and meaning

typedef,
identiÞer,
function name,
label, line
number,
struct tag
name

Run time None
Virtual
functions

Scope
Data

The scope in
which a symbol
appears

Global, Þle,
function, class

Run time None
enum

Layout
Algorithm
(because an
algorithm
generates the
layout)

Different
symbols carry
differing
amounts of state
and have unique
layouts in the
symbol table Þle

typedef,
identiÞer,
function name,
label, line
number,
struct tag
name

Compile
time

None
Inheritance

Alignment,
size, offset,
address
Data

Data value
attributes of
symbol entries

Variously
constrained
integers

Run time 0
Data values

Storage class
Data

A description of
how a data item
is stored in the
application
program

register,
static,
auto,
extern

Run time 0
enum

Symbol table
formatting
Algorithm

Each symbol has
its own
appearance in
the object Þle

Irregular Run time None
Virtual
functions

Table 7.1: Compiler Transformational Analysis for Commonality Domain: NAMES
(Commonalities: Structure and Behavior)

7.3 Example: A Simple Language Translator 201
remove the nonleaf node in the subgraph comprising the two parameters. LAYOUT

only passes the effects of SYMBOL TYPE on to the NAMEs domain; LAYOUT itself con-
tributes nothing else to NAMEs. If we do that for all of the parameters of variation
in Figure 7.3, we end up with just two nodes in the dependency graph: NAME and
SYMBOL TYPE, as shown in Figure 7.4). If we think of each node in the graph as a
domain, then we can treat LAYOUT as part of the SYMBOL TYPE domain. WhatÕs
important for LAYOUT is (already) important for SYMBOL TYPE.

By using inheritance and virtual functions, we have chosen to use the object
paradigm. We arrived at this decision in a roundabout way and reached a conclu-
sion that was probably obvious to many readers before going through the anal-
yses. The reason for the analyses is that they donÕt always proceed so simply, and
it is better to arrive at the object paradigm honestly than to use it where it doesnÕt
belong.

The commonality analysis alone isnÕt enough. The object paradigm has many
other design rules that tell how inheritance should be effectively employed. We
should organize the symbol table entries by types into specialization hierarchies

Figure 7.3: Variability dependency graph for
commonality domain: NAME.

SYMBOL TYPE

LAYOUT

SYMBOL TABLE FOR-

MATTING

NAMES

Figure 7.4: Reduced variability dependency graph for
commonality domain: NAME.

SYMBOL TYPENAMES

Simple Mixing of Paradigms202
and cast those hierarchies directly into inheritance trees. Analyzing the specializa-
tion relationships between symbol abstractions isnÕt part of commonality analysis
per se, but it is special to the object paradigm. Commonality and variability anal-
ysis get us to the right paradigm with the right parameters of variation. The rest is
ÒSMOPÓ (a simple matter of programming) to the informed C++ designer.

Returning to the Question of Line Numbers and Labels

We noted previously that LINE NUMBER and LABEL didnÕt Þt well into the common-
ality analysis. It is time to return to that question. We will discuss two choices here.
The Þrst is to treat LINE NUMBER as a kind of negative variability. The second is to
solve the problem with a hierarchy of subdomains. The subdomain hierarchy solu-
tion is more general and usually leads to more extensible designs than the negative
variability approach.

Negative variability (Section 3.3.2) is a way of saying, ÒThe commonalities of a
commonality analysis hold, exceptÓ We can say that a LABEL or a LINE NUMBER

is a NAME, except that it doesnÕt have the type attributes common to other names.
We can ignore the type attribute ascribed to LABELs in multi-paradigm design and
just hope no one ever tries to interpret it sensibly. We can also Òturn offÓ the type
attributes at the language level so that the designer doesnÕt accidentally come to
depend on them. How might we do that?

We express commonality within the symbol domain using public inheritance.
To express negative variability, we must cancel some base class properties on their
way into the derived class. This is called inheritance with cancellation. Public inher-
itance with cancellation is illegal in C++ because it violates the parallelism
between class derivation and subtyping that is enforced by the language. The
temptation to apply inheritance with cancellation is one of the most recognized
forms of negative variability in object-oriented programming languages; see
Chapter 6 in [Coplien1992] for a discussion of this problem. We can use one of the
other techniques described in Section 6.11, but we should try to avoid a negative
variability if we can.

Many negative variabilities can be viewed as positive variabilities from a dif-
ferent perspective. We hinted at this kind of solution earlier. Instead of viewing
LINE NUMBER and LABEL as degenerate kinds of NAMEs (degenerate in the sense that
they have no type information), we could look for more abstract common ground.
Is there a higher domain of which both NAME and LINE NUMBER are subdomains?
Yes: Intuitively, we would call that domain SYMBOL. Now we have a hierarchy of
domains, with SYMBOL at the top, followed by NAME, LINE NUMBER, and LABEL

beneath it, with NAME heading its own subordinate domains.
Because we are using the object paradigm, these hierarchies are inheritance

hierarchies. ItÕs instructive to note that the top-level domain name we ended up
with was SYMBOL, which was the domain we chose to start with back at the begin-
ning of Section 7.3.2. We will see this hierarchy in the implementation.

7.3 Example: A Simple Language Translator 203
7.3.3 Implementing the Design

At this point, the designer can often capture the structure directly in code.
Designers may use an interim graphical representation if they feel it would help
clarify the design or if pictures would make the design more accessible to the rest
of the development organization. The skeleton code in Figure 7.5 is a direct distilla-
tion of the design. The inheritance hierarchy reßects another kind of commonality
that we know from the object paradigm: Base classes capture the structure and
behavior common to all of their derived classes. Building the inheritance hierarchy
becomes a simple matter of sorting the classes by their commonalities.

The commonality analysis has ÒdiscoveredÓ that the object paradigm is the best Þt
for the symbol domain. In one sense, the multi-paradigm techniques have done
their job, and at this point, the object paradigm can Òtake over.Ó Now is the time to
get out your Booch and Rumbaugh and to use the subtyping and inheritance rules
that work well for inheritance hierarchies.

What if the solution commonality table had no entries that matched the com-
monality we found in our analysis of symbol management? The designer might
be tempted to force the problem into a dimension of commonality that C++ can
express. Inexpert designers over-use inheritance, and we want to avoid doing that

Figure 7.5: Some C++ class interfaces capturing the analysis of Table 7.1.

class Symbol { };

class Name: public Symbol {
};

class Identifier: public Name {
};

class FunctionName: public Identifier {
};

class Typedef: public Name {
// not an identifier!
};

class StructTagName: public Typedef {
// in C++, a structure tag is a typedef
};

class LineNumber: public Symbol {
};

class Label: public Symbol {
};

Simple Mixing of Paradigms204
because it strains the architecture of the resulting system and makes the system
difÞcult to evolve. We need paradigms beyond inheritance, and in general we
need paradigms that go beyond what C++ can express. We take up that topic in
some measure in Section 7.6 and in broader measure in Chapter 9.

7.4 Design, Not Analysis

LetÕs step back and look at what we have accomplished. We used our domain
knowledge to our advantage. The coarsest architectural divisions came from our
intuition, supported by experience in compiler writing. (If you havenÕt written a
compiler, take my word for it.) Other architectures may have worked as well; most
problems have multiple satisfactory solutions.

7.4.1 Analysis, Architecture, or Design?

Do multi-paradigm design activities best Þt the traditional concept of analysis,
architecture, or design? It isnÕt analysis in the classical sense, since we are orga-
nizing domain knowledge, not acquiring it. We have considered structure and par-
titioning criteria, and we have focused on ÒhowÓ (in the structural sense), which
goes beyond ÒwhatÓ (in the behavioral sense). The same techniques we used here
to organize our domain knowledge can be used to help us organize new domain
knowledge as we acquire it. We can cluster the vocabulary items into related sub-
sets; this gives us strong hints about the domain structure. But the Þnal parti-
tioning still draws on our insight and intuition. In the best of all possible worlds,
the partitioning also draws on our foresight about how the system will evolve: A
good architecture encapsulates change. Here, again, experience and intuition are
the best guidesÑhistory is often the best predictor of the future.

If the Þrst level of architecture is a gross partitioning following application
domain criteria, the second level of architecture creates abstractions supported by
solution domain structures such as those supported by the programming lan-
guage. This may seem like an abrupt transition, but I believe both that it is neces-
sary and that it is a more direct transformation than it might Þrst appear to be.
C++ allows us to build our own abstractions. By building abstraction on abstrac-
tion, we often can raise the level of expressiveness to the same plane as the
domain vocabulary. In that sense, C++ is a suitable vehicle to capture and struc-
ture the domain vocabulary (though it may be the lowest reasonable level of
expression).

Consider the quote from Whorf that we hear so much these days, ÒLanguage
shapes the way we think and determines what we can express.Ó [Whorf1986] And
while contemporary linguistics brings the conjecture into doubt, it sill hold sway
in the classic view and for the computer programming languages largely
embedded in that worldview. We would have chosen different abstractions even

7.5 Another Example: Automatic Differentiation 205
at this second level of architecture (the intuitive domain partitioning is the Þrst
level) if the implementation language had been Smalltalk. We would have chosen
yet a different architecture if the language had been CLOS, and yet something else
if it had been APL. That is why it is important to shape the architecture around the
forms and foundations of the programming language. That we shaped the archi-
tecture around C++ constructs does not mean that C++ is the ÒbestÓ or ÒrightÓ
language. We might have derived a different architecture from commonality and
variability tables for Smalltalk.

Though multi-paradigm design shapes the architecture according to what the
language supports, that does not imply that it is a low-level or back-end tech-
nique. Language considerations and concerns touch the earliest design consider-
ations. Programming language is less a consideration of early design than of back-
end design and implementation, but that doesnÕt mean that it is absent at the high
levels of abstraction.

7.5 Another Example: Automatic Differentiation

Max Jerrell presents a simple but powerful design that provides automatic differ-
entiation of mathematical functions [Jerrell1989]. In this section, we look at the
domains of automatic differentiation and derive a design for such an application.
This application demonstrates effective use of design constructs that fall outside
object-oriented programming. It also illustrates the difÞculty in separating the
application and solution domains.

Computers have long been used to calculate and print the values of the deriva-
tive for mathematical functions across some range of independent variables.
These derivatives can in turn be used for other interesting applications, such as
Þnding local minima or maxima of the original function (because the derivative is
zero there). So letÕs assume that we are trying to solve this problem:

Compute the derivative of a complex function with as much design and pro-
gramming convenience as possible.

There are three classic techniques for calculating the derivative:

1. Calculate the derivative directly as the slope of the function at a
given point, dividing the rate of change in y by the rate of change in
x:

The programmer need not derive the formula for the derivative ahead of
time. The computer does all of the necessary work, and the derivative for
any function f could be captured in an algorithm encapsulated in a function

f ' x()
f x h+() f x()–

h

h 0→
lim=

Simple Mixing of Paradigms206
named fprime, perhaps using NewtonÕs method or a straightforward quo-
tient:

const double h = 0.001;

double differentiate(double f(double), double x) {
return (f(x + h) - f(x)) / h;

}

But the accuracy is closely related to the value of h. This technique may not
be suitable for functions with steep derivatives even when an iterative tech-
nique is used.

2. Let the programmer differentiate the function (for example, f) manu-
ally and encode the derivative as a new function fprime. For
example, for the code

double f(double x) {
double a = sin(x);
return a * a;

}

the programmer would write the following difference function:

double fprime(double x) {
return 2 * cos(x) * sin(x); // derivative of
 // sin squared

}

However, this makes the programmer do most of the work (working out the
derivatives), and it can be slow and error-prone, particularly for long equa-
tions.

3. The third alternative is to use automatic differentiation. Automatic dif-
ferentiation asks the programmer to specify simple derivatives; for
example, the programmer must tell the computer that the derivative
of sin is cos. But the computer can be ÒtaughtÓ the rules of calculus
for the basic operations of addition, subtraction, multiplication, and
division. For example, the derivative of a sum is the sum of the
derivatives. And we can use the data abstraction of the object para-
digm to handle composition. For example, for the expression

g(f(x))

we can let the computer calculate the derivative information for f(x)
and pass the result as an objectÑwith derivative information
includedÑas a parameter to the function g. The derivative informa-
tion can be passed as a gradient vector (Þrst derivative) and Hessian
matrix (second derivative); the formulae for calculating their con-

7.5 Another Example: Automatic Differentiation 207
tents are speciÞed by rules of calculus. The values from all func-
tionsÑincluding constant functions and simple parametersÑcan be
treated as a uniform type Value. (This superÞcial description leaves
out many important details, but this is a proven technique, substanti-
ated in the literature, as described in [Jerrell1989].)

We can noteÑalmost in passingÑthat each of these approaches leads to a dif-
ferent design, each of which is a solution to the same problem. This example illus-
trates that the structure of the design may not be obvious in the structure of the
problem alone. The solution structure emerges when we understand something of
the implementation strategy, such as the exact solution technique.

It is often convenient to capture these implementation considerations as part of
the problem statement. The original problem deÞnition was cast in the general
terms of calculating derivatives. But we might use the following alternative for-
mulation of the problem:

Compute the derivative of a complex function using automatic differentiation.

That seemingly pollutes the problem statement with solution concerns. WeÕd
like to defer solution concerns because binding them prematurely can constrain
design options. But if the design options radically change the structure of the
problem, they should be made part of the problem. There are many such solution
choices that are better treated as requirements: the choice between centralized and
distributed processing, the choice between implementation languages, the choice
between operating systems or scheduling regimens, and many others. Unlike
most methods, multi-paradigm design encourages designers to adopt this impor-
tant stance.

We wish to do a software design for an automatic differentiation program: Find
the domains, establish their parameters of variation, choose the appropriate para-
digms, and write the code.

To Þnd the problem subdomains, we can think of the family groupings that
appear in the problem deÞnition shown in Figure 7.6. Basic operations also form a
family; a major commonality of this family is that their derivatives can be
mechanically derived without too much effort. Do other functions (such as,

) form a family? In automatic differentiation, we treat them

Figure 7.6: Automatic differentiation domain vocabulary.

Value: An abstraction that represents an
expression, its value, and its partial
derivatives, at a speciÞc ordinate value

Basic operations: One of the operations
*, –, +, /

Degree: The solution has a different
structure for problems of different
degree (in particular, the shape of the
matrices changes)

f x() x()sin x()cos+=

Simple Mixing of Paradigms208
as part of a larger family called VALUE. All members of the VALUE family share the
same structureÑmatrices and values that capture their stateÑand they share the
same external behavior common to any algebraic expression. Last, there is a
parameter of variation, DEGREE, that drives the structure of the other two families.
We treat this parameter of variation as a subdomain in its own right, consistent
with the reasoning of Section 9.1.

7.5.1 Basic Operations Domain

Table 7.2 shows the analysis for the subdomain BASIC OPERATIONS. These are the
ÒfunctionsÓ (addition, subtraction, multiplication, and division) that operate on
two argumentsÑwhich may be functions, scalars, constants, or other VALUEsÑfor
which calculus provides formal differentiation rules. Since these functions are so
commonly used and their derivatives can be regularized and because they are
built-in C++ operations, we can factor them out as a family of common, expressive
operations.

7.5.2 Degree Domain

An algebraic expression contains one or more independent variables. The degree of
the expression is the number of independent variables. We may differentiate an
expression with respect to any or all of the variables. Each such derivative is a par-
tial derivative with respect to the corresponding variable. Each member of the
BASIC OPERATIONS domain must know the degree of the system it is working on,
since it must differentiate its arguments with respect to each independent variable.
Thus DEGREE becomes a parameter of variation for the BASIC OPERATIONS domain.

Parameters of
Variation Meaning Domain Binding Default

Operation type
Algorithm

The algorithm that gen-
erates the derivative (and
value) varies with the
operation type

*, /, +, — Compile
time

None
Overloading

Degree of
equation
Structure,
Algorithm

The number of
independent
variables

Positive
integers

Compile
time

1
Global
constant

Table 7.2: Transformational analysis for domain BASIC OPERATIONS

(commonalities include arity, argument types, and return types)

7.5 Another Example: Automatic Differentiation 209
7.5.3 Value Domain

Automatic differentiation evaluation takes place in the same way as any other
algebraic evaluation. That is, the innermost subexpressions are evaluated Þrst, and
evaluation works outward as results are combined by operations higher in the
expression tree. In ordinary algebraic evaluation, the result of each subexpression
is a scalar value. In automatic differentiation, that result includes not only the
scalar value, but also the coefÞcients for the Þrst derivative of the expression (the
gradient matrix) and the second derivative (the Hessian matrix). This holds
whether the expression is constant, a scalar, one of the BASIC OPERATIONS, or an arbi-
trary user-deÞned function. These abstractions form a family, or domain, as well,
which weÕll call VALUE.

Table 7.3 shows the transformational analysis for subdomain VALUE. Notice that
the use of the Hessian and gradient matrices is an explicit commonality of this
subdomain. This is a bit of a surprise. If one steps back to consider other solution
alternatives, such as NewtonÕs method or manual differentiation, these matrices
are a variability against the broader background of the universe of differentiation
techniques. ItÕs an issue of scope. Here, we are concerned with families of abstrac-
tions within the domain of automatic differentiation, not the domain of differenti-
ation in general. Automatic differentiation depends on such matrices, and thatÕs
what makes VALUES an interesting domain.

If we had not chosen automatic differentiation in particular, the top-level
domain analysis itself would have been different. The subdomains would have
been different for NewtonÕs method than they are for automatic differentiation;
symbolic differentiation would be supported by yet another domain structure;
and so forth. The choice of solution technologies can alter the domain analysis;
this is a solid argument for iterative development. And this is particularly impor-
tant in new domains.

The Hessian and gradient matrices are a form of structural commonality,
thereby suggesting inheritance as an implementation technique. However, this
use of inheritance relates not at all to the interface of the base or derived classÑit
is done solely for the implementation commonalty. In this case, the astute C++
programmer might lean toward private inheritance or even a HAS-A relationship.
However, we deÞne the family members of the VALUE domain using public inher-
itance, anyhow, in order to capture the variations in algorithm (Table 7.3).

Figure 7.7 shows the variability dependency graph for the previous domains.
Note the ÒdomainÓ DEGREE. We donÕt think of DEGREE as a real domain; it simply
deÞnes the degree of the equation under study. But it is a parameter of variation
for the domains VALUE and BASIC OPERATIONS and an important aspect of the
design.

Simple Mixing of Paradigms210
The DEGREE domain is a simple numeric parameter. We might represent it as a
global C++ const int, which works Þne for a single system of equations. If we
are solving multiple systems of equations, we might scope the implementation of
each in its own class, each of which has its own value for the degree of the equa-
tion. LetÕs call the symbol NDegree:

const int NDegree = 3; // suitably scoped

The VALUE domain carries around the value and derivative matrices. We make
it a class, since it groups commonly related data items. The declaration looks like
this:

class Value {
friend Value operator+(const Value&, const Value&);
friend Value operator–(const Value&, const Value&);
friend Value operator*(const Value&, const Value&);
friend Value operator/(const Value&, const Value&);
public:

Value():

Parameters of
Variation Meaning Domain Binding Default

Calculation of
the value and its
derivatives
Algorithm

Each kind of value has its
own algorithm for calcu-
lating its value, its matrix
values, coefficients, and
so on.

Constants,
scalars, all
kinds of
functions

Compile
time

None
Inheritance

Degree of
equation
Structure,
Algorithm

The number of
independent variables

Positive
integers

Compile
time

1
Global
constant

Table 7.3: Transformational analysis for domain VALUES (Commonalities:
Includes the use of Hessian and gradient matrices, a representation of the

current value, and most behaviors)

Figure 7.7: Variability dependency graph for automatic differentiation.

Basic
operations

Degree
(number of

independent
variables)

Values

7.5 Another Example: Automatic Differentiation 211
gradient(NDegree),
hessian(NDegree, NDegree) { }

operator double() const { return value; }
protected:

double value;
vector<double> gradient;
matrix<double> hessian;

};

The friend relationships appear only to grant access permission to the
common operations.

BASIC OPERATIONS uses straightforward overloading, with the operator itself (+,
–, /, or *) being the parameter of variation. We hand-code the algorithms that vary
according to the operators, and the compiler selects the appropriate algorithm
from context at compile time. The code for the basic operations looks like this:

Value operator+(const Value &x, const Value &y) {
Value f;
f.value = x.value + y; // operator double() eliminates

 // the need to say y.value
for (int i = 0; i < NDegree; i++) {

f.gradient[i] = x.gradient[i] + y.gradient[i];
for (int j = 0; j < NDegree; j++) {

f.hessian[i][j] = x.hessian[i][j] +
 y.hessian[i][j];

}
}
return f;

}

Each family member must compute not only the (scalar) return value but also
its associated gradient and Hessian matrices. It computes these results from the
(scalar) values and Þrst and second derivative matrices of its operands. Here are
more examples:

Value operator*(const Value &x, const Value &y) {
Value f;
f.value = x.value * y;
for (int i = 0; i < NDegree; i++) {

f.gradient[i] = x.gradient[i] * y + x *
 y.gradient[i];
for (int j = 0; j < NDegree; j++) {

f.hessian[i][j] = x.hessian[i][j] * y
 + x.gradient[i] * y.gradient[j]
 + x.gradient[j] * y.gradient[i]
 + x * y.hessian[i][j];

}
}
return f;

Simple Mixing of Paradigms212
}

Value operator/(const Value &x, const Value &y) { }

Value operator–(const Value &x, const Value &y) { }

SpeciÞc primitive functions can be added as the application requires them.
They, too, take the function (cos, sin, and so on) as the parameter of variation and
are selected by the compiler from context at compile time. Here is an example:

Value cos(Value &x) {
Value f;
f.value = cos((double)x);
double fu = –sin((double)x);
double fuu = –f;
for (int i = 0; i < NDegree; i++) {

f.gradient[i] = fu * x.gradient[i];
for (int j = 0; j < NDegree; j++) {

f.hessian[i][j] =
 (fu * x.gradient[i] * x.gradient[j]) +
 (fuu * x.hessian[i][j]);

}
}

}

We can write more complicated expressions in their natural algebraic form, for
example:

Value w = exp(t) * cos(omega * t);

which uses a suitably deÞned exp and cos (as previously) function and (twice)
uses the overloaded operator*. A framework developer might write code for basic
operations, including the four arithmetic functions and other basic functions.
Those done, the framework user can write expressions such as the previous oneÑ
ordinary C expressions, which now have the intelligence to differentiate them-
selves.

The reference ([Jerrell1989]) shows how to use such a design for function mini-
mization and explains how the design supports other applications.

This design isnÕt object-oriented. Multi-paradigm design helped identify
appropriate solution techniques such as overloading that capture important
abstractions of the problem. Many of these ÒproblemÓ abstractions foresee the
solution structure. That is, it would be difÞcult to Þnd a single solution structure
well-suited to automatic differentiation, NewtonÕs method, and manual tech-
niques.

Further multi-paradigm techniques can take this example even further. Using
negative variability, implemented with techniques such as template specializa-

7.5 Another Example: Automatic Differentiation 213
tion, the code could be optimized for the special case where the equation degree is
1, for example.

7.5.4 Evolving the Design

The most important goal of domain analysis is to support reuse and minimize evo-
lution cost. Good design anticipates evolution; good structure accommodates
change gracefully. In a good structure, the parameters of variation express what is
likely to change.

In this design, there are two levels of reuse. Many users reuse this framework
to evaluate the values and derivatives of arbitrary algebraic expressions. New
expressions can be written and evaluated without changing any of the framework
code on the previous page. We may also want to change the framework itself,
ÒteachingÓ it new facts of calculus. It should be convenient to make those changes,
too.

There are parameters of variation for several subdomains in this design. The
design anticipates change in operation type (for the primitive operators), algo-
rithm (for non-built-in operations and functions), and degree. We should be able
to change the degree of the system of equations easily. We can, through one global
parameter. And we should be able to change algorithms (and, in this case, add
algorithms) to calculate the values and derivatives of new functions (for example,
if we wanted to add tan for trigonometric tangent). We also should be able even
to add a new primitive function and the deÞnitions for its computation and deriv-
ative.

LetÕs assume we want to deÞne the semantics of the built-in operator^ to mean
exponentiation. (Of course, we canÕt add operators that the C++ grammar doesnÕt
understand, and for any built-in operations, we must live with the precedence
and association rules those operators obey for C++.) ItÕs a relatively straightfor-
ward changeÑwe just need to add the function to the framework:

Value operator^(const Value &x, const Value &y) {
Value f;
f.value = pow(x.value, y);
for (int i = 0; i < NDegree; i++) {

f.gradient[i] = y * x.gradient[i];
for (int j = 0; j < NDegree; j++) {

f.hessian[i][j] = x.hessian[i][j] * y
 + x.gradient[i] * y.gradient[j];

}
}
return f;

}

Simple Mixing of Paradigms214
7.6 Outboard Paradigms

It is unreasonable to expect a single programming language to capture all conceiv-
able analysis abstractions. General-purpose languages such as C++ are broad, but
not deep. Some problems are served well by speciÞc, well-understood paradigms
that go beyond those supported by C++. Databases and parser generators are
examples of tools that capture important design constructs in an implementation
technology. The wise designer avoids forcing such architectural constructs into
C++ features, but instead uses the right tool for the right job.

We could construct a commonality and variability analysis for all such tools in
the designerÕs toolkit. Multi-paradigm analysis could easily be extended to Þnd
the best Þt between an application domain analysis and the available solution
domains. Here, we leave such an approach as an exercise to the readerÑor to the
next Ph.D. student looking for a thesis topic. Such an exhaustive analysis would
be, well, exhausting in practicality. Just as we relied on experience and intuition to
divide problems into sensible domains, so we rely on experience and intuition to
select the right paradigm for those domains.

LetÕs return to the compiler example from Section 7.3. One of its domains is
parsing. We could do a commonality analysis of the vocabulary of parsing (pro-
ductions, actions, reductions, targets, and so on) and then look for matching pat-
terns of commonality and variability in the C++ solution domain analysis. With
luck, we would fail to Þnd a match. If we were unlucky enough to coerce the anal-
ysis to match, we would have ÒfoundÓ a way to design parsers using the design
paradigms that C++ supports. We also will have missed the opportunity to use
tools such as yacc and bison, which are perfectly suited to the problems, com-
monalities, and variabilities of this domain.

The general design strategy, then, is to divide the domain into subdomains
according to the tools and techniques that are suited to the problem. C++ alone
often will not be enough. We use ÒobviousÓ techniques like parser generators,
databases, existing GUI frameworks, and state machines as they apply and use
multi-paradigm analysis for the remaining subdomains.

7.7 Management Issues

The impact of paradigms and technologies on project success is small relative to
that of management policies [Conway1968], [Fraser+1995], [Hill+1995],
[Fraser+1996], [Fraser+1997], [Artim+1998]. This thesis certainly canÕt do justice to
management practices; one might look to references such as Goldberg and Rubin
[GoldbergRubin1995] for more holistic guidance. Other outstanding sources
include [McConnell1997] and [Cockburn1998]. Some of the activities and decision
points of multi-paradigm design have clear project management overtones, and
we touch on just a few of those closely related issues in this section. Related topics

7.7 Management Issues 215
are covered elsewhere in the thesis: Section 2.2.2, ÒDesign EpistemologyÓ;
Section 2.5, ÒReviewing the Commonality AnalysisÓ; Section 4.1.4, ÒThe Activities
of Domain AnalysisÓ; and Section 4.3.2, ÒThe Activities of Subdomain Analysis.Ó

7.7.1 OccamÕs Razor: Keeping Things Simple

There are no prizes for using the most paradigms. A paradigm helps deÞne a cul-
ture through its vocabulary and world-view; a shared culture is an invaluable com-
ponent of a successful development team. A development culture can support only
a small number of paradigms and tools. On the other hand, it is important to use
the right tool for the right job and to avoid being blind-sided by the stereotypes of
a single paradigm. Successful projects balance these two concerns.

Try as they might, organizations rarely avoid becoming dependent on the idio-
syncrasies of individual tool versions. That sometimes makes it hard to upgrade
the version of one tool without reworking code in the domain of other tools. If the
tool inventory is small, the chances increase that a project can move forward to
accommodate change in the tool set. If the number of tools (or paradigms or
AOLS or other languages) is large and if the tools introduce coupling between
domains (and hence to other tools), then it becomes difÞcult for the project to
track advances in technology.

My experience working with organizations has borne out a rule of thumb that
suggests that organizations can rarely manage more than three Òmajor changesÓ
at once. A Òmajor changeÓ may be a new design paradigm, a new management
paradigm, a new hardware platform or operating system, a new language, or a
new way of working with customers. Once a project is established, it can accom-
modate gradual change. The technology choices that shape the long-term system
architecture usually come early in the project and usually must be considered and
introduced together. The obvious conclusion is that the number of paradigms
should be kept small. As time progresses and the system market expands, projects
can explore new tools, technologies, and paradigms, particularly if the projects
can localize their impact (to a single subdomain, or organization, or processor, or
other domain of some local context). New paradigms should be introduced grad-
ually and only against a relatively stable base. Another good rule of thumb is not
to introduce new paradigms to a system until itÕs passed its third release. And we
should remember the rule of thumb that limits the number of concurrent changes
to threeÑand the lower, the better.

One strength of multi-paradigm design as presented here is that it strives to
use a single, general-purpose implementation platformÑthe C++ programming
languageÑas the delivery vehicle for a host of paradigms. This greatly minimizes
the shock of introducing those paradigms that C++ can express: objects, abstract
data types, procedures and generic procedures, parametric functions and tem-
plates, and so on. It is tempting, and perhaps possible, to count all of these para-
digms as a single paradigm when considering the three-changes rule of thumb.

Simple Mixing of Paradigms216
But it cannot help with the paradigms outside the reach of C++: the kinds of
multi-threaded execution one Þnds in Java, the rule-based abstractions of Prolog,
or the functional abstractions of ML. Techniques exist to emulate these styles in
C++ (see, in particular, the latter chapters of [Coplien1992]). Furthermore, there
are practical examples of C++ language extensions to support other paradigms
such as rule-based programming [Litman+1997] that retain cultural compatibility
with C++. If the programming staff is unusually expert in C++, such paradigms
can be accommodated using C++ constructs and can be thought of as not
assaulting the three-change limit. But such organizations are rare, perhaps one out
of one hundred. (It is probably best for you not to think of yourself as belonging to
such an organization, in spite of the human tendency that tugs each of us to that
misplaced conclusion.)

Keeping a small tool inventory reduces cost (of tool procurement or licensing).
It also reduces training time (and cost) and the cost of other support infrastruc-
ture.

Once a project has been divided into subdomains (see the next section),
OccamÕs Razor may yield insights that lead to compromises either in the selection
of paradigms or tools. For example, a system might have Þve domains, four of
which are well-suited for implementation in Java (perhaps for concurrency) and
one of which is better-suited for implementation in C++ (perhaps for its efÞ-
ciency). Unless there is a compelling case for the outlier, the project would be
better off reducing its tool inventory and adapting the design of the last subdo-
main so that it can Þt a Java implementation.

7.7.2 Divide and Conquer

Most of us are culturally conditioned to attack complexity with a separation of con-
cerns. One measure of a maintainable architecture is the degree to which it can be
treated as a collection of independent parts. Such architectures can be maintained
by teams that are smaller and more independent than if the same code were orga-
nized under a monolithic structure.

Experience, market familiarity, and intuition are often the best foundations for
a good domain partitioning. We should try to partition a problem into subprob-
lems that have independently deliverable solutions.

Once the system is subdivided, the designer can evaluate each subdomain for
the paradigms best-suited to its structure. It is possible, and even common, for all
subdomains to use the same paradigm. That would be a fortuitous result that
serves OccamÕs Razor well. But a project should Þrst formulate its subdomain par-
titioning, then choose the paradigms for each subdomain, and then choose the
tools to support those paradigms. At that point, enter OccamÕs Razor to audit
whether the project plan is tractable, reasonable, and cost-effective. The whole
process is iterative, not only at the outset of a project, but conceivably over its life-
time.

7.7 Management Issues 217
Capturing the Big Picture

Perhaps the hardest question in a multi-language environment is, how do we rep-
resent the overall architecture? There still must be a project-level architecture to
deÞne the interfaces and protocols between the subdomains. If part of the system is
in C++, and part in C, and part in Smalltalk, and part in an AOL, what is the lan-
guage of the architecture? There exists an extensive body of literature on architec-
tural deÞnition languages that aspire to Þll this need for a language (e.g.,
[Shaw1994]). However, such languages have not yet achieved wide acceptance in
the industry. ItÕs dangerous to depend on a design notation alone, since notational
artifacts are often limited in their expressive power and donÕt track product evolu-
tion well unless they are tied into the code-generation process. One can represent
the overall architecture at the lowest common level of technology, close to C func-
tion bindings, but then most interesting system structure ceases to be explicit.

The most reasonable choice is to represent the architecture in the dominant pro-
gramming language of the project. If the project is primarily in C++ and the
project tools all support C++ linkage, then we capture the architecture in C++
header Þles. C++ can serve as the lingua franca for architectural dialogue, cov-
ering a multitude of paradigmsÑincluding procedures and templates.

Of course, this documentation is only one aspect of the architecture documen-
tation. Notations have a place in system development; more on this shortly.

Another alternative is to generate architectural interfaces from a CASE tool,
such as ObjecTime [Selic+1994]. CASE tools tend to suffer from poor linearity of
change. That is, a small change to the architecture may ripple through many inter-
mediate design artifacts, thus causing rework (or, at least, recompilation) of large
volumes of code. With few exceptions, CASE tools donÕt express multiple para-
digms wellÑmost of them rally around a single paradigm. They often lead to a
false sense of security, too. Few domains are regular enough to beneÞt from auto-
matic code generation. When the designer does Þnd such domains, itÕs wise to at
least consider building an AOL for its beneÞts of formal analysis and efÞciency
[Weiss+1999].

Meta-object protocols have the ßexibility to capture architectural structure and
in particular to support architectural change, but they have a similar problem as
CASE tools but at the opposite end of the spectrum. Being general and primitive,
they lack domain-speciÞc expression. They do not support intentionality as well
as other approachs.

As a last resort, the C language or a language such as IDL can almost always be
used to deÞne interfaces between system parts, since most technologies and tools
can interface with C. C is certainly not an ideal module deÞnition language, and it
lacks facilities to ßuently capture architectural abstraction. But because it is por-
table and efÞcient and can be interfaced to many tools and environments, it is a
practical and workable vehicle to formalize interfaces between system parts.

Simple Mixing of Paradigms218
Sometimes, we need to convert speciÞc data types to a portable representation
such as a character string; C language character strings can be directly accessed
from many languages.

Notations

A designer sometimes must use multiple notations. Databases are particularly
well-suited to tabular notations. Neither database notation nor object-oriented
notation should be compromised in the interest of appeasing the other. Where pos-
sible, isolate different notations to their own subdomain.

There are other development notations such as use cases [Jacobson+1992],
timing diagrams, natural language descriptions of nonfunctional requirements,
and formal speciÞcations that can serve a project well. Seminotational tools such
as CRC cards [Beck1993] build on the teamÕs domain expertise to converge on the
best structures for object-oriented designs. When we use multiple tools and tech-
niques, itÕs crucial to minimize the total number of tools, notations, and lan-
guages. Multiple languages help each part of a development team optimize their
expressiveness, but multiple languages can also get in the way of effective com-
munication between teams within a project. Training and cross-team membership
provide classic attacks on these problems, but the most effective solution is to
reduce the inventory of tools.

7.7.3 Beyond C++

While this thesis focuses on the paradigms supported by C++, the designer should
carefully consider other solution domain tools, including the following, each of
which addresses an important class of problems that are quite distant from the fun-
damental structures of C++:

¥ Database management systems

¥ GUI-builders

¥ Distributed processing frameworks

¥ Custom commercial languages such as Java Script

¥ AOLs crafted for the project

¥ . . .

Designers who overlook these tools by forcing all aspects of design into a C++
implementation have the satisfaction of reducing their tool inventory, but they
may miss substantial opportunities for design expressiveness, reduced develop-
ment cost, and maintainability. Some of these alternatives are programming lan-
guages in their own right; thereÕs nothing wrong with mixing multiple
programming languages. Vendors are realizing the importance of multilanguage

7.7 Management Issues 219
support more and more. Many C++ environments support linkages to Pascal and
FORTRAN; some Eiffel environments support linkages to C++; and most C,
Pascal, and FORTRAN programs can link to C++ using C language bindings (see
[Coplien1992], Appendix A).

When using multiple programming languages or tool sets, it is best to map the
languages closely to subdomains. Each language or tool set brings its own devel-
opment culture, and itÕs important to keep the cultures logically separate.

7.7.4 Domain Expertise

A fool with a tool is still a fool. A classic shortfall of contemporary software devel-
opment is to expect the object paradigm to make up for immature domain knowl-
edge. This shortfall often builds on the naive view that objects are there just for the
picking, that there is a strong isomorphism between the problem vocabulary and
the classes of the solution. Multi-paradigm design goes beyond that naivet� by
more thoroughly exploring the solution domain space. And while multi-paradigm
design offers commonality and variability analyses as application domain tools,
those alone cannot make up for immature domain experience. System architects
and designers should understand the business thoroughly and should develop
early consensus on the scope of the problem. Object-oriented expertise canÕt rescue
you if the team lacks application domain expertise. Because multi-paradigm
design focuses explicitly on the application domain (as well as the solution
domain), it can make the designer aware of missing information, but it cannot
compensate for poorly developed expertise.

Solution domain expertise is also important. The success of a project when
using multi-paradigm design (indeed, any design) depends on competence with
and perhaps mastery of the individual paradigms employed. The techniques in
this thesis lay a foundation both for understanding those paradigms that are
easily described using commonality and variability and for understanding the
interaction between multiple paradigms in an implementation. But multi-para-
digm design is not as mechanical as commonality and variability tables suggest.
Good design always depends on taste, insight, and experience.

7.7.5 Systems Engineering and Process Issues

Complex things are complicated [Vlack1990]. Software is called on more and more
to solve complex problems. Simple solutions donÕt rise to the occasion; even if a
project struggles to deliver a Þrst release that delivers the agreed initial function-
ality, an architecture that cuts corners will make it difÞcult or impossible to enrich
the system or to extend its functionality under requirements changes.

Multi-paradigm design can express more complex designs than one can
express with objects alone. However, in general, there are no easy methodological
answers to these problems. There are two strategies necessary (but insufÞcient) to

Simple Mixing of Paradigms220
the success of complex projects: systems thinking, and iteration. Both of these are
beyond the scope of this thesis and, again, there is a strong body of existing litera-
ture that treats these topics [Seng�1990], [SwieringaWierdsma1992],
[Cockburn1998], [McConnell1997].

Consider the compiler example again. Assume that we dutifully follow the
wisdom of domain analysis. We are led to treat symbol table entries as a family.
We analyze commonalities and variations and Þnd that the object paradigmÑ
inheritance with virtual functionsÑis the best Þt. When we run the compiler we
Þnd that it spends so much time in symbol table manipulation that the virtual
function and memory allocation overhead causes the program to run several inte-
gral factors slower than we expected.4 We can refactor the design to use another
paradigm; for example, straightforward table lookup based on an explicit symbol
table entry type Þeld. Domain expertise often, but not always, foresees such pit-
falls. Iteration is an inevitable aspect of high-quality design.

To even consider iteration requires stepping outside of the worldview that the
design method (such as multi-paradigm design) established in the designerÕs
head. In this case, the designer is forced to choose between an elegantly maintain-
able structure and one that performs well. Some C++ constructs can help; friend
relationships between classes can break encapsulation to improve performance in
structured ways. But sometimes, the designer must revisit the basic design of an
entire domain. Performance is of course not the only ßy in the ointment; end user
needs, market factors, technology shifts, and a host of other factors can derail an
otherwise well-considered design. Such surprises are often an insult to the
designerÕs sense of omniscience and almost always lead to fear that comes from a
feeling of not being in control.

A system thinking perspective helps the designer develop humility appro-
priate to the complexity of complex designs [Seng�1990]. Seng� notes that in com-
plex systems, cause and effect are seldom close in time and space. Such problems
are difÞcult to address with any design, where ÒdesignÓ here carries the sense of
Òintent.Ó Deep domain expertise can help if it is available, but that is of less use in
greenÞeld domains. The developer must learn that the only constant is change,
that suprise is the joy of software development, and that systems thinking can
provide models to help the project survive.

Design is about tradeoffs in systems thinking. The Þeld of systems engineering
offers a powerful set of tools for managing design tradeoffs. HallÕs [Hall1962]
methodology offers processes and tools to guide the management of tradeoffs,
such as those that arise between structure and performance in the above example.

When system thinking becomes systemic in the organization, the organization
has learned a new culture and, in the best case, has learned how to learn. A

4Stroustrup relates a case where virtual functions slowed down one experimental compiler by a
factor of 25 [Stroustrup2000].

7.8 Summary 221
method like multi-paradigm design can ÒteachÓ one way of design, but it canÕt
teach people how to learn and, in particular, how to learn systems thinking. Sys-
tems thinking is less an issue of personal excellence than of organizational culture
development, which puts this issue squarely in management territory. Swieringa
and Wierdsma [SwieringaWierdsma1992] provide an excellent reference.

Domain engineering and reuse go together in much of the popular literature,
but reuse, too, is a systems thinking problem. Reuse is more an economic phe-
nomenon than a technological concern, and organizational issues dominate the
technological ones [Fraser+1997]. The system perspective on reuse is articulated
in a powerful and grounded way by Tracz [Tracz1995].

7.8 Summary

In this chapter, we went through an application domain analysis example,
showing how to derive a C++ design and implementation from a commonality
analysis. The Þrst step of analysis was to generate a vocabulary. The next step was
to divide the problem into subdomains, a process that drew heavily on the
designerÕs experience and intuition. The last step was a special case of simple
mixing, in which an individual subdomain offers a perfect Þt for a single special-
ized paradigm and the tools that support it.

Design problems arenÕt always this easy. The examples in this chapter were
contrived to produce a design in which each domain could cleanly be imple-
mented in a single paradigm. In such cases, the choice of subdomains and para-
digms is trivial. In the next chapter, we look at the more general case of
inextricably interwoven paradigms within a single domain.

Simple Mixing of Paradigms222

Chapter 8

Mixing Paradigms Within a
Domain
This chapter introduces notations and techniques to help combine paradigms
within a domain and to carry design through to a C++ implementation. The
chapter is based on a running text-editor example.

8.1 Method and Design

Frameworks usually capture the designs of multiple, tightly coupled subdomains
(see the discussion of Section 4.3.1). Most design methods apply the principles of a
single paradigm to minimize coupling between software modules. Conventional
design techniques break down when coupling is inevitable or advantageous. Cou-
pling and cohesion properties can sometimes be improved by using a distinct par-
adigm for each domain; Chapter 7 presented techniques that support that
approach. But sometimes, we can build the most cohesive and decoupled abstrac-
tions by combining multiple paradigms within a domain. Some of the combina-
tions are simple and almost idiomatic, such as this common combination of the
procedural paradigm and templates:

template <class T>
bool sort(T elements[], int nElements) {

. . . .
}

or this combination of templates and object-based abstraction:

template <class T> class List {
public:

void put_tail(const T&);
T get_head();
. . . .

Mixing Paradigms Within a Domain224
};

We want to know how to combine other C++ features to meet the needs of the
application by using commonality and variability to point the way. Good analysis
can suggest combinations of paradigms beyond those that are idiomatic.

Some designs defy clean modularization even with the partitioning techniques
of multi-paradigm design described in Chapter 7. Intuitive business domains may
exhibit mutual dependencies, thereby leading to coupling between the modules
of the design. This chapter explores several attacks on circular dependencies
between domains.

8.2 Commonality Analysis: What Dimension of
Commonality?

We have now examined both commonality and variability, in both the application
and solution domains. We use domain analysis to Þnd commonality in application
subdomains, broadening from the abstractions of the application at hand to the
abstractions of the business in general. In the solution domain, we look for com-
monalities in the available technologies and paradigms. We have taken C++ and its
paradigms as our solution technology. We can broaden the analysis to accommo-
date other solution domains if we wish.

Design is the process of aligning the application domain structures with suit-
able solution domain structures. Said another way, we must align the commonali-
ties and variabilities of the problem with those that constrain the solution.
Chapter 7 presented the simple case in which the mapping is one-to-oneÑa single
paradigm dominated each of the subdomains chosen by the designer.

No single partitioning can capture all of the important structure of a complex
system. Complexity is proportional to the number of distinct, meaningful parti-
tionings (or views) of a system. In some systems, not only is the object paradigm a
poor Þt, but any single paradigm is a poor Þt. ItÕs difÞcult to motivate this point,
since such a proof must demonstrate that a certain kind of architecture cannot
exist. However, assume for a moment that the object paradigm might be a great Þt
for some system you know of. There are programmersÑmaybe yourselfÑwho
had probably built similar systems before the advent of the object paradigm. At
the time, those programmers would have combined paradigmsÑperhaps data
abstraction, data-function modularity, and function pointersÑto solve the design
problem. Such systems certainly exist today, and there are some systems for which
no single paradigm will ever adequately express the commonalities and variabili-
ties of the system structure.

Sometimes we are lucky enough that the paradigm partitioning falls along the
same lines as the intuitive subdomain partitioning. In such cases, the techniques
of Chapter 7 apply perfectly wellÑwe apply paradigms at the individual subdo-

8.2 Commonality Analysis: What Dimension of Commonality? 225
main or subsystem level instead of at the system level. But we sometimes Þnd that
we canÕt further subdivide the intuitive subdomain partitioning by using just one
paradigm per subdomain. Several paradigms must be used together to capture
and manage such complexity.

Consider the design of a general Þle access abstraction. A system design may
include indexed sequential Þles, blocked Þles, and other Þle types. These have
common behaviors but different implementations, which suggests inheritance as
an implementation technique. But individual Þle abstractions may also vary in the
character sets they support: char, unsigned char, wchar_t, or a user-deÞned
character set type. This variability shows up in the interfaces of the Þle family
members. This is a different kind of variability, a variability in interface against a
backdrop of a common implementation structure; this suggests templates. We
could perhaps handle this using the techniques of Chapter 7 if the two application
variabilities aligned with each other well. For example, the implementation is
straightforward if all indexed sequential Þles use wchar_t and all others use char.
But the character set partitioning doesnÕt fall along the same boundaries as the Þle
type partitioning. Rather, the character set and Þle type can be mixed in any com-
bination.

We must somehow weave these two paradigms together. Neither paradigm
alone captures the variability necessary to generate all family members. The
designer must generate family members from a genetic combination of the
parameters of variation. We will explore this in Section 8.3 using the TEXT BUFFER

subdomain from a text editor design. TEXT BUFFERs form a family, but the family
members vary in complex ways that reßect complex dependencies on parameters
of variation. We canÕt use the technique of Chapter 7 to Þnd a single paradigm
that captures its structure. Partitioning the subdomain into smaller parts doesnÕt
help much either (though, because the lack of a counterexample is difÞcult to
prove or demonstrate, the rationale is left as an exercise to the reader). We can
identify the paradigms that make sense and can develop hints for applying them.

That accomplished, we will move on in Section 8.4 to a more advanced
problem: multi-paradigm design for multiple, codependent subdomains. In that
section, we will step back and study the relationship between two domainsÑTEXT

BUFFERs and OUTPUT MEDIUMÑthat impinge on each othersÕ designs. Ideal subdo-
mains are decoupled from each other. We know that domains are never completely
independent from each otherÑafter all, their code works together to do the work
of a system as a whole. The coupling between any pair of domains can vary
widely even when we make the best use of partitioning techniques. Sometimes
the coupling is so strong that further partitioning into subdomains would be arbi-
trary. We need a way to manage the relationship between tightly coupled subdo-
mains when our intuition suggests that they should each retain their own
identities so as to serve long-term maintenance, even when tightly coupled to
other subdomains.

Mixing Paradigms Within a Domain226
8.3 Multiple Dimensions of Variability in One Set
of Commonalities

We can draw examples from the design of a text editor to illustrate the complexities
of multi-paradigm design that go beyond the simplistic problem/solution pairs of
Chapter 7. In this section, we will examine the TEXT BUFFER subdomain in isolation
to show how to use multiple paradigms within a single domain.

8.3.1 Variability Analysis

We form and describe abstractions according to their commonalities. Here, we look
at TEXT BUFFERs, a family of abstractions in a text editor that maintain the logical
copies of the Þle contents during editing. (Actually, TEXT BUFFERs are a generaliza-
tion of TEXT EDITING BUFFERs (Chapter 3), suitable to many applications beyond text
editing.) A text Þle may reside on disk; the text buffer represents the state of the
text Þle to the editing program. It caches changes until the user directs the editor to
dump the text buffer into the disk Þle. A simple TEXT BUFFER would maintain a pri-
mary storage copy of the entire Þle. A more sophisticated TEXT BUFFER may imple-
ment a paging or swapping scheme to economize on primary memory while
maintaining the illusion of a complete resident copy of the disk ÞleÕs contents. Yet
more sophisticated TEXT BUFFERs might support rollback, simple versioning
schemes, or concurrent multiuser editing.

These abstractions form a family. What makes this a family, or subdomain, is
that all of the variants share the same behaviors. That is, they can yield data from
an editing image or replace data in an editing image on demand. All text buffers
share some structure as well: a record of the number of lines and characters in the
editing image, the current line number, and so on.

Family members are distinguished by their respective values for parameters of
variation. We capture family variabilities with the variability table in Table 8.1.
The Þrst column in the table lists the parameters, or ranges, of the variabilities.
The second column is explanatory. The third column lists the values that can be
taken on over the range. The fourth column lists binding times, and the last
column speciÞes the default.

As we move into multi-paradigm design, the overlap between the domains
and ranges of the parameters of variation becomes increasingly important. The
variability dependency graphs Þrst introduced in Section 7.3.2 help us visualize
such dependencies. We can build such a graph, shown in Figure 8.1, directly from
information in the variability analysis table. The arrows originate at domain
abstractions of interest and terminate on bubbles representing the parameters of
variation. The graph may look like a hobby horse at this point, but it will serve us
well in a bit.

8.3 Multiple Dimensions of Variability in One Set of Commonalities 227
8.3.2 Expressing the Commonality and Variability in C++

We discussed variability in some detail in Chapter 3. Now that we understand how
to express variability against a background of commonality, we can look at how to
express the design commonality and variability by using C++ constructs. We do
this by aligning the results of the TEXT BUFFER variability analysis with the abstrac-
tions that a designer can express in C++.

Commonalities characterize a family; variabilities differentiate family mem-
bers. C++ can express several forms of commonality and variability. We can
choose the appropriate C++ language constructs by looking at the design com-
monalities and variabilities, as in Table 8.1, and matching them with the common-
alities and variabilities of C++ as summarized in Table 6.1 and Table 6.2. That
table maps the dimension of commonality, the dimension of variability, and the
binding time onto a C++ language feature. Binding times express the earliest
phase of the coding cycle in which the parameter of variability can be bound. The
instantiation column (in Table 6.1 and Table 6.2) tells whether multiple instances

Parameters of
Variation Meaning Domain Binding Default

Output medium The formatting of text
lines is sensitive to the
output medium

Database,
RCS file,
TTY, UNIX
file

Run time UNIX file

Character set Different buffer types
should support
different character sets

ASCII,
EBCDIC,
UNICODE,
FIELDATA

Source
time

ASCII

Working set
management

Different applications
need to cache different
amounts of Þle in
memory

Whole Þle,
whole page,
LRU Þxed

Compile
time

Whole Þle

Debugging
code

Debugging traps
should be present for
in-house development
and should remain
permanently in the
source

Debug,
Production

Compile
time

Production

Table 8.1: Text Editor Variability Analysis for Commonality Domain:
TEXT BUFFER (Commonality: Behavior and Structure)

Mixing Paradigms Within a Domain228
of the same abstraction are allowed; if so, variability in state is presumed. The
Þnal column denotes the best C++ construct for a given commonality, variability,
and instantiation.

We can look at the structural needs captured in Table 8.1 and align them with
the structural expressions captured in Table 6.2 and, to a lesser degree, Table 6.1,
to see what C++ language features are most suitable for different parts of the
design. We capture these insights on an annotated version of the variability anal-
ysis table, resulting in Table 8.2. We have added three kinds of annotations (distin-
gushed by italicized typeface). First, we remember that the commonality domain
was TEXT BUFFERs. We recognize that text editing buffers are characterized by com-
monality of operations (behavior) and structure. Second, in the ÒParameters of
VariationÓ column, we characterize the range by the variability categories in the
C++ commonality table. By looking at the variability of the range variable and
reading the binding time directly from the table, we can select a suitable technique
from the C++ commonality table. That technique is written as an annotation for
the ÒDefaultÓ column of the table (not that it belongs there, but to save columns in
the table).

The commonality analysis suggests that we use virtual functions for output
(because we need different functions for different values of the parameter of vari-
ability OUTPUT MEDIUM). Inheritance is necessary for variability in the structure
and gross algorithms, and templates are appropriate for the compile-time depen-
dency on the character set.

Figure 8.1: Variability dependency graph for the TEXT BUFFER

commonality analysis.

algorithmfine algorithm

structure and
algorithm

type

common structure
and algorithm

OUTPUT MEDIUM:

TEXT BUFFER:

WORKING SET MAN-

AGEMENT:

CHARACTER SET:

DEBUGGING

8.3 Multiple Dimensions of Variability in One Set of Commonalities 229
We usually think of inheritance as an Òis a kind ofÓ relationship; inheritance
differentiates between kinds of text buffers in this design. We may informally talk
about Òpaged text buffersÓ and ÒLRU text buffers,Ó thereby suggesting that we
think of the memory management algorithms as the primary differentiators of
family members. The row in Table 8.2 labeled ÒWorking set managementÓ might
as well have been labeled ÒText buffer type.Ó This is often the case when inherit-
ance is used. In fact, we probably use inheritance too often on the mistaken
assumption that there is a Òprimary differentiator.Ó

The resulting code might look like this:

template <class CharSet>
class OutputFile {
public:

virtual void write(
 const class TextBuffer<CharSet> &);
. . . .

};

template <class CharSet>

Parameters of
Variation Meaning Domain Binding

Default
Technique

Output medium
Structure,
Algorithm

The formatting of text
lines is sensitive to the
output medium

Database,
RCS file,
TTY, UNIX
file

Run time UNIX file
Virtual
functions

Character set
Nonstructural

Different buffer types
should support
different character sets

ASCII,
EBCDIC,
UNICODE,
FIELDATA

Source
time

ASCII
Templates

Working set
management
Algorithm

Different applications
need to cache different
amounts of Þle in
memory

Whole Þle,
whole page,
LRU Þxed

Compile
time

Whole Þle
Inheritance

Debugging
code
Code
fragments

Debugging traps
should be present for
in-house development
and should remain
permanently in the
source

Debug,
production

Compile
time

Production
#ifdef

Table 8.2: Text Editor Transformational Analysis for Commonality Domain:
TEXT EDITING BUFFERS

Mixing Paradigms Within a Domain230
class TextBuffer {
public:

TextBuffer(const OutputFile<CharSet> &);
basic_string<CharSet> getLine(LineNumber) const { }
void insertLine(LineNumber, const string&) { }
void deleteLine(LineNumber) { }
. . . .

};

template <class CharSet>
class WholeFileTextBuffer: public TextBuffer<CharSet> {
public:

. . . .
WholeFileTextBuffer(const OutputFile<CharSet> &);
basic_string<CharSet> getLine(LineNumber l) const
 { }
void insertLine(LineNumber l,
 const basic_string<CharSet>&s){

. . . .
}
void deleteLine(LineNumber l) { }
. . . .

};

template <class CharSet>
class LRUTextBuffer: public TextBuffer<CharSet> {
public:

. . . .
LRUTextBuffer(const OutputFile<CharSet> &);
basic_string<CharSet> getLine(LineNumber l) const
 { }
void insertLine(LineNumber l,
 const basic_string<CharSet>&s){
#ifndef NDEBUG

. . . .
#endif

. . . .
}
void deleteLine(LineNumber l) { }
. . . .

};

A cursory comparison of the code with the transformational analysis table
should be enough to convince the experienced C++ designer that both represent
the same design. However, we offer no mechanical transformation from the table
to the code. While the coding is often straightforward, good designers often know
when to express the transformation through design patterns or idioms that are
difÞcult to codify. By not mechanizing the transformation, multi-paradigm design
leaves room for this creative insight.

8.4 Codependent Domains 231
8.4 Codependent Domains

Section 7.1.2 discussed the MVC example, focusing on the dependencies between
pairs of this classic human interface design. We discovered circular dependencies,
with CONTROLLER depending on the structure of VIEW for knowledge of the screen
layout (is the mouse cursor over a button?) and VIEW depending on CONTROLLER to
support functionality such as highlighting. We say that these domains are codepen-
dent. The techniques of Chapter 7 and Chapter 8 arenÕt powerful enough to handle
such circularity. In fact, it is difÞcult to regularize solutions for circular dependen-
cies. However, most solutions depend on our using one paradigm (for example,
inheritance) for one direction of dependency and another paradigm (such as tem-
plates or run-time selection through pointers) in the other direction. We outline
some attacks on this problem in Chapter 9, further developing the text editing
example.

8.5 Summary

This chapter introduced multi-paradigm design techniques that capture the interac-
tion between multiple paradigms within a single domain. Multi-paradigm design
can help the designer Þnd the paradigms that apply to a given domain, while
leaving the designer free to weave those paradigms using individual or project-
wide styles and conventions.

In Chapter 9, weÕll see that multi-paradigm design can also identify recursive
design dependencies between ÒindependentÓ domains. Such designs are difÞcult
to regularize and depend on experience with the implementation technology and
potentially with the domain of application.

Mixing Paradigms Within a Domain232

Chapter 9

Codependent Domains
This chapter generalizes domain engineering concepts so that we can reason about
multiple domains, implemented in potentially multiple paradigms, together. As
before, we carry design through to a C++ implementation. The chapter uses the
running TEXTBUFFER example, and also includes a running Þnite-state machine
example.

9.1 Codependent Domains

Section 7.1.2 discussed the MVC example, focusing on the dependencies between
pairs of this classic human interface design. We discovered circular dependencies,
with CONTROLLER depending on the structure of VIEW for knowledge of the screen
layout (is the mouse cursor over a button?) and VIEW depending on CONTROLLER to
support functionality such as highlighting. We say that these domains are codepen-
dent. The techniques of Chapter 7 and Chapter 8 arenÕt powerful enough to handle
such circularity. In fact, it is difÞcult to regularize solutions for circular dependen-
cies. However, most solutions depend on our using one paradigm (for example,
inheritance) for one direction of dependency and another paradigm (such as tem-
plates or run-time selection through pointers) in the other direction. We outline
some attacks on this problem in the remainder of this chapter, further developing
the text editing example.

9.1.1 Generalizing Domain Analysis to Multiple Domains

Traditional domain analysis uses scope, commonality, and variation to characterize
individual domains. This triad of scope, commonality and variation is called SCV
analysis ([Coplien+1998], [Czar1999]). The goal of SCV analysis is to create formal-

Codependent Domains234
isms that support the characterization and generation of families of products. In
multi-paradigm design, we focus on families at the subdomain level.

This technique works well when working with individual independent
domains. We can pronounce a problem to comprise a single domain if we wish;
however, that leads to unwieldy domain vocabularies and poor granularity of
reuse. Dividing into subdomains seems to be the answer. However, more granular
architectures run the risk of cutting important ties between the resulting parti-
tions: after all, we know that subdomains canÕt be completely independent or they
couldnÕt work together at all.

Therefore, it is important to characterize dependencies between domains for
successful domain analysis. Such considerations have become a major thrust of
contemporary software research. Aspect-oriented programming (AOP)
[Kiczales1997] factors out an optionable domain (called an aspect) into a develop-
ment environment where it can be considered on its own merits. Performance and
reliability are examples of aspects handled by AOP. The interface between the
aspectÕs code, and the code for the rest of the system, is managed by a tool called a
weaver. Generative programming [Czar1999] takes this a step further with
devices like active libraries, multi-level languages, and application generators that
tie everything together. (See the slightly more elaborated discussion in
Section 1.10.)

Unlike traditional domain analysis, multi-paradigm design addresses this
problem by making parameters of variation full-ßedged domains. Traditional
domain analysis does not do this. In traditional domain analysis, each domain
generates a set of family members controlled by selected substitutions for a set of
parameters of variation. The parameters of variation are bound to values that are
outside the domain, and that can be viewed as having existence independent of
the domain. In multi-paradigm design, the parameters of variation can be bound
to other domains.

So whereas we can characterize traditional domain analysis as SCV analysis,
multi-paradigm technique also accommodates relationships between domains, and
we speak of SCVR analysis. The term owes to [Czar1999]. But unlike [Czar1999],
which buries ÒRÓ in the solution domain tools (generators, compilers, etc.), multi-
paradigm design gives it full Þrst-class standing in design. These domain parame-
ters are subject to the design formalisms of commonality categories.

9.1.2 A TEXTBUFFER Example

The analysis of Section 8.3 applies to TEXT BUFFERs in isolation. For a broader
system analysis, we must investigate TEXT BUFFERs in the context of other abstrac-
tions with which they interact. In our analysis of text editors, we found OUTPUT

MEDIUM to be another domain of text editing. We do a separate variability analysis
for it and produce the variability graph of Figure 9.1. We use the C++ variability
table to do transformational analysis, producing Table 9.1.

9.1 Codependent Domains 235
Figure 9.1 reßects a short-cut in the design process. Instead of making a sepa-
rate variability diagram for ENCRYPTION, we use the diagram to capture its depen-
dency on CHARACTER SET as a parameter of variation. To do this, we need Þrst to
realize that ENCRYPTION is not a ÒprimitiveÓ domain (in the sense that we think of
CHARACTER SET as primitive) and then to realize that it depends on another domain
in the same variability graph. Such shortcuts can be allowed as long as all such
dependencies are captured in at least one variability graph. The Þnal combination
of all graphs will capture and optimize the dependencies.

The OUTPUT MEDIUM table bears an important relationship to the variability
analysis table for TEXT BUFFERs. Both have a run-time dependency on the same
domain, that of the Þle/record type (the two are closely interdependent). The
dependency is reciprocal. This problem is complicated by the dependence of the
domain of the TEXT BUFFER parameters of variation on the range of OUTPUT MEDIUM

and by the dependence of the domain of the OUTPUT MEDIUM parameters of varia-
tion on TEXT BUFFERs. That means that the selection of structure and algorithm, in
several dimensions, depends on both the Þle/record type presented at run time
and the buffer type. In general, there can be arbitrarily many dependencies in such
a complex design. We can no longer choose paradigms on the basis of the struc-
ture of an individual subdomain. Instead, we must account for interference
between subdomains as well.

We could partially solve this design problem by using multiple dispatch
(Òmulti-methodsÓ in [Coplien1992]). Multiple dispatch is a feature of some object-
oriented programming languages, such as CLOS, that causes run-time method
lookup to use more than one method parameter. C++ member functions use only

Figure 9.1: Dependency graph for the OUTPUT MEDIUM commonality analysis.

structure and
algorithmfine algorithm

algorithmparametric

structure and
algorithm

OUTPUT MEDIUM:

ENCRYPTION:

RECORD TYPE:

CHARACTER SET:

DEBUGGING

BUFFER TYPE:

Codependent Domains236
one parameter for method selection: the parameter whose address is implicitly
passed to the member function as this. Even though C++ does not directly sup-
port multiple dispatch, a designer can simulate multi-methods with suitable
idioms [Coplien1992]. But multiple dispatch addresses only the variability in
algorithm, not the variability in structure. Another solution must be explored for
the buffer design.

The variability dependency graph for OUTPUT MEDIUM in Figure 9.1 captures the
parameters of variation within that subdomain alone (with the exception of cap-
turing the obvious dependency between ENCRYPTION and CHARACTER SET). We con-
structed a similar graph for TEXT BUFFERs in Figure 8.1.

When domain dependency diagrams were introduced in Section 7.3.2, we antici-
pated the usage under discussion here. That discussion mentioned that the

Parameters of
Variation Meaning Domain Binding

Default
Technique

Buffer type
Structure,
Algorithm

The formatting and
handling of text
lines is sensitive to
the Text Buffer type

Checkpoint,
paged, versioned,
full file...

Compile
time

Full file
Inheritance

Record type
Structure,
Algorithm

Differently
formatted output
for different
record types

Database, RCS
Þle, TTY, UNIX
Þle, character
stream

Run
time

Character
stream
Virtual
functions

Character set
Nonstructural

Different Þle types
should support
different character
sets

ASCII, EBCDIC,
UNICODE,
FIELDATA

Source
time

ASCII
Templates

Encryption
Algorithm

Different markets
require different
encryption
techniques

None, PGP
(Pretty Good
Privacy), NBS
(National
Bureau of
Standards)

Compile
time

None
Inheritance

Debugging
code
Code
fragments

Debugging traps
should be present
for in-house
development

Debug,
production

Compile
time

Production
#ifdef

Table 9.1: Text Editor Variability Analysis for Commonality Domain: Output
Medium (Commonality: multiple behaviors; suggests inheritance)

9.1 Codependent Domains 237
parameters of variation in the Þgure can themselves be interpreted as domains,
just as the central subdomain bubble can. That makes intuitive sense, if we believe
that one settingÕs range can be another Õs domain. In fact, we talk about a
ÒdomainÓ for each parameter of variation in the variability table (as in Table 9.1).
But parameters of variation need not be primitive domains such as char and int;
they may be domains for which we have already done application domain anal-
ysis. In general, it is instructive to think of parameters of variation as being closely
linked to their own domains.

Note that the graphs of Figures 8.1 and 8.2 share nodes. While each graph indi-
vidually represents the structure of its subdomain, a union of the two graphs rep-
resents the two subdomains combined. The central domain bubble of each graph
appear as a parameter of variation in the other. We combine the two subdomain
variability dependency graphs into a single graph in Figure 9.2.

The graph of Figure 9.2 explicitly shows the duplication of nodes from the two
subdomain graphs. Care must be taken to combine only compatible nodes of the
graph. For example, we know that we can combine the two CHARACTER SET type
nodes because the TEXT BUFFER and OUTPUT MEDIUM domains are covariant in the
CHARACTER SET type. That is, both of the larger domains take the same type for this
parameter of variation. They vary together with respect to this parameter of varia-
tion, and the binding time is the same in both domains for this parameter of varia-
tion. If the application needed to bind CHARACTER SET TYPE to OUTPUT MEDIUM at

Figure 9.2: Combining two domains of the application.

common structure
and algorithm

algorithm
fine algorithm

structure and
algorithm

Type

Parametric

algorithmfine algorithm

structure and
algorithm

structure and
algorithm

OUTPUT

BUFFER TYPE:

DEBUGGING CODE:

RECORD TYPE:

ENCRYPTION:

CHARACTER SET:

DEBUGGING CODE:

TEXT BUFFER:

WORKING SET

OUTPUT CHARACTER SET:

Codependent Domains238
run time and to TEXT BUFFER at compile time, the two nodes could not be merged.
The notation does not attempt to capture this level of detail; that is left to the
insight of the designer. Projects wishing to use the variability dependency graphs
for architecture documentation may wish to augment the notation to capture
binding times and other notions of interest.

We enclose the redundant nodes in supernodes (the dotted lines) and then we
reduce and reformat the graph in Figure 9.3. This graph represents the complete
design (to this point), incorporating OUTPUT MEDIUM and TEXT BUFFERs. While
DEBUGGING CODE appears as an attribute of both output media and the text buffer,
the two collections of code are likely to be unrelated (they are different domains),
so we donÕt fold them together in this graph.

This new architecture represents a new design space with its own commonality
and parameters of variation. You can think of it as a new beast that inherits a com-
plex mixture of chromosomes from its parents. The new design space is distinct
and different from each of its parents, yet it exhibits characteristics of both. We can
use this graph as the architecture of these two subdomains combined. Note that
the individual subdomain architectures arenÕt explicit in the combined graph. The
complex dependencies force us to derive a new structure from a broader perspec-
tive, a structure that has its own identity and Òpersonality.Ó

Some abstractions, such as the character set, factor out nicely. Some parameters
are unique to their respective (original) subdomain, such as working set manage-
ment and the encryption algorithm. But we Þnd that the core abstractions of each

Figure 9.3: Reduced variability dependency graph.

algorithm

type

algorithm

algorithmic
fragments

(Record type:
structure and

algorithm)

common structure
and algorithm

OUTPUT MEDIUM:

ENCRYPTION:

CHARACTER SET:

TEXT BUFFER: WORKING SET

DEBUGGING CODE:

algorithmic
fragments

DEBUGGING CODE:

9.1 Codependent Domains 239
domain take each other as a parameter of variation. The Þle type causes a type
variation in TEXT BUFFERs against a backdrop of commonality in behavior and
structure. Also, the TEXT BUFFER type causes a structure and algorithm variability
in OUTPUT MEDIUM, for which behaviors (read, write, and so on) are common. We
could use inheritance for each of the arrows in the cycle, but of course mutual der-
ivation is absurd.

Assume for a moment that we need to defer all binding decisions until run
time. We can implement that design in C++ if each abstraction has a type Þeld and
each modulates its behavior using case analysis on the other. Virtual functions
arenÕt powerful enough for that. Even if C++ did have multiple dispatch, we
neednÕt take on the complexities and inefÞciencies of full-blown run-time ßexi-
bility unless the application demands it. When the primary abstractions of two
domains are mutually dependent, we can use the binding times to choose an
appropriate technique.

In the following sections, we look at three implementations of this architecture,
as well as some minor variations within each one. Each one satisÞes slightly dif-
ferent needs for binding time.

9.1.3 First Case: Compile-Time Binding

Presume that all design decisions can be bound at compile time and that we can
use language features that support compile-time binding. These include templates,
inheritance (without virtual functions), and overloading. Barton and Nackman
[Barton+1994] often mix the Þrst two of these to break circular dependency loops
such as we Þnd here. ItÕs an important idiom to solve the problem of mutually
dependent domains. The essence of the trick is to use code of this form:

template <class D> class Base {
public:

. . . . D* // a reference to D through
 // a pointer or
 // reference

virtual D *base1() { }
void base2() { }

};

class Derived: public Base<Derived> {
. . . .
Derived *base1() { base2() }

};

That is, Base takes its own Derived class as a template parameter. This makes it
possible for Base to know more about Derived than it could deduce only from its
role as DerivedÕs base class. (In fact, base classes are usually oblivious to the exist-
ence of their derived classes; this is an important design feature of the C++ lan-

Codependent Domains240
guage.) In particular, the signature of the Base template foresees the type of the
Derived class (namely, in the return type of member function base1).

The code is structured roughly like this. Here is a generic OutputMedium template.
We capture the dependency on TextBuffer as a template parameter:

template <class TextBuffer, class CharSet>
class OutputMedium {
public:

void write() {
. . . .
subClass->getBuffer(writeBuf);

}
OutputMedium(TextBuffer *sc): subClass(sc) { }

protected:
TextBuffer *subClass;
CharSet writeBuf[128];

};

There may be several classes derived from this template. Here is one of them:

template <class TextBuffer, class Crypt, class CharSet>
class UnixFile: public OutputMedium<TextBuffer, CharSet>,

protected Crypt {
// inherited as a mix-in

public:
UnixFile(TextBuffer *sc, basic_string<CharSet>
 key = ""):
 OutputMedium<TextBuffer, CharSet>(sc),
 Crypt(key) { }
void read() {

CharSet *buffer;
. . . .
Crypt::decrypt(buffer);

}
};

Encryption is a mix-in class, incorporated with protected inheritance. We donÕt
want clients of UnixFile to access the Crypt member functions directly, but we
want to publish them to derived classes (if any) of UnixFile. Encryption might be
provided in a simple mix-in class like this:

template<class CharSet>
class DES {
protected:

void encrypt(basic_string<CharSet> &);
void decrypt(basic_string<CharSet> &);
DES(basic_string<CharSet> key);

};

9.1 Codependent Domains 241
We also have several TextBuffer base classes, one for each character set type,
that expand from this template:

template <class CharSet>
class TextBuffer {
public:

basic_string<CharSet> getLine() {
basic_string<CharSet> retval;
. . . .
return retval;

}
void getBuffer(CharSet *) { }
TextBuffer() { }

};

Here, we bind the combination in the TextBuffer derived class. We capture the
dependency on UnixFile using derivation:

template <class Crypt, class CharSet>
class UnixFilePagedTextBuffer: public

TextBuffer<CharSet>,
protected UnixFile<UnixFilePagedTextBuffer<Crypt,
 CharSet>, Crypt, CharSet> {

public:
UnixFilePagedTextBuffer():

TextBuffer<CharSet>(),
UnixFile<UnixFilePagedTextBuffer<Crypt,CharSet>,

Crypt, CharSet>(this) {
. . . .

}
basic_string<CharSet> getLine() {

. . . .
read(); // in UnixFile
. . . .

}
};

int main() {
UnixFilePagedTextBuffer<DES<wchar_t>, wchar_t>
 buffer;
basic_string<wchar_t> buf = buffer.getLine();
. . . .

}

This solution exhibits strong coupling between the code for speciÞc domains,
particularly between the UnixFilePagedTextBuffer template and its parameters.
Using run-time binding, we could more easily decouple the code for the speciÞc
domains.

Codependent Domains242
9.1.4 Second Case: BUFFER TYPE depends on OUTPUT MEDIUM Type
at Run Time; OUTPUT MEDIUM Type Depends on BUFFER TYPE
at Compile Time

In our example, the text buffer behavior varies according to the output medium
type and the decision of which behavior to use must be deferred until run time.
The output medium type depends on the buffer type, but it can bind its decisions
at compile time. We address this using a multiple dispatch idiom. The text buffer
notiÞes its associated output medium that it wants to perform an operation, and
the output medium reciprocates. In addition to using the multiple dispatch idiom
to manage variation in behavior, we can use inheritance to manage variability in
structure. The selection of structure follows the selection of algorithm, so we gain
the same ßexibility in structure as we do for multiple dispatch of algorithm. Note
that in this case, some of the structure (that of the output medium type) is compile-
time bound, though the algorithm selection structure is the same as for the mul-
tiple dispatch idiom.

We note that the output medium type depends on the buffer type at compile
time. The domain is OUTPUT MEDIUM, the parameter of variation is the buffer type
(variation in type), and the underlying commonality for OUTPUT MEDIUM is struc-
ture and algorithm. Table 6.2 suggests that we use templates. Templates and
inheritance can be used in powerful ways to break dependency cycles. We can use
templates for one of the arrows in the graph cycle and inheritance for the other. In
this example, we handle encryption with inheritance, too (more about that later):

template <class CharSet, class ATextBuffer>
class OutputMedium {
public:

virtual void write(const ATextBuffer *) = 0;
private:

virtual void encrypt(basic_string<CharSet> &s) {
// default encryption: none
. . . .

};

Output media (domain OUTPUT MEDIUM) also vary according to the record type,
whether a UNIX Þle, database, RCS Þle, or other. This variation shows up in struc-
ture and algorithm. Requirements dictate that we track the variability at run time,
so we use inheritance and virtual functions. The virtual declaration appears in the
base class above. The write member function will be discussed later in the
chapter.

template <class CharSet, class ATextBuffer>
class UnixFile: public OutputMedium<CharSet, ATextBuffer> {
public:

// compile-time bound:

9.1 Codependent Domains 243
void write(const ATextBuffer *buf)
 { buf->unixWrite(this); }
UnixFile(string file): fileName(file) { /* */ }
. . . .

private:
string fileName;
. . . .

};

The text buffer depends on the character set at compile time and on the output
medium at run time. For example, the text buffer may take advantage of version
information available in RCS Þles or it may use permanent tags or line identiÞers
available in a database medium. We may want to write buffer contents to several
different output media as the program executes. The output medium causes vari-
ation both in algorithm and structure of text buffers. We handle this by using a
variant of the multiple dispatch idiom [Coplien1992]. When the write member
function of TextBuffer<CharSet> is invoked, it defers to its associated output
medium (of unknown type) to dispatch to the proper write function.
OutputMedium obliges (as in UnixFile::write above) by invoking the appropriate
member function of TextBuffer<CharSet>:

template <class CharSet, class DerivedClass>
class TextBuffer {

// DerivedClass is passed in just to support
// casting, e.g., from
// TextBuffer<char,PagedTextBuffer<char> >*
// to PagedTextBuffer<char>*. Because the binding is
// static, we know the downcast is safe

public:
void write(OutputMedium<CharSet, DerivedClass> *op)
 const {

op->write(static_cast<DerivedClass*>(this));
}
void unixWrite(OutputMedium<CharSet, DerivedClass> *)
 const;
void databaseWrite(OutputMedium<CharSet,
 DerivedClass> *)
 const;
. . . .

};

The variability in output medium type also drives a variability in structure.
This is captured in the output medium class, rather than in the text buffer class
itself. The algorithm speciÞc to each pair of buffer types and output media
appears in the member function (named for the output medium) of the corre-
sponding class (named for the buffer type):

template <class CharSet>

Codependent Domains244
class PagedTextBuffer: public TextBuffer<CharSet,
PagedTextBuffer<CharSet> > {

public:
void unixWrite(OutputMedium<CharSet,

PagedTextBuffer<CharSet> > *theMedium) const {
. . . .

}
void databaseWrite(OutputMedium<CharSet,

PagedTextBuffer<CharSet> > *theMedium) const {
. . . .

}
. . . .

};

Each derived class of TextBuffer<CharSet> has its individual implementations
of unixWrite, databaseWrite, and other functions speciÞc to output media types:

template <class CharSet>
class FullFileTextBuffer: public TextBuffer<CharSet,

FullFileTextBuffer<CharSet> > {
public:

void unixWrite(OutputMedium<CharSet,
FullFileTextBuffer<CharSet> > *theMedium) const {
. . . .

}
void databaseWrite(OutputMedium<CharSet,

FullFileTextBuffer<CharSet> > *theMedium) const {
. . . .

}
. . . .

};

As stipulated by the domain analysis, an output medium is associated with a
text buffer type at compile time (and with a corresponding text buffer instance at
run time). Note that for this main program, no object code for FullFileText-
Buffer is incorporated in the executable, though object code for all output media
is present:

int main() {
PagedTextBuffer<char> textBuffer;
UnixFile<char, PagedTextBuffer<char> > *file =

new UnixFile<char,
 PagedTextBuffer<char> >("file");

textBuffer.write(file);
. . . .

}

We can handle encryption with inheritance. It would be straightforward to derive a
new class from UnixFile<char, PagedTextBuffer<char> >, overriding the

9.1 Codependent Domains 245
encrypt member function, to create a new family member that supported an
encryption algorithm of our choice. If the number of encryption algorithms is lim-
ited, they can be stockpiled in a procedure library and suitably called from the
overridden encrypt function in the derived class. As another alternative, we can
do things in a more Òobject-oriented wayÓ by using mix-ins. A mix-in is a light-
weight class that is inherited to provide services to a derived class. Mix-ins are
usually private (or protected) and often appear as one of several base classes:

template<class CharSet>
class DES {
protected:

void encrypt(basic_string<CharSet> &cp) { }
void decrypt(basic_string<CharSet> &cp) { }
DES(basic_string<CharSet> key) { }

};

class DESUnixFile:
public UnixFile<char, PagedTextBuffer<char> >,
protected DES<char> {

public:
void encrypt(string &s) { DES<char>::encrypt(s); }
. . . .

};

int main() {
PagedTextBuffer<char> textBuffer;
DESUnixFile file("afile");
. . . .
textBuffer.write(file);
. . . .

}

Of course, this approach works in C++ only if the application allows encryption to
be compile-time or source-time bound. In languages with dynamic multiple inher-
itance (such as CLOS), it could be run-time bound.

Alternative Solutions

C++ offers multiple language features to express similar binding times and vari-
ability categories. Here, we investigate variants of the solution presented previ-
ously.

The domain analysis stipulates that encryption should be compile-time bound.
Mix-ins are one way to do this, as shown previously. The inheritance hierarchy is
compile-time bound and can capture variability in behavior (and structure as
well, though thatÕs not important to the ENCRYPTION parameter of variation).

Other C++ constructs express the same variability equally well; templates are
one example of this. We can make the encryption algorithm available as a tem-

Codependent Domains246
plate parameter to the appropriate class (here, OutputMedium) and achieve the
same end as we did previously with multiple inheritance. We might declare Out-
putMedium like this:

template <class CharSet, class TextBuffer, class Crypt>
class OutputMedium {
public:

virtual void write(const TextBuffer &) = 0;
. . . .

};

UnixFile, derived from an instantiation of OutputMedium, also takes the
encryption parameter and just passes it along to its base class. (Another alterna-
tive would be to localize all encryption work to the UnixFile derived class, in
which case the Crypt parameter could be removed from the OutputMedium tem-
plate.)

template <class CharSet, class TextBuffer, class Crypt>
class UnixFile: public OutputMedium<CharSet, TextBuffer,
 Crypt> {
public:

UnixFile(const string &filename);
~UnixFile();
void write(const TextBuffer &buffer) {

Crypt c = ::getKey();
basic_string<CharSet> s;
. . . .
c.encrypt(s)
. . . .

}
. . . .

};

The encryption algorithm itself is packaged either as a static function in a class
or as a more conventional functor (the STRATEGY pattern of [Gamma1995]) for con-
venience:

class DES_char_Encryption { // functor
public:

void encrypt(string &);
void decrypt(string &);
DES_char_Encryption(const string &);

};

Some encryption algorithms such as stream ciphers have local state. This suggests
the functor implementation over a static function.

PagedTextBuffer can be derived from a TextBuffer instantiation as before.
The main code is similar to that of the previous example, except that the encryp-

9.1 Codependent Domains 247
tion variability appears as an explicit template parameter that captures the param-
eter of variation. This is aesthetically more pleasing than encoding the encryption
algorithm in the name of the template itself. Yet we retain the same efÞciency of
compile-time binding:

int main() {
UnixFile<char, PagedTextBuffer<char>,
 DES_char_Encryption>
 file("Christa");
PagedTextBuffer<char> textBuffer;
. . . .
textBuffer.write(file);
. . . .
return 0;

}

There are many design alternatives for minor variations on binding time. For
example, the Þle constructor might take a TextBuffer reference as a parameter to
bind the type (and instance) of the text buffer to the Þle when the Þle is created,
rather than rebinding each time write is called. Both this form and the above form
use run-time binding. The constructor-based binding comes earlier than if we
pass the buffer as a parameter to the write function; we would probably do the
constructor-based binding only once for each Þle instance. This is a Þner granu-
larity of binding than that supported by the multi-paradigm notations, but it is
well supported by C++ and is a valid and important design concern.

9.1.5 Third Case: BUFFER TYPE Depends on OUTPUT MEDIUM
Type at Run Time; OUTPUT MEDIUM Type Depends on BUFFER TYPE
at Run Time

We may want the text editor to be able to dynamically conÞgure any buffer type
with any Þle, looking at context (available memory, user preferences, and so on) to
select among abstractions at the last microsecond. This case demands full run-time
ßexibility; both core abstractions depend on each other at run time. This is much
like the previous example, except that the output medium canÕt depend on
knowing the buffer type at coding time or template instantiation time. Figure 9.3
still applies as a domain dependency graph, except that the binding times have
changed. Table 9.1 would change to look like Table 8.4.

All binding must be dynamic, so we use a full multiple-dispatch simulation.
The code might look like this:

template<class CharSet>
class OutputMedium {
public:

virtual void write(TextBuffer<CharSet> &) = 0;
private:

Codependent Domains248
virtual void encrypt(basic_string<CharSet> &s) = 0;
. . . .

};

Here is yet another way of casting class DES, using operator() to elicit encryp-
tion:

template<class CharSet>
class DES {
private:

void encrypt(basic_string<CharSet> &);
public:

void decrypt(basic_string<CharSet> &);
void operator()(basic_string<CharSet> &s) {
 encrypt(s); }
DES(basic_string<CharSet> key);

};

template <class CharSet>
class TextBuffer {
public:

void write(OutputMedium<CharSet> &op) {
 op.write(*this); }
virtual void unixWrite(OutputMedium<CharSet> &) = 0;
virtual void databaseWrite(OutputMedium<CharSet> &)
 = 0;
. . . .

};

template <class CharSet>
class UnixFile: public OutputMedium<CharSet> {
public:

void write(TextBuffer<CharSet> &buf) {
buf.unixWrite(*this);

}
UnixFile(const string &fileName,

const basic_string<CharSet> key = ""):
cypher(key) { }

Parameters of
Variability Meaning Domain Binding

Default
Technique

Buffer type
Structure,
Algorithm

The formatting and
handling of text lines
are sensitive to the
Text Buffer type

Checkpoint,
paged, ver-
sioned, full
file...

Run time Full file
Virtual
Functions

Table 9.2: Run-time handling of Buffer Parameter of Variability

9.2 Design and Structure 249
private:
DES<CharSet> cypher;
virtual void encrypt(basic_string<CharSet> &s) {

cypher(s);
}
. . . .

};

template <class CharSet>
class PagedTextBuffer: public TextBuffer<CharSet> {
public:

void unixWrite(OutputMedium<CharSet> &) { }
void databaseWrite(OutputMedium<CharSet> &) { }
. . . .

};

template <class CharSet>
class FullFileTextBuffer: public TextBuffer<CharSet> {
public:

void unixWrite(OutputMedium<CharSet> &theMedium) {
. . . .

}
void databaseWrite(OutputMedium<CharSet> &theMedium) {

. . . .
}
. . . .

};

int main() {
PagedTextBuffer<char> textBuffer;
UnixFile<char> file("afile");
textBuffer.write(file); // fully run-time bound
. . . .

}

9.2 Design and Structure

Multi-paradigm design produces an architectureÑa structure of components and
relationships between them. The architecture is explicit in variability dependency
graphs, such as Figure 9.1. ItÕs important to understand that variability depen-
dency graphs are not class diagrams or object diagrams. Class and object diagrams
encode low-level design considerations, such as binding time, that go beyond the
structure of the architecture.

The standard UML notation class diagrams for the designs of the preceding
three sections are given in Figures 8.5, 8.6, and 8.7. We see from them that the
architecture of Figure 9.3 shines through in all of them. The variability depen-

Codependent Domains250
dency graph captures the deep structure of the domain and is in some sense more
abstract than a class diagram.

It should be obvious that all three Þgures have the same taxonomy as Figure
9.3. But they canÕt capture many important design dimensions. For example, vari-
abilities handled with #ifdef (such as debugging code) donÕt surface to the class
level, so they donÕt appear in the diagrams. The differences between virtual and
nonvirtual functions donÕt appear, either. Nor do overloaded functions.

Figure 9.5 is similar to Figure 9.4. In Figure 9.6, the OutputMedium class doesnÕt
take TextBuffer as a template parameter because it dynamically binds to a
TextBuffer instance at run time through virtual functions.

9.2.1 A Note on Binding Time

The design diagrams for the three different binding times seem to emphasize the
design stereotype that late or loose binding Òcleans upÓ a design. It doesnÕt always
work that way. Consider this classic problem in object-oriented programming with
codependent domains: the output of polymorphic objects to a family of output
abstractions.

Figure 9.4: Class diagram for the design of Section 9.1.3 (Þrst design).

CharSet

Crypt

UnixFile

TextBuffer,
CharSet,
Crypt

TextBuffer,
CharSet

CharSet,
Crypt

OutputMedium

CharSet

TextBuffer

UnixFilePagedTextBuffer

9.2 Design and Structure 251
LetÕs pretend that weÕre designing a weather analysis and visualization system
in which clouds are the major abstractions. There are cirrus clouds, cumulus
clouds, nimbus clouds, tornado clouds, and a host of others:

class Cloud {
public:

. . . .
};

class Cirrus: public Cloud {
. . . .

};

class Tornado: public Cloud {
. . . .

};

CharSet,

CharSet

DES UnixFile

CharSet

DESUnixFile

CharSet,
CharSet

OutputMedium

PagedTextBuffer

ATextBuffer

TextBuffer

ATextBuffer

Figure 9.5: Class diagram for the design of Section 9.1.4 (second design).

Codependent Domains252
We may have several different types of output formatters, including a three-
dimensional Phong shading renderer (which draws pretty pictures of the clouds),
isobar and isotherm displays (which draw contour lines of constant pressure or
temperature within the cloud), and wind vector displays (which draw little
arrows indicating the wind velocity):

class Display {
public:

. . . .
};

class Phong3D: public Display {
. . . .

};

class IsoBar: public Display {
. . . .

};

We can treat both the family of clouds and the family of output types as
domains. We quickly Þnd that the domains are codependent: each depends on the
other. Each output formatter knows how to draw a particular kind of cloud for its
medium, but it depends on knowing the type of each object it draws. Each cloud
depends on the display device for its interface (such as drawing functions). In the

Figure 9.6: Class diagram for the design of Section 9.1.5 (third design).

DES
CharSet

CharSet

PagedTextBuffer

CharSet

TextBuffer

CharSet

UnixFile

OutputMedium

CharSet

CharSet

FullFileTextBuffer

9.3 Another Example: A Finite-State Machine 253
worst case, some of these functions may not be generic, but they may be relevant
only for a particular kind of cloud on a particular kind of output device (such as
using a built-in Java applet for an animated tornado when using a Web browser
for a renderer).

Assume that we can use compile-time binding to resolve the selection of
member functions such as draw. The C++ solution is trivial:

void draw(const Tornado &t, IsoBar &d) { }
void draw(const Tornado &t, IsoTherm &d) { }
void draw(const Cumulus &fluffy, Phong3d &d) { }
void draw(const Cirrus &c, Phong3D &d) { }
. . . .

The list gets a bit long and the friendship relationships get pretty messyÑeach
class must declare friendships for each of the functions that access itÑbut the
design is straightforward.

Now, presume that the dependencies must be run-time bound. That is, there
must be a single function:

void draw(const Cloud &, const Display &);

that can accept any Cloud and any Display and do something reasonable. This is a
challenging design to implement in C++, usually employing type Þelds to simulate
multiple dispatch (see [Coplien1992], Section 9.7). This is at least one case in which
deferred binding signiÞcantly complicates the implementation, rather than simpli-
fying it.

In CLOS, a language construct that has a syntax analogous to C++ overloading
has the semantics of run-time binding, complete with multiple dispatch. The
selection of a suitable design technique for a given commonality analysis clearly
depends on the implementation language of choice.

9.3 Another Example: A Finite-State Machine

In this example, we show that we can use multi-paradigm design even for low-
level design. A Þnite-state machine (FSM) is usually thought of as a low-level
abstraction that we could represent as a single class. But if we want to put a general
FSM into a widely used library, we want to open up the parameters of variation to
the many users of the library so that each can tune the design to a speciÞc need.

We can look at FSMs in terms of the handful of abstractions that support a
common implementation and external interface. An FSM is a collection of states, a
Þnite set of values, each of which designates an interesting conÞguration of the
system represented by the FSM. A state variable is often an integer or an enumer-
ated type, but it might just as well be a string or any arbitrary class type. This will
be one important parameter of variation. These subdomains are foreshadowed in

Codependent Domains254
the domain dictionary (you can Þnd a discussion of the FSM domain dictionary in
Section 2.2.2).

FSMs change state in response to Òmessages.Ó We usually implement each
ÒmessageÓ as a member function; to Òsend a messageÓ to the FSM means to call a
member function. Of course, we could also represent this interface with a single
function that accepts more conventional messages as data structure arguments or
enumerated message types. WeÕd like our implementation to support either of
these.

FSMs also execute actions to produce outputs. In a fully general (Mealy)
machine, the action executed is a function of the current state and the input mes-
sage. (In a Moore machine, the output depends only on the current state; the dis-
cussion here describes a Mealy machine.) The programmer writes these actions to
do the work of the systemÑthis is where the meat is. These actions, taken
together, are an important parameter of variation of FSMs.

Independent of all of these variations, there are two domains of commonality
in FSMs. First, all FSMs share the same interface. The domain of all FSMsÑcall it
ABSTRACTFSMÑdeÞnes a generic interface. The parameters of variation include
the type of user-deÞned transitions and the types for STATE and STIMULUS. We cap-
ture this domain in Table 9.3.

If we bind all of the parameters of variation of ABSTRACTFSM, we generate a
family member that is still a high-level abstraction; it represents all possible state

Parameters of
Variation Meaning Domain Binding Default

UserFSM
Structure,
Algorithm

All generic FSMs
understand how to
add transitions in any
UserFSM

Any class
having member
functions
accepting a
Stimulus argu-
ment (see bot-
tom row)

Compile
time

None
Templates

State
Type

How to represent
the FSM state

Any discrete
type

Compile
time

None
Templates

Stimulus
Algorithm

The type of the
message that
sequences the
machine between
states

Any discrete
type

Compile
time

None
Templates

Table 9.3: FSM Transformational Analysis for Commonality Domain:
ABSTRACTFSM (Commonalities: Structure and Behavior)

9.3 Another Example: A Finite-State Machine 255
machines that respond to a given set of stimuli and that have a given range of
states. The ABSTRACTFSM domain, then, provides a family of signatures or proto-
cols that support the deÞnition of a user-deÞned FSM. This isnÕt just a gratuitous
design decision. We may deÞne functions (for example, protocol handlers) with
polymorphic interfaces to multiple, similar FSMs at the ABSTRACT FSM level. Such
functions could handle multiple FSMs interchangeably.

Second, all FSMs might share the same implementation. We Þnd a current
state variable and a state mapping table inside the implementation of an
FSM. The overall structure is common for all variants; the parameters of vari-
ation are similar to those for ABSTRACTFSM. This is an interesting subdomain in
its own right that weÕll call IMPLEMENTATIONFSM. Table 9.4 captures the variability
analysis for this subdomain.

Note that IMPLEMENTATIONFSM depends on USERFSM as ABSTRACTFSM does, but
for a different reason: ABSTRACTFSM depends on USERFSMÕs behavior, and IMPLE-

MENTATIONFSM depends on USERFSMÕs type characteristics. The difference in
these two uses is captured in the ÒMeaningÓ column of the respective tables.
Think of the ÒMeaningÓ column as the R in SCV+R of domain analysis (see
Section 1.1).

There is a third domain, which is the user-speciÞed machine itself. This subdo-
main captures most of the variability; the commonality has been pushed into the
two other subdomains. WeÕll call this the USERFSM domain. It takes its protocol
interface from one of the family members of the ABSTRACTFSM subdomain. That

Parameters of
Variation Meaning Domain Binding Default

UserFSM
Structure,
Algorithm

To implement the state/
action map, the imple-
mentation must know the
type of user-defined
actions and transitions

See Table 9.3 Compile
time

None
Templates

State
Type

How to represent the
FSM state

Any
discrete
type

Compile
time

None
Templates

Stimulus
Algorithm

The type of the
message that
sequences the
machine between
states

Any
discrete
type

Compile
time

None
Templates

Table 9.4: FSM Transformational Analysis for Commonality Domain:
IMPLEMENTATIONFSM (Commonalities: Structure and Behavior)

Codependent Domains256
makes it dependent on the ABSTRACTFSM subdomain, which in turn depends on
the USERFSM subdomainÑthis is a circular dependency (Figure 9.7). The IMPLE-

MENTATIONFSM subdomain in turn depends on the USERFSM subdomain for the
deÞnition of the state transition matrix and the implementations of the action
semantics. The USERFSM variability table can be found in Table 9.5.

Each FSM is unique enough that the variations can be hand-coded. This
uniqueness owes to the design factoring, which pushes the commonality into the
IMPLEMENTATIONFSM and ABSTRACTFSM domains. For notational convenience,
recurring declarations for parameters such as STIMULUS and STATE can be expressed
with typedef.

Note that this design also exhibits codependent domains; that is, ABSTRACTFSM
and USERFSM depend on each other, as shown in Figure 9.7!

We start the implementation with a class AbstractFSM, which captures the
semantics of the entire domain of FSMs. The subdomain deÞned by FSMs sharing
the same protocol is represented in the ImplementationFSM class (below) that is
(indirectly) derived from AbstractFSM:

template <class M, class State, class Stimulus>
class AbstractFSM {
public:

virtual void addState(State) = 0;
virtual void addTransition(Stimulus, State, State,

void (M::*)(Stimulus));
};

We capture the variability of individual transition functions in the USERFSM
simply by omitting these functions from the base class and adding them to the
derived class for each machine:

class UserFSM: public AbstractFSM<UserFSM, char, char> {
public:

void x1(char);

Figure 9.7: Domain diagram for the FSM example.

IMPLEMENTATION

FSM

STIMULUS

USERFSM

STATE

ABSTRACTFSM

9.3 Another Example: A Finite-State Machine 257
void x2(char);
void init() {

addState(1);
addState(2);
addTransition(EOF,1,2,&UserFSM::x1);
. . . .

}
};

Notice the use of Barton and Nackman [Barton+1994] closures, where the derived
type is passed as a parameter to the template that generates the base class.

The ImplementationFSM class captures the semantics of the GENERICFSM domain.
This is where we bury the commonality that transcends all FSMs: the internal
mapping table (using a common library abstraction called a map, which is an asso-
ciative array), the current state, and the number of states. It also captures the

Parameters of
Variation Meaning Domain Binding Default

AbstractFSM
Structure,
Algorithm

The UserFSM uses
the protocol from
some family
member of the
AbstractFSM
domain

See Figure 9.4 Compile
time

None
Inheritance

State
Type

How to represent
the FSM state

Any discrete
type

Compile
time

None
Hand-coded
or typedef

Stimulus
Algorithm

The type of the
message that
sequences the
machine between
states

Any discrete
type

Compile
time

None
Hand-
coded or
typedef

Actions
Algorithm

Each UserFSM
implements its
own semantics in
transition functions

Any number
of functions
that map a
Stimulus
parameter and
the current state
to a new state

Compile
time

None
Inheritance

Table 9.5: FSM Transformational Analysis for Commonality Domain:
USERFSM (Commonalities: Aggregate Behavior)

Codependent Domains258
behaviors common to all FSMs: construction, adding states, adding transitions
between states, and a function called fire that causes the machine to cycle
between states:

template <class UserMachine, class State, class Stimulus>
class ImplementationFSM: public UserMachine {
public:

ImplementationFSM() { init(); }
virtual void addState(State);
virtual void addTransition(Stimulus, State from,
 State to,
 void (UserMachine::*)(Stimulus));
virtual void fire(Stimulus);

private:
unsigned nstates;
State *states, currentState;
map<State, void(UserMachine::*)(Stimulus)>
 *transitionMap;

};

This declaration captures the dependency of the IMPLEMENTATIONFSM domain
on the USERFSM domain by using inheritance (ImplementationFSM: public
UserMachine). ItÕs now trivial to build the ImplementationFSM template from
these declarations:

ImplementationFSM<UserFSM, char, char> myMachine;
. . . .

This declaration shows that the design has adequately shielded the user from
the commonalities, while expressing the variabilities in the template parameters
and in the functions of the UserFSM class. This code generates a rather elaborate
design, one that is somewhat more involved than we would expect to Þnd from a
simple-minded FSM or from an object-oriented analysis that goes to the same
depth as this solution. Yet the user interface to the library is clean and minimal
and expresses the desired design variations suitably well, as shown in Figure 9.8.

This Þgure stretches the UML notation to its limits. ImplementationFSM and
AbstractFSM are templates. The classes

AbstractFSM< UserFSM, char, char >

and

ImplementationFSM< UserFSM, char, char >

are instantiations of those templates for which UserFSM (and State and Stimulus
as well, shown as char arguments in the diagram) has been supplied as a param-
eter of variation. Class UserFSM takes the AbstractFSM instantiation as a base class,

9.3 Another Example: A Finite-State Machine 259
while serving as a base class for the ImplementationFSM instantiation. UserFSM
uses both of its neighboring classes for both its interface and implementation.

This is an unconventional but powerful design. The presentation here has left
out many details that would make this an Òindustrial strengthÓ FSM. However, it
still serves as an example that is small enough to understand, yet large enough to
stretch the imagination. The example illustrates that designers can use multi-para-
digm design even at the lowest levels of design. Or maybe this isnÕt such a low
level of design, since many of these decisions relate to the fundamental structure
of systems based on state machine paradigms.

ÒState machine paradigmÓ is an eye-catching phrase. Are state machines them-
selves a paradigm, and if so, can we capture its dimensions of commonality by
using C++ and multi-paradigm design? I believe state machines are a paradigm,1

but I donÕt believe C++ naturally captures its important parameters of variation,
except for the simplest state machines. SDL [Turner1993] is an example of a lan-
guage whose goal is to more naturally capture state machine semantics. Many

1For the record, my colleague Tim Budd, also a pioneer in multi-paradigm design [Budd1995],
disputes this point.

Figure 9.8: Class diagram of the solution.

ImplementationFSM

M,
State,
Stimulus

UserFSM

AbstractFSM

M,
State,
Stimulus

AbstractFSM< UserFSM, char, char >

ImplementationFSM< UserFSM, char, char >

Codependent Domains260
projects have built their own state machine languages suitable to their domains.
The designer is faced with a decision: to use the state machine architecture here or
to use an AOL tuned for state machines. Section 7.2 explores the trade-offs in this
design decision.

9.4 Pattern-Based Solution Strategies

Design patterns can be used as an advanced technique to break circular dependen-
cies. For example, consider a behavior, such as write, whose implementation
depends on two different abstractions such as the FILE type and the TEXT BUFFER

type. Instead of burying the behavior in either FILE or TEXT BUFFERÑwhich would
lead to one directly violating the encapsulation of the otherÑwe can objectify the
codependent behavior and factor it into a STRATEGY object. If the behavior depends
on both the FILE and TEXT BUFFER types at run time, then it can be treated as a mul-
tiple dispatch problem, by using the multiple dispatch idiom [Coplien1992] or the
VISITOR pattern [Gamma1995]. The STRATEGY pattern would also serve well to
implement different forms of encryption.

Pattern solutions are covered in depth in [Gamma1995], while Section 6.12.2
explores the relationship of multi-paradigm design to patterns. Multi-paradigm
design can often provide clues about which patterns to use for given common-
ality, variability, binding time, and instantiation. Other problems beg pattern solu-
tions that go beyond conventional commonality and variability analysis; see the
discussion in [Coplien1996a].

9.5 Summary

This chapter has taken multi-paradigm design to its limits: capturing the interaction
between multiple paradigms and between multiple domains. Multi-paradigm
design can identify recursive design dependencies between ÒindependentÓ
domains. Such designs are difÞcult to regularize and depend on experience with
the implementation technology and potentially with the domain of application.

Up to this point, this thesis has focused on abstraction techniques that C++ can
express naturally. Sometimes, a higher-level perspective illuminates an even more
powerful system partitioning. These partitionings sometimes solve problems by
using indirect techniques that often donÕt succumb to methodical attacks or even
intuition. Designers have captured these historically successful partitionings as
software design patterns. Some of these patterns go beyond multi-paradigm
design, but some are closely related to the material covered so far in this thesis.
Chapter 10 explores the relationship between multi-paradigm design and the
emerging discipline of design patterns.

Chapter 10

Conclusion
This chapter reviews the major claims of the thesis. It also explores what the reader
may consider to be open questions and issues at this point: How about paradigms
that the thesis did not address? What of scalability? Last, it looks at possibilities for
future work.

10.1 Recap

This thesis has presented a broad design method called multi-paradigm design.
The broad goal of multi-paradigm design is to understand how to build systems
that capture the structure of their domains in ways that support intentionality, soft-
ware comprehension at the system level, and greater ease of evolution. These are
not just academic concerns, but practical concerns for the everyday programmer.
As presented at the beginning, this thesis is for programmers. It is so because it
focuses on their desiderata in terms of the tools they use. It extends that tool set
beyond vernacular object-oriented techniques into more general approaches
worthy of the word ÒdesignÓ in a more timeless sense.

By serving the programmer, multi-paradigm design risks dealing with the
commonplace and the vulgar. The novelty in this thesis is centered in its broad
model of design based on a few unifying principles. So while the thesis serves
practice, it is grounded in a theory. The theory strives to serve the central goals of
design: transforming an understanding of needs into a resilient structure that is
expressive, ßexible, and consistent with those needs.

The thesis introduces several claims in support of these broad goals, which I
summarize here.

Conclusion262
10.1.1 Abstraction and Intentionality

Multi-paradigm design offers a simple, fundamental, but powerful model of
abstraction based on commonality and variation. By grounding commonality and
variation in models of human cognition and by tying them to modern design tech-
niques, multi-paradigm design combines these techniques into a unifying design
theory. Multi-paradigm design is design by Þrst principles of abstraction to a larger
degree than most paradigms are; it is less heuristic than paradigms such as struc-
tured analysis, or even data bases in its articulation of how design relates to human
perception. Though object-oriented analysis also appeals to such general roots,
multi-paradigm design is one step more general than objects because it uniÞes
other paradigms with the same notions that can be used to describe objects: com-
monality and variation.

10.1.2 Meta-Design

Contemporary (and traditional) software design start with a set of design tools and
rules called a paradigm, and use them to analyze a domain to Þnd abstractions
suitable for good system structure. Such an approach is prejudiced toward the par-
adigm chosen, and is presumptuous in assuming that the chosen paradigm will be
a good Þt for the problem. By building on the fundamental notions of commonality
and variation, multi-paradigm design takes one step back. It allows the designer to
honestly choose the right paradigm on the basis of the intrinsic structure of the
domain. WhatÕs more, multi-paradigm design allows the designer to select mul-
tiple paradigms, one for each domain, or a small number within a domain, pro-
viding a legitimateÑrather than popular or politicalÑbasis for the choice of
paradigm.

10.1.3 The Relationship between Domain and Paradigm

A domain, in the broadest sense, is an area of interest or focus, and much of
domain analysis has taken this sense of domain as its cue for design structure. But
the focus has most commonly been on the application domain, and the solution
domain has remained impoverished with respect to deep domain understanding.
Multi-paradigm design analyzes several solution domains using the time-honored
tools of application domain analysis Ñ commonality and variation Ñ and shows
that different styles of managing commonality and variation correspond to what
commonly are called paradigms in contemporary computer science. This is a pow-
erful unifying discovery that underlies most of the remaining claims of the
thesis.

10.1 Recap 263
10.1.4 Multiple paradigms within a domain

Classic domain analysis decomposes systems into domains that can be indepen-
dently developed. Common industrial practice suggests that any single develop-
ment follow the guidance of a single paradigm (to which fact witness the single-
paradigm nature of popular design methods), and that paradigm is most fre-
quently the object or component paradigm at this writing. Multi-paradigm design
shows that the structure of a domain may be more complex than naturally can be
expressed with a single paradigm. Furthermore, it shows how to identify the latent
structure of multiple paradigms within a domain. Such identiÞcation of paradigms
offers design legitimization for the widespread programming practices that com-
bine paradigms, but which are usually viewed as impure or bad design. Multi-par-
adigm design offers a formalism based on commonality and variation that allows
designers to express the intent of such implementation constructs in terms of
design-level considerations.

10.1.5 Dependencies between domains

Modularity is a long-standing tenet of good software design. However, in the
interest of intentionality, and of capturing essential complexity in design, it is
important to have design techniques that recognize and manage high coupling
between domains that are developed separately for organizational, business, or
historical reasons. In fact, sometimes there is no good partitioning into separately
manageable modules and designers must face complexity head-on. Such coupling
has long been found in many systems (we have such experience with telecommu-
nications systems) but rarely is legitimized because there have been no general
techniques to handle such coupling elegantly even if it is recognized.

Multi-paradigm recognizes that domains may have essential overlap, and it
offers a model of development where domain structure and physical software
structure can be decoupled from each other. Multi-paradigm design generalizes
the notion of domain by unifying it with the notion of parameter of variation, so
that one domain may be the parameter of variation for another. Furthermore,
multi-paradigm design offers design structures for expressing such incestuous
domain relationships in ways that the C++ programming language anticipates.

10.1.6 Theory of Negative Variability

This thesis showed that widely known concept of inheritance with cancellation in
the object paradigm is in fact a speciÞc case of a more general phenomenon. Multi-
paradigm design calls this phenomenon negative variability. Negative variability
is a recurring design theme, and the generalization beyond inheritance serves to
unify such language features as argument defaulting, unions, template specializa-
tion, and many applications of design patterns. Recognizing and formalizing such

Conclusion264
variability in the application domain helps the designer communicate the design
intent. The designer can either select a language feature suitable to expressing the
negative variability, or can refactor the design to turn it into a positive variability
more suitable to standard domain analysis techniques.

10.1.7 Regularization of Ad-Hoc Design Patterns

Patterns are a technique for capturing ad-hoc micro-architectures that are tailored
to the context in which they are applied. AlexanderÕs original theory of patterns
[Alexander1979] decried the use of any preformed structure in design, insisting
that each pattern be an encapsulation of trade-offs whose resolution could be
described by a general structural conÞguration of relationships between parts. This
thesis showed, in Section 6.12.2, that the most commonly used design patterns in
software today are straightforward structures that can be formalized as conÞgura-
tions of commonality and variation, structures whose use could be regularized in a
design method. That takes them outside the purview of AlexanderÕs theory of pat-
terns.

10.2 Other Paradigms

This thesis focused on the paradigms supported by C++, motivated largely by
a practical consideration for scoping the work, by my expert familiarity with that
solution domain and a concern for avoiding claims for technologies that are not
second nature to me. The selection of C++ was additionally motivated by its pop-
ularity (with the implied potential to apply the Þndings of this thesis), accessi-
bility (so that the largest number of readers would be able to relate to the
examples), and practicality.

But of course there are other paradigms that are useful and used. Consider
functional programming, which is called a paradigm by most contemporary com-
puter scientists. First, itÕs worth reviewing in a nutshell what the spectrum of
meanings is for the word Òparadigm,Ó what part of that spectrum received the
attention of this thesis, and what that portends for the rest.

The term was originally popularized by Kuhn [Kuhn1970], and has much
broader meaning than we Þnd in computer science. In KuhnÕs work, a paradigm
is a Weltanscha�ng: a world model. It is a deeper and broader concept than any
notion of paradigm in contemporary computer science. The opinion of many
experts in contemporary computer science (including Larry Constantine and
myself) is that the object paradigm, for example, is not even a paradigm, certainly
by Kuhnian standards [Fraser+1996].

Another deÞnition of paradigm is as a computationally complete model. This
tends to be the deÞnition of paradigm implicitly adopted by Budd [Budd1995],

10.3 Scalability 265
and the deÞnition is adaptable to the object paradigm, functional programming,
rule-based programming, and many others.

A third deÞnition of paradigm is that adopted in this thesis: a conÞguration of
commonality and variation. This deÞnition derives from the relationship of para-
digm to perception (in the broad Kuhnian sense) combined with vernacular con-
siderations. It turns out to be a good Þt. It not only provides a powerful world
view that can be used to formalize language and design constructs, but it is a good
empirical Þt to maturing practices (see, for example, [AbadiCardelli1996], page 8).
In that regard, multi-paradigm design and its formalisms make an important con-
tribution to a broader understanding of what ÒparadigmÓ means to contemporary
software design, and perhaps to the theory of software design in general, and
speculatively to design in general.

Does the notion of paradigm in multi-paradigm design generalize beyond the
paradigms mentioned in this thesis? The answer is only a partial Òyes.Ó One
might be able to express functional formalisms using additional commonality cat-
egories; as one can freely create commonality categories, almost anything goes.
But there are computing paradigms that are fundamentally different from even
these. Consider parallel and distributed processing; these have a strong temporal
component that leads to partitionings that may not fall along the lines of com-
monality and variability considerations. It is likely that such paradigms should be
treated separately from the thesis presented here. Some of the motivation for such
separate treatment comes from the engineering rules of the paradigm and its cul-
ture that go beyond commonality and variation. It is important that this is no dif-
ferent than the engineering rules that accompany the paradigms of, say, object-
oriented programming in Smalltalk (which is culturally normative and may be a
paradigm even in the Kuhnian sense) or of data base design.

The broad message here is that design is hard, you need many tools in your
toolkit, and as broad as domain analysis is, it is difÞcult to regularize it to the full
general case. Multi-paradigm design is one piece of a large puzzle.

10.3 Scalability

The question of scalability is a sticky wicket, since there is no proof like an empir-
ical proof Ñ and, more likely, no meaningful proof short of an empirical proof. On
the positive side of this question, there is evidence that these techniques scale:
there are large C++ programs that use these techniques even at the architecture
level, and do so successfully. Even some small- to medium-sized systems that can
be said to use these techniques are impressive in their scale; consider the Standard
Template Library itself.

Of course, that the code exhibits use of these techniques is no proof that multi-
paradigm design notions were used consciously. These good designs may just be
the result of good instinct, of highly talented programmers with a sixth sense of

Conclusion266
how to express things. So though the solutions scale, evidence is hard to come by
to demonstrate that the thought process scales.

10.4 Future work

10.4.1 Taxonomy of Abstractions

Prof. Theo DÕHondt suggests paradigms might be described by other useful
taxonomies that relate to the claims of the thesis. For example, procedural abstrac-
tion is two name abstractions; ADTs are private data abstraction and public proce-
dural abstraction; inheritance is incremental data abstraction. Further research
could develop these taxonomies along the lines of the considerations in
Section 2.4 , ÒExamples of CommonalityÓ on page 76.

10.4.2 Taxonomy of Paradigms

Section 6.14 presented a rather superÞcial ranking of the power of paradigms base
on intuition. It would be good to further formalize this notion of expressive power.
In joint research with Liping Zhao of RMIT, I am endeavoring to use models from
symmetry theory to capture the expressive power of language features. The
research intends to go beyond symmetry theory into symmetry-breaking as a foun-
dation for patterns. This is the current focus of my ongoing research.

Brießy, the focus of this research is on the geometry of programs. AlexanderÕs
original theory of patterns (in building architecture) is preoccupied with geom-
etry, and the role of geometry in effective system composition. Leading software
pattern practitioners recognize that the best software patterns are also geometric.
Alexander has taken his work beyond the theory of patterns to a broader theory
called the theory of centers. Centers are geometric regions that combine with each
other into larger structures that are effective ÒwholesÓ. The ÒgoodnessÓ of a whole
corresponds to properties of the combination of the centers: deep interlock and
ambiguity, echoes, good shape, proportions of scale, and so forth. An early Þnding
of our research is that most of these structural properties relate to symmetry.

Group theory offers constructs to formally characterize many kinds of symme-
tries, through symmetry groups that describe structure-preserving transforma-
tions on centers. What our research is trying to do is to Þnd what these groups are
for programming language constructs. For example, a class hierarchy may form a
symmetry group around a group of functions such as Liskov interface extension
and object state extension. In the introduction to this thesis, I noted that the word
ÒarchitectureÓ usually implies some informal notion of structure. Group theory
provides a set of constructs for formalizing this structure. Symmetry is about com-
monality invariance; symmetry-breaking is about variations.

10.4 Future work 267
Taking this study to its limit, we borrow from physical applications of sym-
metry group theory in crystallography, nuclear physics, astrophysics, and other
Þelds, which are preoccupied with a phenomenon called symmetry-breaking. Sym-
metry breaking occurs when the forces that preserve symmetry no longer can be
sustained, and the degree of symmetry is transformed. For example, a sphere in
rotation has inÞnite degrees of symmetry, but if it spins so fast that it starts to
break apart, the number of axes of symmetry is reduced from three to two. This
symmetry-breaking leads to spatial conÞgurations called patterns. These patterns
are exactly the stuff of AlexanderÕs theories, and the extension to software pat-
terns is straightforward. For example, class extension is a symmetry; BRIDGE is a
pattern that reßects symmetry-breaking under the stress of certain design desid-
erata.

This is certainly high-risk and speculative work; at this writing, it is in its ear-
liest stages.

Conclusion268

Bibliography
[AbadiCardelli1996] Abadi, Martin, and Luca Cardelli. A Theory of Objects. New York:
Springer-Verlag, 1996.

[Alexander1979] Alexander, Christopher. The Timeless Way of Building. New York:
Oxford University Press. 1979.

[America1989] America, Pierre. A Behavioural Approach to Subtyping in Object-Ori-
ented Programming Languages. Philips Research Journal 44(2-3), 1989, 365-383.

[Arango1989] Arango, G. Domain Analysis: Form Art Form to Engineering Discipline.
SIGSOFT Engineering Notes 14(3).

[Artim+1998] Artim, John, Charlie Bridgeford, Lillian Christman, James Coplien, Mary
Beth Rosson, Stanley Taylor, Rebecca and Wirfs-Brock. Object-Oriented Practice in
1998: Does it Help or Hinder Collaboration? Proceedings of the 1998 ACM-SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applications (OOP-
SLA-98), Vancouver, BC, Canada, 1998, 45-47.

[Barton+1994] Barton, John, and Lee Nackman. ScientiÞc and Engineering C++. Reading,
MA: Addison-Wesley. 1994.

[Bass+1998] Bass, Len, Paul Clements, Rick Kazman, and Ken Bass. Software Architecture
in Practice. Reading, MA: Addison-Wesley, 1998.

[Beck1993] Beck, Kent. ÒThink Like an Object.Ó UNIX Review 9, 10. September
1993. pp. 39Ð4.

[Bentley1988] Bentley, J. L. More Programming Pearls: Confessions of a Coder. Reading, MA:
Addison-Wesley. 1988.

[Booch1986] Booch, Grady. Object-Oriented Development. IEEE Transactions on Software
Engineering 12(2), 211-221, 1986.

[Booch1994] Booch, Grady. Object-Oriented Design with Applications, 2d ed. Redwood City,
CA: Benjamin/Cummings. 1994.

[Budd1995] Budd, Timothy. Multi-Paradigm Programming in Leda. Reading, MA:
Addison-Wesley. 1995.

[Cain+1996] Cain, Brendan, James O. Coplien, and Neil Harrison. ÒSocial patterns in pro-
ductive software development organizations.Ó Annals of Software Engineering, 2. Decem-
ber 1996. pp. 259Ð286. See http://www.baltzer.nl/ansoft/articles/2/ase004.pdf.

Bibliography270
[Campbell+1990] Campbell, G. H., S. R. Faulk, and D. M. Weiss. ÒIntroduction to Syn-
thesis.Ó Software Productivity Consortium, INTRO_SYNTHESIS-90019-N, Version
01.00.01. June 1990.

[CardelliWegner1985] Cardelli, Luca, and Peter Wegner. On Understanding Types,
Data Abstraction, and Polymorphism. Computing Surveys 17(4), 1985, 471-522.

[Cockburn1998] Cockburn, Alistair. Surviving Object-Oriented Projects: A ManagerÕs
Guide. Reading, MA: Addison Wesley Longman. 1998.

[Constantine1995] Constantine, Larry. ÒObjects in your Face.Ó In Constantine on People-
ware. Englewood Cliffs, NJ: Prentice-Hall. 1995. pp. 185Ð190.

[Conway1968] Conway, Melvin E. How Do Committees Invent? Dtamation 14(4),
April 1968.

[Coplien1992] Coplien, J. O. Advanced C++ Programming Styles and Idioms. Reading, MA:
Addison-Wesley. 1992.

[Coplien1995a] Coplien, J. O. ÒA Generative Development-Process Pattern Language.Ó
Pattern Languages of Program Design. J. O. Coplien and D. Schmidt, eds. Reading, MA:
Addison-Wesley, 1995, pp. 183-238.

[Coplien1996a] Coplien, J. O. ÒA Professional Dilemma.Ó C++ Report 8, 3. New York:
SIGS Publications. March 1996, pp. 80Ð89.

[Coplien1996b] Coplien, J. O. Broadening beyond Objects to Patterns and to Other Par-
adigms. Computing Surveys 28(4es), 1996, p. 152.

[Coplien+1998] Coplien, J. O., Daniel Hoffman and David Weiss. ÒCommonality and
Variability in Software Engineering.Ó IEEE Software 15, 6. New York: SIGS Publica-
tions. November/December 1998, pp. 37-45.

[Coplien1999] Coplien, J. O. Multi-Paradigm Design for C++. Reading, MA: Addison-
Wesley, ©1999.

[Coplien2000] Coplien, J. O. The Column Without a Name: Patterns and Art. C++
Report 12(1), January 2000, 41-43.

[Czar1999] Czarnecki, Krzysztof. Generative Programming: Principles and Techniques of
Software Engineering Based on Automated ConÞguration and Fragment-Based Component
Models. Technical University of Ilmenau, October 1998.

[CzarEise2000] Czarnecki, Krzysztof, and Ulrich Eisenecker. Generative Programming:
Methods, Tools and Applications. Addison-Wesley, ©2000.

[DahlNygaard1966] Dahl, O., and K. Nygaard. Simula, an Algol-based Simulation Lan-
guage. Communications of the ACM 9(9), 1966, 671-678.

[Date1986] Date, C. J. Introduction to Database Systems, 4th ed. Reading, MA:
Addison-Wesley. 1986.

[DeBruler1981] Personal discussion with Dennis L DeBruler, AT&T Bell Laboratories,
ca. 1981.

[DeChampeaux+1993] DeChampeaux, Dennis, Doug Lea, and Penelope Faure. Object-Ori-
ented System Development. Reading, MA: Addison-Wesley. 1993.

Bibliography 271
[Dijkstra1968] Dijkstra, E. W. ÒNotes on Structured Programming.Ó Structured Program-
ming. O. J. Dahl, W. Dijkstra, C. A. R. Hoare, eds. London: Academic Press. 1968.

[Dijkstra1972] Dijkstra, E. W. ÒThe Humble Programmer.Ó Communications of the ACM
15(10), October, 1972.

[Flanagan1997] Flanagan, David. Java in a Nutshell. Bonn, Germany: OÕReilly and Associ-
ates. 1997.

[Fowler+1997] Fowler, Martin, and Scott Kendall. UML Distilled: Applying the Standard
Object Modeling Language. Reading, MA: Addison Wesley Longman. 1997.

[Fraser+1995] Fraser, Steven, Grady Booch, Frank Buschmann, James Coplien, Ivar
Jacobson, Norman L. Kerth, and Mary Beth Rosson. Patterns: Cult to Culture. In Pro-
ceedings of the Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations, Austin, Texas, volume 30(10), pages 231-234. October 1995. New York: ACM
Press.

[Fraser+1996] Fraser, Steven, Alistair Cockburn, Leo Brajkovich, Jim Coplien, Larry Con-
stantine, and Dave West. OO Anthropology: Crossing the Chasm. In Proceedings of the
Conference on Object-Oriented Programming Systems, Languages, and Applications, San
Jose, volume 31, pages 286-291. October 1996. New York: ACM Press.

[Fraser+1997] Fraser, Steven, Kent Beck, Grady Booch, James Coplien, Ralph E.
Johnson, Bill Opdyke. Beyond the Hype: Do Patterns and Frameworks Reduce Dis-
covery Costs? In Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications, Atlanta, Georgia. SIGPLAN Notices 32(10), pages 342-344.
October 1997. New York: ACM Press.

[Fusion1993] Coleman, Derek, et al. Object-Oriented Development: The Fusion Method.
Englewood Cliffs, NJ: Prentice-Hall. 1993.

[Gamma1995] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley.
1995.

[Glaser+1967] Glaser, Barney G., and Anselm Strauss. The Discovery of Grounded Theory:
Strategies for Qualitative Research. Chicago, IL: Aldine Publishing Co., 1967.

[GoldbergRubin1995] Goldberg, Adele, and Kenneth S. Rubin. Succeeding with Objects:
Decision Frameworks for Project Management. Reading, MA: Addison-Wesley. 1995.

[Hall1962] Hall, Arthur D. A Methodology for Systems Engineering. Princeton, NJ: Van
Nostrand, ©1962.

[Harel+1998] Harel, David, and Michal Politi. Modeling Reactive Systems with Statecharts:
The Statemate Approach. McGraw Hill, 1998.

[Henney2000] Henney, Kevlin. From Mechanism to Method: Substitutability. C++
Report 12(5), May, 2000.

[Hill+1995] Hill, Laura, Kenneth S. Rubin, John Daniels, Charles Berman, James
Coplien, and Douglas Johnson. Managing Object Oriented Projects. In Proceedings of
the Conference on Object-Oriented Programming Systems, Languages, and Applications,
Austin, Texas, volume 30(10), pages 88-90. October 1995. New York: ACM Press.

Bibliography272
[Jerrell1989] Jerrell, Max E. ÒFunction Minimization and Automatic Differentiation
Using C++.Ó Proceedings of the Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA Ô89), SIGPLAN Notices, 24, 10. October 1989.
pp. 169Ð173.

[Jacobson+1992] Jacobson, Ivar, et al. Object-Oriented Software Engineering: A Use Case
Driven Approach. Reading, MA: Addison-Wesley. 1992.

[Kang+1990] Kang, K., S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report, CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1993.

[Kiczales+1991] Kiczales, Gregor, et al. The Art of the Metaobject Protocol. MIT
Press, 1991.

[Kiczales1994] Kiczales, Gregor. Keynote address at the 1994 ACM Conference on
Object-Oriented Programs, Systems, Languages, and Applications. Portland, OR.
Oct. 23Ð27, 1994.

[Kiczales1997] Kiczales, Gregor. ÒAspect-Oriented Programming.Ó Computing Surveys
28(4es). 1996. p. 154.

[Kuhn1970] Kuhn, Thomas. Structure of ScientiÞc Revolutions. Chicago: University of Chi-
cago Press. 1970.

[Lakoff1990] Lakoff, George. Women, Fire and Dangerous Things. Chicago: University of
Chicago Press, 1990.

[Linger+1979] Linger, Richard C., Harlan D. Mills, and Bernard I. Witt. Structured Pro-
gramming: Theory and Practice. Reading, Ma: Addison-Wesley, 1979.

[Liskov1988] Liskov, Barbara. ÒData Abstraction and Hierarchy.Ó SIGPLAN Notices 23,
5. May 1988.

[LiskovGuttag1986] Liskov, B. H., and J. Guttag. Abstraction and SpecÞcation in Pro-
gram Development. MIT Press, 1986.

[Litman+1997] Litman, D., A. Mishra and P. Patel-Schneider. Modeling Dynamic Col-
lections of Interdependent Objects using Path-Based Rules. Proceedings of the 1997
ACM-SIGPLAN Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA-97), October 1997.

[McConnell1997] McConnell, Steve M. Software Project Survival Guide: How to be Sure
Your First Important Project IsnÕt Your Last. Microsoft Press. 1997.

[Meyer1992] Meyer, Bertrand. Eiffel: The Language. New York: Prentice-Hall. 1992.

[Meyers1992] Meyers, Scott. Effective C++: 50 SpeciÞc Ways to Improve Your Programs and
Designs. Reading, MA: Addison-Wesley. 1992. Note: 2nd Edition published 1998.

[Musser+1994] Musser, D. R., and A. Stepanov. Algorithm-Oriented Generic Libraries.
Software Practice and Experience 24(7), July 1994.

[Musser+1998] Musser, D. R., and A. Siani. STL Tutorial and Reference. Reading, MA:
Addison-Wesley, 1998.

Bibliography 273
[Neighbors1980] Neighbors, J. M. ÒSoftware Construction Using Components.Ó Tech
Report 160. Department of Information and Computer Sciences, University of Califor-
nia. Irvine, CA. 1980.

[Neighbors1984] Neighbors, J. M. ÒThe Draco Approach to Constructing Software
from Reusable Components.Ó IEEE Transactions on Software Engineering SE-10,
1983, 564-574.

[Palsberg+1994] Palsberg, Jens, and Michael I. Schwartzbach. Object-Oriented Type Sys-
tems. Chichester, England: John Wiley & Sons. 1994.

[Parnas1972] Parnas, D. L. ÒOn the Criteria to be Used in Decomposing a System into
Modules.Ó Communications of the ACM,, December 1972. New York: ACM Press. pp.
1053Ð1058.

[Parnas1976] Parnas, D. L. ÒOn the Design and Development of Program Families.Ó
IEEE Transactions on Software Engineering, SE-2: March 1976. pp. 1Ð9.

[Parnas1978] Parnas, D. L. ÒDesigning Software for Ease of Extension and Contraction.Ó
Proc. 3rd Int. Conf. Soft. Eng. Atlanta, GA. May 1978. pp. 264Ð277.

[Plato] Plato. Statesman. Vol. 7 of Great Books of the Western World. Chicago, Il: Encyc-
plopedia Brittanica.

[PLoP1995] Coplien, J. O., and D. C. Schmidt, eds. Pattern Languages of Program
Design. Reading, MA: Addison-Wesley. 1995.

[PLoP1996] Vlissides, J., J. O. Coplien, and N. Kerth, eds. Pattern Languages of Program
Design Ñ II. Reading, MA: Addison-Wesley. 1996.

[PLoP1998] Martin, R., Dirk Riehle, and Frank Buschmann. Pattern Languages of Program
DesignÑ3. Reading, MA: Addison Wesley Longman. 1998.

[Pree1995] Pree, Wolfgang. Design Patterns for Object-Oriented Software Development.
Reading, MA: Addison-Wesley. 1995.

[PrietoDiazArango1991] Prieto-Diaz, R., and G. Arango. Domain Analysis and Software
Systems Modeling. Las Alamitos, California: Computer Society Press of the IEEE, 1991.

[Reenskaug1996] Reenskaug, Trygve. Working with Objects: The OOram Software
Engineering Method. Greenwich: Manning Publications. 1996.

[Rehling1977] Rehling, W. Experiences with HIPO. 5th Annual Conference Principles of
Software Development, Control Data Corporation, November, 1977, 123-154.

[Rumbaugh1991] Rumbaugh, James. Object-Oriented Modeling and Design.
Englewood Cliffs, NJ: Prentice-Hall. 1991.

[Scheißer1996] Scheißer, Robert W. X Window System: Core Library and Standards: X Ver-
sion 11, Releases 6 and 6.1. Digital Press, 1996.

[Selic+1994] Selic, Bran, Garth Gullekson, and Paul T. Ward. Real-Time Object-
Oriented Modeling. New York, NY: John Wiley & Sons, 1994.

[Seng�1990] Seng�, Peter. The Fifth Discipline: The Art and Practice of the Learning Organi-
zation. New York: Doubleday, 1990

Bibliography274
[Shaw1984] Shaw, Mary. ÒAbstraction Techniques in Modern Programming Lan-
guages.Ó IEEE Software 1(4), 1994, p. 10.

[Shaw1994] Shaw, Mary. ÒFormalizing Architectural Connection.Ó Proceedings of the 16th
International Conference on Software Engineering. 1994.

[Simonyi1995] Simonyi, C. The Death of Computer Languages, The Birth of Intentional
Programming. Technical Report MSR-TR-95-52, Microsoft Research, 1995,
ftp://ftp.research.microsoft.com/pub/tech-reports/Summer95/TR-95-52.doc.

[Simos+1996] Simos, M., D. Creps, C. Klinger, L. Levine, and D. Allemang. Organiza-
tion Domain Modeling (ODM) GUidebook, Version 2.0. Informal Technical Report for
STARS, STARS-VC-A025/001/00, June 14, 1996.

[Snyder1986] Snyder, Alan. ÒEncapsulation and Inheritance in Object-Oriented Pro-
gramming Languages.ÕÕ SIGPLAN Notices 21,11. November 1986.

[Stay1976] Stay, J. F. HIPO and Integrated Program Design. IBM Systems Journal 2, 1976,
143-154.

[Stevens+1974] Stevens, Myers, Constantine. ÒStructured Design.Ó IBM Systems
Journal. 1974.

[Stroustrup1986] Stroustrup, B. The C++ Programming Language. Reading, MA:
Addison Wesley Longman. 1997. p. 123. Note: 3rd Edition published in 1998.

[Stroustrup1995] Stroustrup, B. Why C++ isnÕt just an Object-Oriented Programming
Language. Addendum to OOPSLA Ô95 Proceedings. OOPS Messenger 6(4), 1-13, Octo-
ber 1995.

[Stroustrup2000] Personal exchange with Bjarne Stroustrup in electronic mail of
1 May, 2000.

[SwieringaWierdsma1992] Swieringa, Joop, and Andr� Wierdsma. Becoming a Learning
Organization. Reading, MA: Addison-Wesley, 1992.

[Szyperski1998] Szyperski, Clemens. Component Software: Beyone Object-Oriented Pro-
gramming. Reading, MA: Addison-Wesley, 1998.

[Thackara1988] Thackara, John, ed. Design After Modernism: Beyond the Object. New
York: Thames and Hudson, Inc., 1988.

[Tracz1995] Tracz, Will. Confessions of a Used Program Salesman: Institutionalizing Software
Reuse. Reading, MA: Addison-Wesley. 1995.

[Turner1993] Turner, Kenneth J. Using Formal Description Techniques: An Introduction to
Esterel, Lotos, and SDL. Chichester, England: John Wiley & Sons. 1993.

[Ungar+1987] Ungar, David, and R. B. Smith. ÒSelf: The Power of Simplicity.Ó Proceed-
ings of OOPSLA 1987 (SIGPLAN Notices 22(12)). New York: ACM Press, December
1987. pp. 227Ð241.

[Vici+1998] Vici, A. D., A. Argentieri, M. Mansour, J. d;Alessandro, and J. Favaro.
FODAcom: An Experience with Domain Analysis in the Italian Telecom Industry. In
Prem Devanbu et al, eds., Proceedings of the Fifth International Conference on Soft-
ware Reuse, IEEE Computer Society Press, 1998, 166-175.

Bibliography 275
[Vlack1990] Vlack, David. Personal conversation, ca. 1990.

[Wegner1987] Wegner, Peter. ÒDimensions of Object-Based Language Design.Ó SIG-
PLAN Notices 22, 12. December 1987. pp. 168Ð182

[Weinberg1971] Weinberg, Gerald M. Psychology of Computer Programming. Van Nos-
trand. 1971.

[Weiss+1999] Weiss, David M., and Chi Tau Robert Lai. Software Product Line Engineer-
ing: A Family-Based Software Development Process. Reading, MA: Addison Wesley Long-
man. 1999.

[Whorf1986] Whorf, B. J. Cited in The C++ Programming Language, by Bjarne
Stroustrup. Reading, MA: Addison-Wesley. 1986. p. iii.

[Winograd1987] Winnograd, Terry. Understanding Computers and Cognition: A New Foun-
dation for Design. Reading, MA: Addison-Wesley. 1987.

[Wirfs-Brock1990] Wirfs-Brock, Rebecca, Brian Wilkerson, and Lauren Wiener. Design-
ing Object-Oriented Software. Englewood Cliffs, NJ: Prentice-Hall. 1990.

[Wittgenstein1953] Wittgenstein, Ludwig. Philosophical Investigations. New York: Mac-
millan, 1953.

[Yourdon1979] Yourdon, Ed. Structured Design: Fundamentals of a Discipline of Computer
Program and Systems Design. Englewood Cliffs, NJ: Prentice-Hall. 1979.

Bibliography276

	Contents
	Introduction
	Apologia
	Abstraction
	Commonality and Variation
	Software Families
	Domain Analysis
	Paradigm
	Multi-paradigm Design and C++
	Meta-Design
	Method apart from Methodology
	The Organization of the Thesis
	Notations

	Acknowledgments
	Chapter 1
	Thesis Presentation: The Need for Multiple Paradigms
	1.1� Thesis Question
	Abstraction, Intentionality, and the Importance of Design
	Meta-Design
	The relationship between domain and paradigm
	The breakdown of classic domain analysis
	Extending domain analysis with domain relationships
	Negative Variability
	Domain analysis and patterns
	Chapter 1 Overview

	1.2� Domain Engineering and Multiple Paradigms
	1.3� Design, Analysis, Domains, and Families: Term Definitions
	1.3.1� Analysis
	1.3.2� Design
	1.3.3� Architecture
	1.3.4� Domains
	1.3.5� Families and Commonality Analysis
	1.3.6� Dimensions of Abstraction
	1.3.7� Precise Abstraction
	1.3.8� Implementation and Engineering

	1.4� Beyond Objects
	1.5� Commonality and Variability Analysis
	1.6� Software Families
	1.7� Multi-Paradigm Design
	1.7.1� The Language: C++
	1.7.2� Dealing with Complex Families
	1.7.3� Incorporating Patterns

	1.8� Multi-Paradigm Development and Programming Language
	1.8.1� Application-Oriented Languages in FAST
	1.8.2� Domain Analysis and the C++ Programming Language
	1.8.3� Polymorphism

	1.9� Commonality Analysis: Other Perspectives
	1.9.1� Policy and Mechanism
	1.9.2� Variability over Time versus Variability over Space
	1.9.3� Philosophical Foundations

	1.10� Related Work
	1.10.1� Historic Notes
	1.10.2� metaobject Protocols
	1.10.3� Aspect-Oriented Programming
	1.10.4� Generative Programming

	1.11� Summary
	Chapter 2

	Commonality Analysis
	2.1� Commonality: The Essence of Abstraction
	2.1.1� Deductive and Inductive Commonality
	2.1.2� Software Families
	Finding Domains

	2.2� Priming Analysis: The Domain Vocabulary
	2.2.1� The Domain Dictionary
	2.2.2� Design Epistemology

	2.3� Dimensions of Commonality and Commonality Categories
	Figure 2.1: Scalar number and matrix class categories.
	Figure 2.2: Capturing signature commonality.
	Figure 2.3: A family of operator* functions.
	Figure 2.4: Another dimension: Template arguments.
	2.3.1� (Data) Structure
	2.3.2� Name and Behavior
	2.3.3� Algorithm

	2.4� Examples of Commonality
	2.4.1� Structure
	Figure 2.5: Data structure for List.

	2.4.2� Name and Behavior
	2.4.3� Algorithm

	2.5� Reviewing the Commonality Analysis
	2.6� Commonality and Evolution
	2.7� Summary
	Chapter 3

	Variability Analysis
	3.1� Variability: The Spice of Life
	3.2� The Commonality Base
	3.3� Positive and Negative Variability
	3.3.1� Positive Variability
	3.3.2� Negative Variability

	3.4� The Domain and Range of Variability
	3.4.1� The Text Editing Buffers Example
	3.4.2� Good Parameters of Variation

	3.5� Binding Time
	3.5.1� Binding Time and Flexibility
	3.5.2� Are Objects about Deferred Binding?
	3.5.3� Efficiency and Binding Time
	3.5.4� Binding Time Alternatives
	Source Time
	Compile Time
	Link (and Load) Time
	Run Time

	3.5.5� An Example
	Figure 3.1: A fully general implementation of text buffers.
	Figure 3.2: A general source structure that allows flexibility in implementation.

	3.6� Defaults
	3.7� Variability Tables
	3.8� Some Variability Traps
	3.9� Reviewing the Variability Analysis
	3.10� Variability Dependency Graphs
	Figure 3.3: Domain Dependency between EncryptionBuffer and Trapdoor.
	Figure 3.4: Adding the CharacterSet dependency to Figure 3.3.

	3.11� Summary
	Chapter 4

	Application Domain Analysis
	4.1� Analysis, Domain Analysis, and Beyond
	4.1.1� Traditional Analysis
	4.1.2� System Families: Domain Analysis
	Family Members in the Application and Solution Domains
	Balancing Abstraction and Specification
	Levels of Domain Abstraction

	4.1.3� Application Domain Analysis and Solution Domain Analysis
	4.1.4� The Activities of Domain Analysis

	4.2� Subdomains within a Domain Analysis
	Figure 4.1: Subdomains in the domain of Text Editing.
	4.2.1� Domain Analysis and Reuse
	4.2.2� Subdomain Modularity
	4.2.3� Iteration and Hierarchy

	4.3� The Structure of a Subdomain
	4.3.1� Frameworks as Subdomain Implementations
	4.3.2� The Activities of Subdomain Analysis

	4.4� Analysis: The Big Picture
	Figure 4.2: The domains of analysis.

	4.5� Summary
	Chapter 5

	Object-Oriented Analysis
	5.1� About Paradigms and Objects
	5.1.1� Classes and Objects
	5.1.2� Liskov Substitutability Principle
	5.1.3� Virtual Functions
	5.1.4� Object Orientation: Yet Another Definition
	Positive versus Negative Variability
	Binding Time
	Defaults

	5.1.5� The Suitability of Object-Oriented Design
	Language and Paradigm

	5.2� Object-Oriented Commonality Analysis
	Figure 5.1: The domain dictionary for digital circuit design.
	5.2.1� Commonality Analysis
	5.2.2� Variability Analysis
	Figure 5.2: The Logical Component domain.

	5.3� Summary
	Chapter 6

	Solution Domain Analysis
	6.1� The “Other” Domain
	6.1.1� Analysis and Language
	Figure 6.1: Comparing a C++ design and Smalltalk design of class Stack.

	6.2� The C++ Solution Domain: An Overview
	6.3� Data
	6.4� Overloading
	6.5� Class Templates
	6.5.1� Template Specialization

	6.6� Function Templates
	6.7� Inheritance
	Figure 6.2: A unified subtype/implementation inheritance hierarchy for Number.
	6.7.1� Aligning Domains
	Figure 6.3: Inheritance to reuse implementation and structure, not behavior.
	Figure 6.4: A Bridge pattern for Number, adapted from [Gamma1995].
	Figure 6.5: Encapsulation to reuse implementation and structure, not behavior.
	Figure 6.6: Multiple inheritance for implementation and interface.
	Figure 6.7: Separate implementation and subtyping hierarchies using Bridge.

	6.8� Virtual Functions
	6.9� Commonality Analysis and Polymorphism
	Figure 6.8: The Wegner polymorphism taxonomy.

	6.10� Preprocessor Directives
	Inheritance versus #ifdef

	6.11� Negative Variability
	6.11.1� Deciding When to Use Negative Variability
	A Template Example
	Figure 6.9: A common Stack data structure.
	Figure 6.10: A simple stack.

	An Example of Argument Defaulting
	An Example of Data Cancellation
	An Example of Behavior Cancellation
	An Example of Contravariance
	An Example of #ifdef

	6.11.2� Negative Variability versus Domain Splitting
	An Example of Behavior Cancellation
	A Template Example
	An Example of Data Cancellation
	An Example of #ifdef

	6.11.3� A Summary of Negative Variability

	6.12� Extended Solution Domain Constructs
	6.12.1� Multiple Inheritance
	First case: Multiple Domains
	Second case: Mix-ins

	6.12.2� Design Patterns
	Patterns Beyond Language
	Patterns and Multi-Paradigm Design
	1. As aliases for commonality/variability pairs that emerge from the solution domain analysis

	Aliases for Solution Domain Constructs
	Higher-Level Than Programming Language Constructs
	Figure 6.11: Structure of the Bridge pattern (adapted from [Gamma1995], p. 153).

	Negative Variability
	Multi-Paradigm Tools as a Patterns Adjunct

	6.13� A Summary of the C++ Solution Domain: A Family Table
	6.14� Relative Power of Paradigms
	Chapter 7

	Simple Mixing of Paradigms
	7.1� Putting It All Together: An Overview of Multi-Paradigm Design
	7.1.1� One Size Does Not Fit All
	7.1.2� Degrees of Complexity
	Single Domain, Single Paradigm
	Multiple Decoupled Subdomains, Single Paradigm
	Multiple Decoupled Subdomains, Single Paradigm for Each Subdomain
	Multiple Decoupled Subdomains, Multiple Paradigms for Each Subdomain
	Multiple Subdomains in a Directed Acyclic Graph (DAG), Multiple Paradigms
	Circular Subdomains
	Figure 7.1: Relationships in classic MVC and in the more coupled EntryForm example.

	7.2� Activities of Multi-Paradigm Design
	1. Divide the problem into intuitive subdomains (Section�4.1.4).

	7.3� Example: A Simple Language Translator
	7.3.1� Partitioning the Domain into Subdomains
	Choosing a Partitioning
	Domain Analysis
	The “Glue” Domain
	Domain Analysis and Iteration

	7.3.2� Finding the Right Paradigms within a Subdomain
	The Domain Vocabulary
	Figure 7.2: Symbol Management vocabulary.

	Commonality Analysis of the Domain
	1. Abstractions in the external interfaces of the domain
	Figure 7.3: Variability dependency graph for commonality domain: Name.
	Figure 7.4: Reduced variability dependency graph for commonality domain: Name.

	Returning to the Question of Line Numbers and Labels

	7.3.3� Implementing the Design
	Figure 7.5: Some C++ class interfaces capturing the analysis of Table�7.1.

	7.4� Design, Not Analysis
	7.4.1� Analysis, Architecture, or Design?

	7.5� Another Example: Automatic Differentiation
	1. Calculate the derivative directly as the slope of the function at a given point, dividing the ...
	Figure 7.6: Automatic differentiation domain vocabulary.

	7.5.1� Basic Operations Domain
	7.5.2� Degree Domain
	7.5.3� Value Domain
	Figure 7.7: Variability dependency graph for automatic differentiation.

	7.5.4� Evolving the Design

	7.6� Outboard Paradigms
	7.7� Management Issues
	7.7.1� Occam’s Razor: Keeping Things Simple
	7.7.2� Divide and Conquer
	Capturing the Big Picture
	Notations

	7.7.3� Beyond C++
	7.7.4� Domain Expertise
	7.7.5� Systems Engineering and Process Issues

	7.8� Summary
	Chapter 8

	Mixing Paradigms Within a Domain
	8.1� Method and Design
	8.2� Commonality Analysis: What Dimension of Commonality?
	8.3� Multiple Dimensions of Variability in One Set of Commonalities
	8.3.1� Variability Analysis
	Figure 8.1: Variability dependency graph for the Text Buffer commonality analysis.

	8.3.2� Expressing the Commonality and Variability in C++

	8.4� Codependent Domains
	8.5� Summary
	Chapter 9

	Codependent Domains
	9.1� Codependent Domains
	9.1.1� Generalizing Domain Analysis to Multiple Domains
	9.1.2� A TextBuffer Example
	Figure 9.1: Dependency graph for the Output Medium commonality analysis.
	Figure 9.2: Combining two domains of the application.
	Figure 9.3: Reduced variability dependency graph.

	9.1.3� First Case: Compile-Time Binding
	9.1.4� Second Case: Buffer Type depends on Output Medium Type at Run Time; Output Medium Type Dep...
	Alternative Solutions

	9.1.5� Third Case: Buffer Type Depends on Output Medium Type at Run Time; Output Medium Type Depe...

	9.2� Design and Structure
	Figure 9.4: Class diagram for the design of Section�9.1.3 (first design).
	Figure 9.5: Class diagram for the design of Section�9.1.4 (second design).
	Figure 9.6: Class diagram for the design of Section�9.1.5 (third design).
	9.2.1� A Note on Binding Time

	9.3� Another Example: A Finite-State Machine
	Figure 9.7: Domain diagram for the FSM example.
	Figure 9.8: Class diagram of the solution.

	9.4� Pattern-Based Solution Strategies
	9.5� Summary
	Chapter 10

	Conclusion
	10.1� Recap
	10.1.1� Abstraction and Intentionality
	10.1.2� Meta-Design
	10.1.3� The Relationship between Domain and Paradigm
	10.1.4� Multiple paradigms within a domain
	10.1.5� Dependencies between domains
	10.1.6� Theory of Negative Variability
	10.1.7� Regularization of Ad-Hoc Design Patterns

	10.2� Other Paradigms
	10.3� Scalability
	10.4� Future work
	10.4.1� Taxonomy of Abstractions
	10.4.2� Taxonomy of Paradigms

	Bibliography

