Supporting DevelopersO Coordination in The IDE

Anja Guzzi', Alberto Bacchelli Yann Riche Arie van Deursen
Delft University of Technology Microsoft Delft University of Technology
Delft, The Netherlands Redmond, WA, USA Delft, The Netherlands
{a.guzzi, a.bacchelli} @tudelft.nl yannr@microsoft.com {arie.vanDeursen} @tudelft.nl
ABSTRACT that primarily helps individual programmers to be more ef-

Teamwork in software engineering is time-consuming and fective in the classical edit-compile-run cycled].
problematic. In_this paper, we explore how to better sup-
port developersO collaboration in teamwork, focusing on thein teamwork within the IDE. Our research is set up in two

Zzggz‘:)em'gﬁlsr%ﬁgtﬁ#%% tp(?gé'; giﬂ%ircl:ltri]r?glg (;Z?ili'gﬁ\%?;e_dphases: An_exploratory @nvestiga_tion,_followed by the design
vestigation, we learn that developers® teamwork needs mostl)?nd evaluation of a medium Pdelity click-through prototype.

regard coordination, rather than concurrent work on the sameln our investigation, we explored how developers in large de-
(sub)task, and that developers successfully deal with scenarvelopment teams experience collaboration and identify prob-
ios considered problematic in literature, but they have prob- lems they face when working in team. To this end, we
lems dealing with breaking changes made by peers on the(1) conducted a brainstorming session with 8 industry experts
same project. We derive implications and recommendations.working on the development of IDE solutions at Microsoft;
Based on one of the latter, we analyze the current IDE support(2) identibed three core opportunities for the design of im-
for receiving code changes, Pnding that historical information proved collaborative solutions, which we rebned through
is neither visible nor easily accessible. Consequently, we de-semi-structured interviews with developers; and (3) inter-
vise and qualitatively evaluateEBLEVUE, the design of an viewed 11 professional developers with various degrees of
IDE extension to make received changes always visible andexperience and seniority, from 9 different companies to con-
code history accessible in the editor. textualize those opportunities.

In this paper, we explore how to better support collaboration

In our investigation, we report how, while our participants
reported collaborating with others on code, they spend a lim-
ited amount of time actively engaged in collaboration. As a
consequence, one of the core issue emerging revolves around
managing dependencies between activities, rather than work-
ing together contemporarily on the same (sub)task. Our in-
terviews with developers also conbrm that issues arise due
INTRODUCTION _ to the lack of informationi(e., imperfect information) when
Software engineering is often a team effort. It is not un- working on shared code, and uncover existing strategies to
usual for hundreds of professionals collaborate to design, prevent or resolve them. Dependencies are often mediated
build, evaluate, and maintain software systemd.[How- through code, in the form of code changes. Yet, our inves-
ever, teamwork remains one of the most difbcult and perva- tigation illustrates how dealing with code changes remains a
sive problems of software engineering, and developers face acommon source of issues despite existing tools and strategies
plethora of teamwork problems at different level§][when working on the same project. This emerges as one of

Key to this teamwork are tools and processes that revolve the main causes of frustration in interviewees® experience of
around it, source code management, and development. Mosteamwork. From our Pndings we derive implications and rec-
of developersO time is spent within the Integrated Deve|op_ommendat|ons for improving coordination in modern IDEs.

ment Environments (IDEM®], thus researchers are trying to | the second phase of this study, we focus on an investigation
leverage them by augmenting their collaborative capabilities of how to improve handling teams code changes from within
(e.9.,[17, 27, 32, 33]). Nevertheless, the IDE remains atool the |DE. Using common usability heuristicsg], we de-

' Anja Guzzi was an intern with the User Experience Team, Mi- scribe olppolrtunltles.to better support teamwork in the IDE by
crosoft Developer Division, Microsoft, Redmond, USA in the sum- Supporting information needs about change history. Conse-
mer of 2012 when this work was carried out. quently, we leverage this analysis to: (1) derive requirements
for an IDE extension, (2) describe the design &LBEVUE,
a prototype fulblling these requirements, and (3) iteratively
evaluate a design calledeBLEVUE with 10 senior develop-

This paper is a pre-print of: Anja Guzzi, Alberto Bacchelli, Yann Riche, Arie van i i
Deursen. Supporting Developers Coordination in The IDE. In Proceedings of the 18th ers from different companies and backgrounds.

ACM Conference on Computer Supported Cooperative WQRCW 2015March . H el
1418, 2015, Vancouver ch, iy P BELLEVUE makes incoming code changes always visible
Copyright 2014, Software Engineering Research Group, Department of Sofware during development, eases the use of that history in the con-
Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, text of the developerf)s tasks and Rows. It shows historical
Delft University of Technology. All rights reserved.

No part of this series may be reproduced in any form or by any means without prior

written permission of the publisher.

Author Kengrds
DevelopersO coordination; IDE extension; qualitative study.

ACM Classibcation Keywords
D.2.6 Software Engineering: Programming Environments

information within the active code editor to let users modify ~ |p Overall In current team Team
the code without context switch. To achieve thig BEVUE experience| Time Role | Size
takes already available historical change data and offers an p1 7.5 years | 4.5 months dev 4
interactive view that shows detailed historical information for D2 10 years 6years devlead 7
Ples and code chunks with respect to a previous version. D3 2months | 2 months juniordev 4
D4 15years | 1.5years sqldev 5
EXPLORATORY INVESTIGATION: METHODOLOGY D5 | 20years | 1Oyears seniordey 4
In this section, we debne the scope of our research, and our D6 | 25+years| 7years seniordev| 15
research methodologies (illustrated in Figtyedivided into D7 | 2lyears | 2weeks seniordey 10
the following main steps: brainstorming, semi-structured in- D8 | 25+years| 10years seniordev| 16
terviews, and data analysis with card sorting. D9 1years 1years dev 5
D10 | 15years 5 years dev lead 5
D11 | 20years 6 years seniordey 11

Scoping

We scoped our initial focus by tapping in the collective
knowledge of eight industry experts engaged in the design
and implementation of development tools (including one of To analyze our data, we created the 562 cards from the tran-
the co-authors, and the Prst author as researcher intern). Tacribed coherent units and the memos. Each card included:
do so, we organized a brainstorming on the challenges andthe source (transcript/memo), the intervieweeOs name (if from
opportunities revolving around team development. The brain- the transcript), the unit/memo content, and an ID for later ref-
storming led to the identibcation of the following areas for erence. We usedard sorting[69] to extract salient themes,
further investigationawarenesgi.e., knowing other peopleOs leveraging a combination of open and closed card sorts. After
work to anticipate issues and to proactively seek out informa- macro categories were discovered, we re-analyzed their cards
tion when needed)york dependencigs.e., anticipating and to obtain a bner-grained categorization. Finally, we organized
understanding who | depend on and who depends on me),the categories usingfbnity diagramming52].

andbreaking changeé.e., anticipating what and whom will

be impacted by the breaking change | am about to release) EXPLORATORY INVESTIGATION: DATA

As we will explore in more depth later, those areas describe |n this section, we present the results of our exploratory inves-
times where lack of information can lead to resource- and tigation. When quoting raw data, we refer to the individual
time-consuming situations. Such situations are common notcards using a [[.Y] notation, whereX represents the devel-
only in development situations, but in teamwork in general oper, andy (optional) the cardd.g.,[D2.03] refers to card 03
where situation ofmperfect informatiors the norm 88]. from the interview with D2).

Table 1. Interviewed developers

Consistently, literature reported that developers often have -)

difbculties facing questions such a¥Viat have my cowork- ~ 1eamwork from the developersO perspectives _
ers been doing® ®ow have resources | depend on According to the interviewees, collaboration in teamwork is
changed® @vhat information was relevant to my tagk? ~ dePned by a wide spectrum of activities:

Qwhat code caused this program staep, 26, 45, 68] In our Communication- Collaboration is communication: As
work, we iterate on t_hls by providing a more m-depth view of D8 said: @ is all about communication. If you have good
some of those specibc problems, and by illustrating and val- communication, you have good collaboration Commu-
idating ways of addressing them within the Bow of activitieS pication can be both one-to-one and one-to-many, can be

developers engage in. formal or informal, and goes through different channels.
Channels are Oconventional,O such as email and instant
Semi-structured Interviews messaging (IM), but also more domain specibc ones, such

To gather more details about the context in which those is- ~ as interactions via project management toelg(source
sues emerge, and current strategies for addressing them, we code management systems and requirement tracking sys-
conductedsemi-structurednterviews B0 with professional tems) and source code; as D4 explains: O[to communicate]
developers. In total, we interviewed 11 developers from a typically we usgIM], but we also have an internal wiki
varying in experience, team sizes, and companies. Thble thatwe us®. [D4.02, D7.09, D8.(01,02)]

summarizes intervieweesQ characteristics. Helping each other by sharing information As D9 said:

We conducted each 90-min interview on the phone, and tran- GCollaboration is just sharing information and ide@s.In
scribed the interviews for latter analysis. After each inter- particular, according to interviewees, collaboration means
view, we analyzed the transcript and split it into smader being proactive and sharing useful information to make it
herent units(i.e., blocks expressing a single concept), which easier for others to complete their work d., Onake[the

we summarized by using an interview quotation or an ab- acquisition of informationfs easy as possible on the other
stractive sentence. In addition, the interviewer kept notes co-workers, so that they donOt have to str@giz7]). This
(i.e., memagof relevant and recurring observations in a doc- aspect of collaboration involves voluntarily sending notib-
ument iteratively rebPned and updated. Out of the interviews, cations €.g., -YIDPfor your informatio® messages) and
56 memos emerged. starting discussions(g., detOs coordinate on this change

Brainstorming
9 Participants

W

Interview
Guidelines
i 11 Practitioners

)

J
=
=

Literature

Selected Areas

______ B é é]

b= [

RNy - 56 Memos |

Interview ||::(>| [_ :
Transcript Lo || 506 Units

: . : - from Transcript :

B o=
| f—
21 areas of ol
mvestigation o
|
o

Observations 8
& Interviews

888

@

@

Cart Sort on 562 Units

Figure 1. The research method applied in the brst phase

| need to mak®) [D7]. Resource sharing involves not

Inefbcient Task Assignment

only knowledge on the actual source code of the project, Scenario.One developer is assigned to a task, while another

but also information from external resources, for example
about new technologies or coding style; as D9 statéde O
also like send each other things, like, style tips and like in-
teresting articles about how other companies do thibgs
[D2.02, D7.(02,03,06), D9.(01,04,05)]

Knowing what others know Collaboration, from the inter-

vieweesO perspective, also means to stay aware of the ex-

perts on the different parts of the systeie.(Ghe domain

expert®) and to understand artifacts and code changes

done by colleagues. D11 explains: O[collaboratisn]
keeping track of what everybody is working on and being
able to know how the different pieces are in pl@ceAc-
cording to interviewees, knowing what the others know has
the aim both of preventing problems and of reacting faster
when they occur. [D2.01, D4.03, D7.04b07, D11.47]

Working on the same goal, doing different thingsOverall,
developers see collaboration as working toward the same
goal (.g., product releases), by acting in parallel on
different parts of the same projeet§.,working separately
on different code artifacts): @dllaboration is we are all
working towards the common goal, but maybe working
on different parts of it, but these components do inter-
actO [D7]; O[Collaborating meamtk divided up the work
[...], we went off these directions, and as things started
to merge together, we go dmerging]on a case by case
baseO [D3]. [D1.2, D3.01, D4.01, D7.01, D9.(02,06)]

Dealing with imperfect information in teamwork
To investigate how developers deal with imperfect informa-

is already working on a similar or related task. This intro-
duces inefbciencies in the team (and potential collisions).

Related literature.Software engineering researchers have

recognized task partition and allocation as important en-
deavors in the context of teamwork4, 46]. If depen-
dencies and common traits among tasks are not correctly
handled, developers can reduce their efbciency and gener-
ate unexpected conf3ict37]. Literature suggests different
techniques, with varying results, for efpcient task assign-
ment €.9.,[16, 24]). In particular, the assignment of bug
bxes (or new features to implement), from a repository of
issues or requests to the most appropriate developers, is
one of the main instances of task assignment investigated
by researchersl]. Researchers reported that bug triaging
is a time consuming task, which requires non-trivial infor-
mation about the system, and that often leads to erroneous
choices P]. A number of techniques has been devised to
tackle the triaging probleneg.g.,[53, 41].

InterviewsO outcom@lthough considered realistic, our par-

ticipants did not see this scenario as a core issue. In fact,
the task assignment processes of teams are in general con-
sidered effective to prevent the problematic scenario to take
place. In some teams supervising Pgueeg.(managers)

do the task assignmerg.@.,O[a new taslgoes to a man-
ager, who decides whom to ass@fD8], and Be boss

will tell you about a taskto do]O [D9]); in the other teams,
tasks are divided during team meetings, with various de-
grees of developprs@ interactierg(, Qe are using daily
SCRUM meetings [D1], and We break up the code, and if
the[task]is in your code, itOs yo®gD5]).

tion, we outlined three concrete teamwork scenarios in which Simultaneous ConRicting Changes
the existence of imperfect information can generate problems.Scenario.Developers bnd themselves in a situation where

The scenarios were derived from teamwork situations com-
monly described as problematic in literature.

there is a merge conRict.€., when different people are
touching the code at the same time).

Related literature.A recent signibcant effort in the software time (e.g., Onore than yead [D2]) or when it resulted in
engineering research community is devoted to detect con- large operational or maintenance costgy(,Qhis [break]
current modibcations to software artifacesd., [35, 36, was costing the company many thousands of dollars per
59, 65]). In fact, developers making inconsistent changes minuteO [D7]).
to the same part of the code can cause merge conf3icts when However, when the origin wasnternal to the com-

changes are committed to the code repository, which leads -~ ; ;

o X ' pany/team, participants reported strong negative emotions
to wasted developersO efforts and project delbgs4p, (e.g.,frustration). This seemed in part due to the mismatch
66]. Grinter conducted one of the brst Peld studies that peryeen the expected communication that is made possi-
investigated developersO coordination strateg®@s She ble by being in the same company/team, and the OwasteO

observed that it is sometimes difPcult for developers (even ¢ ime spent bnding the cause of the issue, which might in
for expert ones) to merge conBicting code without commu- 4 be resolved relatively quicklye(g.,O spend a couple

nicating with the other person who worked on @ module. ot o5 to pnd out the errdr..] Pxed in 5 minute€ [D3]
Later, de Souzat al, in an observation of the coordination and Ospent a day bxing the problem | spent three days
practices of a NASA software team, observed that develop- pndingO [D8]). Generally, breaking changes leading to
ers in some cases think individually trying to avoid merg- gy niactical errors were not considered an issue, because
ing, while in others think collectively by holding check-ins ey could easily be spotted with static analysis tools (e.g.
and explaining their changes to their team membt} [pre-compilers) and bxed. In effect, those particular breaks

Interviews® outcom@ur participants reported only rarely were considered as a direct consequence of the lack of co-
encountering a situation where more than one person was Ordination effort from the person introducing the breaking
working on the same ble at the same timed@onOt run code [D1]. Some of our participants insisted that breaking
into those situations a 16 [D2]). Most of our partici- changes when the origin of the break is internal to the team
pantsO teams were organized to make developers work on OF company should be handled more smoothly and pro-
different parts of the system, with a key person in charge ~ actively. For example, some would prefer stricter rules to
of coordinating development to prevent those issues, typ- avoid internal breaking changespople breaking otherOs
ically a lead developer or an architect. Some participants ~People codd...], 10d like to see management being more
also used technical solutions to avoid concurrent editg (rigorous about iO [D8].

QVe put a lock onthe ble] so it does not get edited

[by others]O [D1]). When a merge conRict happens, our Receiving a code change

participants reported resolving it quickly and easiyq, Managing internal breaking changes is the most problematic
Orhe best and quickest solution you have is to undo, we Scenario that emerged from our analysis, in this section, we
roll back and[Px it].O [D1]; @pically, it is solved really ~ analyze how developers deal with changes made by peer de-
quickO [D2]), and often using merging tooésd.,Gve donOt ~ velopers working on the same project.

have to do much manuafly [D8]). Although automatic
merging was used, our participants also explained that they

malnua”y cr(;ecked each confSict, revealing that it is not en- 5 ,omatic emails from versioning systems). However, they
tirely trusted. mostly did so to discover whether they had an impact on their
Breaking changes own code. While they are not interested in building a holistic

Scenario.A developer/team changed some parts of the code, View of the whole code base, they use this approach to dis-

rendering the work of another developer or team unusable cOver whether the changes will impact their own work. In
or obsolete. doing so, they brst need to assess how relevant the change

is to their current or upcoming work to decide whether or

Related literature Researchers consider breaking changes not to investigate further. In some rare occasions, develop-

problematic, not only for developers who receive the ers use this opportunity to explore otherOs work not as it im-

change and have to understand and adapt their code, bupacts theirs, but from a style/aesthetics perspective, looking

also for developers who are making a change that might at coding styles, norms, approaches, and solutions, especially

break the functionalities of many client8][Literature is changes are emitted by a respected colleague (for learn-

shows investigationse(g.,[22]) on the effect of dependen- ing/inspiration) or a novice (for peer reviewing).

cies that break other peopleOs work, and proposed methods

o suiress subseauentpraems atth sl of o sngk, ', 01 P2TCRELS ehn e o ey e
system €.9.,[10, and ecosystems(g.,[32, . h P
y 9.l) 4 G-l L complain regarded the lack of coordination that they felt

InterviewsO outcom&he reaction of our participants was should have accompanied the changg (they would have
different according to therigin of the breaking changes. expected an Oheads upO email). However, in the case of clear
When the origin was considered to &eernalto the team syntactic errors€.g., compilation errors, or runtime errors
or company or when participants felt they had opportunity generating a stack trace), participants did not feel the kind of
for neither intervening nor displaying their disappointment frustration they expressed in the case of semantic ereags (
to Othe breaker®, they accept the breaking changes wittaused by a library that changes some sorting order, there-
no strong negative emotions but rather as inevitable. This fore impacting the dependent code) or unclear alteration in
happened even when resolving the issue might take longthe behavior. In fact, semantic errors required participants to

Our participants reported that they investigated changes in
the code-base when they were notibed of theng.(via

perform a deeper and more time-consuming analysis to un-
derstand their cause [D3.(47,49), D8.(28,29,36)].

Once they found the cause, they explained they proceeded to

measure the impact on their code by, for example, measur-

ing how many Ples or lines of code needs to be changed (as3.

D8 explained: Omeasure the impact of a chanfieoking at]

how many Ples/lines it affects. A few? Hundr&asJsually,

the developers receiving the breaking change were those au
tomatically responsible of adapting and bxing their own code.

1. They spend most the time doing individual work;

2. Most of their interaction is to coordinate.§., through
daily stand-ups);

In their work, collaboration happens infrequently and on a
need basisd.g.,with (bi-)weekly sprint meetings).
4.

Most of the time, their intention for collaboration is coor-
dination leading to individual work.

However, when a change had a deep impact on the code-basey abstracting the explanations of interviewees, we model

and required more information about the chargg.(the ra-

developersO interaction in three levels (from lowest to high-

tionale of the change) and the code-base, developers usuallgst degree of interaction): individual work, coordination, and

wanted to contact the author.

Participants also reported that, when the change introduced
defect, those receiving were responsible for deciding to ble
an issue report against the change to the change awtipr (
D5 explained: Dthe bug is in your code, itOs your bug to
px.[...] | send a bug requed) [D3.(06,09,31), D5.06], o,
occasionally, if the bx took little time, they would directly
change the code to bx it (D3 saidtf s small | just bx it
and notify the authad) [D3.59, D5.107, D8.38, D9.60]. The
time spent bxing the problem in the code does not seem to
bring frustrationper se(e.g., Diagnosing is almost always
harder than to bx it. With the majority of bugs, once you
know where the problem is, itOs easy O 28.29]). The
rationale to Px it directly is that the developer already has
the necessary information, which would require time to share
with the author of the faulty code.

Some participants mentioned that the lack of testing con-
tributes to faulty changes being committed to the repository
(e.g.,Qve are really bad at testinf..], you pull and you get

a ble you try to run and it faid [D9], @ 10d tested it better,

I wouldn®t have put [this code] in the bldD5]). Never-
theless they also warned that running all the tests for each
change would be too expensiveallQests, to run them all,

it would take 3 weeks. Unfeasible to take 3 weeks for each
check i) [D6]). They also warned that testing performed on
a setup might unreliable on a different onavéQest and itOs
all good, but then they test on their end and it might break
[...]. 1tOs something to do with customizin¢D?2]), and that
many semantic changes could not be detected by testerfO

if there are tests that chedknost] things, youOd still end up
with edge caseg...] You still need to see that you break, and
then react, and then bx0t[D6]).

EXPLORATORY INVESTIGATION: INTERPRETATION

Teamwork Collaboration Is Coordination

The terminology used in many disciplinesl] debnes coor-
dination as Managing dependencies between activifiesnd
collaboration asi2ers working togethé. In this light, what
participants consider as collaboration in teamwork is mostly
coordination needed to organize the individual work toward
achieving a shared goal.

By analyzing the data from the interviews, coordination
emergedNafter individual workNas the dominant interaction
level when working in team, rather than collaboration. In par-
ticular, our participants described that:

collaboration. Individual work corresponds to no interaction

4e.g.,a developer working on her own), while collaboration

means developers working together at the same time on the
same (sub)taslke(g.,pair programming). Coordination is an
intermediate level of interaction, where developers interact
but are not working together on the same (sub)tasix {dur-

ing task assignment).

An activity is a working state that can be placed as a point
on the corresponding level of interaction. In a set of activi-
ties done to accomplish a certain subtaisi (Oworking sit-
uation®), particular events often serve as a transition between
levels of interaction, for example, steps from individual work
to coordination ¢.g.,O[when a Ple is lockede just[ask]:
Ohey what are you working on? And then when you think |
can do it?0 to the authdr[D2.10]), and from coordination
to collaboration €.g., Gometimes wg..] get together and
talk about[similar things] then realize how we can do these
things together and do them toqeth‘b[DllAS]). Figur@
depicts our model of developersO interactions.

collaboration ---

interaction
level

coordination ---

individual work ---

working situation
Wws1

working situation
ws2

Figure 2. Model of developersO interactions in working situations

Figure 2 shows two working situations: In the pbrst (WS1),
a developer doing individual work asks another developer to
make a change in their code.g., asked one of the guys:
@...] | need a method that would retuffia special object]
can you writdit] for me?0 He was able to wrjt§ and knew
exactly where to gb [D3.(09,15)]). This requires going from
individual work (A1) to coordination (A2) when asking to
make a change to the other, and back to individual work (A3)
when they reach an agreement, without reaching a state of
collaboration. In the second situation (WS2), two developers
decide to work together on a subtask. This requires moving
from individual work (A4) to coordination (A5) when they
decide, then to collaboration (A6) for the actual work.

The steps between the different levels of interaction in the
model are not necessarily discrete: Intermediate interaction

levels can be reached. For example, while the activity of task

assignment can generally be placed on the coordination level,

when the task assignmentdscussed together in a meetiihg
can be put on a level between coordination and collaboration.

Implications

Our participants report that most of their time is spent in do-
ing individual work, while, unexpectedly, they report to spend
very little time collaboratingon the same subtask. A direct
consequence is that interactions revolving around coordina-

tion are a more actionable area, with better research oppor-

tunities and with greater potential impact, than areas consid-
ering purely the collaboration aspects. For example, better
support to communication would have more relevance than
tools for concurrent real-time coding.

In addition, techniques for supporting information sharing
among developers should take into account that developer
spend most of their time doing individual work. Considering
that most of this individual work is spent in the development
environment (the IDE)48], tools that support coordination
within the IDE have potential to lead to greater impact.

The role of information.

In our study, we uncovered how available information was
pivotal in transitioning between levels of interaction (Fig-
ure 3). This happened when our participants acted on infor-
mation they had already acquired earlier, reacted to incom-
ing information, or sought out to gather new information, for
example, through communication or by understanding code
changes done by colleagues.

informatiof

mformauof

collaboration

interaction

coordination
level

individual work

Figure 3. The role of information in developersO interaction

Researchers have been studying the importance of infor-
mation sharing for teamwork over the years from different
angles. For example, Cataldst al. introduced the no-
tion of socio-technical congruencend provided evidence

that developers who share information when making changes

S

the problematic scenarios require information to be shared in
two ways: (1) via direct communicatioe.g.,during a meet-
ing), and (2) by making it visibleg(g.,in a tool).

Needed Information

Scenario ‘ Communicated Visible
Task assignment v v
Simultaneous changes X v
Breaking changes X X

Table 2. Information in investigated scenarios

Table2 shows that for non-problematic scenarios, the needed
information is communicated or visible. In the case of task
assignment, the inefpciencies are avoided by centralizing the
task assignment to the team leader, who has all the informa-
tion OvisibleO in mind, or by conducting group meetings in
which the information is communicated. Other researchers
report evidence of this behavior: Beget al. described
that industrial program managers and developers have reg-
ular team meetings to effectively prioritize bugs and to co-
ordinate component completion schedulgs and Guzziet

al. reported that when open source software developers meet
in person, they manage to advance the coordination of their
projects better3l]. In the case of simultaneous changes that
were not avoided with the team policiése(, through modu-
larization and technical locks), the information necessary to
solve the merge confict is immediately visible through the
merge tool. In their analysis of parallel development prac-
tices, de Souza and Redmiles similarly reported that issues
were averted through the mediation of conbpguration manage-
ment tools 2]. In the case of breaking changes, we sug-
gest that the needed information is neither communicated in
time nor easily accessible/visible. As a result, developers can
spend a long time bnding the information they need to coor-
dinate. This is in agreement with other studies that report how
breaking changes are due to missing information and lead to
signibcant loss of time(g.,[61]).

Implications

Our analysis showed that the efforts spent in gaining the in-
formation developers are missing can be a source of nega-
tive emotions. This underlines the importance of information
sharing practices, both active.§.,communicated) and pas-
sive (e.g.,visible via a tool).

in dependent software components complete tasks in lessResearchers proposed a number of toelg.(Palanbr p5]

time [15]. Other researchers similarly showed that missing in-
formation correlates with coordination problems and project
failures [L4, 63, 47]. Ko et al. analyzed the information needs
of developers in collocated teams and found they have dif-
Pculties in answering questions related to information about
colleaguesO work and software component dependefjes [

From our interviews, developers reported to know how to deal
with the investigated scenarios involving imperfect informa-

and FASTDashq]) to detect merge conRicts and tested them
in laboratory settings with seeded confEicts. These tools
helped developers to spend less time to resolve conRicts and
encouraged communication. An interesting venue for future
research is to verify the overall impact of these tools on teams
whose structure maps the software architecture, as our partic-
ipants reported not encountering this issue.

In addition, in most of our investigated scenarios, we ob-

tion, except when they received an internal breaking change.served thatNunexpectedlyNdevelopers already had means to
We suggest that this is connected to how easy it is to accesgleal with missing information, or did not considered these
the information they need to address the problem. Analyz- scenarios as issues. In contrast, the results of the study by
ing the ways developers/teams successfully deal with a con-deSouza and Redmiles put in evidence the signibcant differ-
dition of imperfect information, we see that the solutions to ences that two unrelated companies have when they deal with

the management of dependencies and the underlying infor-strikingly similar practices: In both studies these teams avoid
mation sharing22]. This suggests that what is considered a inefpcient task assignment with modularity, their developers
critical issue for a company/project could not important for have problems identifying their impact network (they do not
another. As a consequence, it is important, when investigat-know who is consuming their code or whether changes can
ing potential problems generated by lack of information, to modify the component they depend on) and are only inter-
prst study whether and how the target developers already em-ested in changes in particular parts of the architecture that im-
ploy any method to supply this missing information. pact them. Moreover, developers in both MCW and our study
have expectation that major changes are accompanied by no-
tibcations about their implications, yet are worried about in-

Changes and dependencies . formation overload resulting from too frequent notibcations
As de Souza and Redmiles explained: Oit is not possible to 9 q ;

denciesO2P). In this light, our analysis of coordination and P p

- - sent to update about changes, everybody reads notibcation
receiving changes is related to the work by Begehl. [8] . . |
and by de Souza and Redmil@<]. emails, management urges developers to notify about break

ing changes, and such email even suggest courses of action to
Begel et al. conducted a survey of Microsoft developers, be taken to minimize the impact. As a result, despite the par-
testers, and program managers to see how these coordinate oallel development, coordination in MVP seems smoother than
dependenciese(g., tasks) within the same team and among in our participantsO experiences. One important characteristic
different teams. The study reported that most Microsoft of MVP, mentioned by de Souza and Redmiles, is that most
developers (63%) minimize code dependencies to mitigate developers have worked on the project for at least two years,
problems. This is similar to our interviewees who use soft- and their experience could also be the cause of the difference
ware modularity to avoid inefbcient task assignment or merge with MWC, which is a newer project. Our results, though,
conRBicts. Similarly to our Pndings, Begetlal. also reported ~ do not seem to corroborate this hypothesis, since interviewed
that lack of communication often led to coordination prob- developers reported similar issues regardless of project matu-
lems, and that email is the common means by which develop-rity and personal experience. Our additional analysis of code
ers kept track dependencies. In contrast, our study outlineschanges looks at coordination from a low level perspective;
the difference between internal and external dependencieswve found that most information developers need to coordi-
and changes. Beget al. found that internal dependencies nate is typically available, but not necessarily accessible.

are managed by Osend[ing] an email and pay[ing] a personal

visit to the person blocking their work,8],[and surveyed de-
velopers do not report any negative emotion. Our bndings
underlined that, in the case of internal breaking changes, the
process preceding the communication with the person block-
ing the work (.e., Pnding the source of the problem) is cause !
of dissatisfaction and frustration in cases where the expectedf
communication did not take place. Moreover, the two stud-
ies present different debnitions eXternaldependencies and

Implications

Our study conbrms that lack of coordination leads to late dis-
covery of unexpected errors or behaviors in the code, fol-
lowed by a time-consuming analysis to bnd the code changes
hat are the source of the issue. This calls for better support
or coordination when developers make and receive changes,
and for when they need to investigate a change to determine
.] . its impact. As the existing body of research suggests, im-
breaking changes:_ (1) According to Begelal, dependen- pact analysis and support for change understanding in soft-

cies are Oexternal® if in different teams within the same CoMg - re development scenario remains problematic. Research

pany, with which it is possible to communicate personally; : .
. ; . = ~ prototypes have not yet reached widespread usage in the IDE,
(2) according to our Pndings, dependencies are OexternaIOALd our Pndings underlines the substantial practical relevance

in dlffere_nt companies, with which it is extremely difbcult to of further research in these areas.

communicate. In the former case, Begéll. reported that

developers have to maintain personal communication with The differences between coordination practices between our
external teams to remain updated of changes, and the exisintervieweesO® teams and the MVP team described by de
tence of unexpected changes from external teams generateSouza and RedmillZ2] are an interesting venue for future
anxiety. In the latter case, our interviewed developers did not research. In fact, compelling is the hypothesis that the modu-
report anxiety (even though unexpected changes happen anthrity adopted by our interviewees® teams and MWC could
lead to loss of time), rather acceptance of the situation as partcreate asymmetries in engineersO perceptions of dependen-
of the natural business model of the industry. cies B(], thus being at the basis of the differences and gener-

In their work, de Souza and Redmiles investigated the strate-atmg the reported coordination issues.

gies software developers use to handle the effect of softwareBy investigating how developers currently handle received
dependencies and changes in two industrial software devel-code changes in the IDE, we realized that they do many tasks
opment teamsZ?2]. The two teams deal witinternal de- manually, and spend a lot of effort to collect and remember
pendencies according to our debnition. One team (MVP) al- change information. The data that would help developers in
lows parallel development and the modularity of the system their tasks is availablee(g.,data recorded by the versioning

is low, the other team (MCW) focuses on modularity by us- systems), but not easily accessible. This implies that bet-
ing a reference architecture. Our interviewed developers haveter support for integrating change information in the IDE is
complains similar to those in the MCW team, which also has needed and it would impact development and coordination.

DESIGNING AND EVALUATING BELLEVUE Once changes are integrated, development tools provide no

] Design Prototyping distinction between code already present before merge, and
4 § the newly integrated one. Therefore, there is no clear visibil-

approaches N — 5 ity of the system status with respect to its historitO® kind
@ $ = || usabitty o | of impossible to know every single line of code that every-
— Heuristics Data ; body else on your team chandgedD3]. While historical in-
Hourisics J formation is available, it typically resides in dedicated tools or
@ § views, out of the current development context, thus the status
: is neither self-evident nor easily accessibligrege isnOt really
: @ = : an easy method [...] that let you see [that] these ten Ples are
@ < different from what you had in your current ti@gD5].
: Early " Bellevue prototype < requirements :
Bl ' el Clearly Marked Exits

OA system should never capture users in situations that have
no visible escapeGy].

RITE-based Eveluation : In software engineering, code repositories typically provide
: change history which gives developers an escape: If they bnd
something not working after they merged some changes into
_ their local working copy, they can roll back to the status prior
e gRrotolype to the merging. Problems with this approach are: (1) The

9 Practitioneé 8 ‘ exits are not evident, and (2) the exit strategy is binary.
‘ ’/ 8 8 To :

FINAL
Rapid Iterative Bellevue

story-board including

TODO ||y nvestigate | The Prst issues means developers sometimes do not realize
high-pdelity prototype 1

i : that their problems could be addressed by undoing the merge,
instead of trying to bnd an error in their own code. The sec-
Figure 4. The research method applied in the second phase ond issue means that developers can only widihe merged
changes at once, although the error can be caused by a mis-
Building upon our Pndings from our interviews, we aimed to take in a small fraction of the changed code. Once the code
design a tool to help developers anticipate, investigate, andis rolled back, developers have to reconsider all the undone
react to breaking changes in a collaborative development en-changes and realize which ones could have caused the error,

vironment. Figuret outlines the process. without having the full IDE context at disposal, but only the
,) change information, and integrate all the unrelated changes
Design requirements back again. D1 explaineditOs a loss of time, we have to roll

We Prst analyzed the current approaches for receiving pack, bgure ouwhat the problem wasknd roll again. 1tOs
changes in the IDE under the light of widespread usability 3 |oss of time, dePnitef.

heuristics $6] (Point 1 in Figured4). We found several un-

met heuristics that, together with the data collected in the ex- Help and Documentation

ploratory investigation, we used as a basis to derive require- gDocumentation shouldpe easy to search, focused on the
ments for our IDE extension to improve receiving changes yserQs task, list concrete steps to be carried out, and not be

and support teamwork (Point 2). too largeO6).

Recognition over recall o In development processes, documentation also consists in
OMemory for recognizing things is better than memory for the explanations software developers write as they commit
recalling thingsO4. their changes to the shared repository. It also includes other

Once a developer decides to merge a received change wit ources of information, such as descriptions of work items or

the local version, the information about the integrated change P9 Stored in bug management or work item management
disappears. For this reason, when developers encounter a bu%ools. These pieces Qf information are acg:esmble to the devel-
they must recall which change occured and whether any of OP€r, and the commit messages are available to inspect upon
them could have generated the problem. One participant ex-receiving code changes, but once the changes are integrated

plained that the frustration when he encounters a bug come hey disappear, unless the user performs a number of steps
from Qpguring out where the problem is: Trying to bgure out navigating the hls_tpry of the code in spemahzed wmdoyvs or
what really has change@l [D5]. We suggest that when look- applications. Additionally, comments in the code commit and
ing for the cause of a bug, developers® memory can be aided’® work management tools are often disjointed. For example
by tools to navigate change history, but existing tools require 22 compl?lgtlee%.?h?n yodu_get the(:j_lfgeﬁnlhanged Dtl1e5|§rou

to switch from the current development context, and typically get tons o » e found it very difbcult to search the nec-

give the information outside of the development context. essary help or informati_on due to information overload_. .Fi'
nally, when developers integrate more than one commit into

Visibility of system status their local copy, often they see only the last commit message,
OThe system should always keep users informed about whagven though a line of code could have been changed several
is going onOH#]. times between their local copy and the current status.

Help users recognize, diagnose, and recover from errors a source control management system, and they had to have
Current code change management in IDEs make it difbcult to at least browsed the change history, encountered a change
recognize and diagnose errors generated by integrated codeénerge, or used the Ple diff comparison view in the month
changes, because they are not visible and the history has tdefore the RITE. Evaluation invitees were thanked for their
be analyzed outside of the current development context. Oneparticipation by a gratuity in the form of Microsoft software.
interviewed developer explained that, despite the availability
of external history tools, dde of the problems is trying to
Pgure out what really has changed [and] whatOs the impact
on your cod® [D5]. In fact, as D3 explained, external tools
are not helpful becauses@sion control gives you a list of
ples that changed and not the specibc IreSeeing exactly
which part changed and how takes many steps. Moreover,
the only possibility to recover from errors is to do a complete
undo of the merged changes, while it might be be enough to
modify a small part of code to bx the error.

Each session occured in a full usability lab on the Microsoft
campus, and was video recorded for later analysis. To mit-
igate themoderator acceptance bid28], we explained that

the researcher guiding the sessionmlidcreated the product.
Moreover, to mitigate angocial desirability biag28], and to
encourage discussion, the storyboard plot was describing the
actions taken by a proxy developer named James. Following
the storyboard plot described by the slides and the researcher,
participants were solicited to follow a think-aloud protocol,
and indicate what they saw, would do, and would expect as a
System design requirements result of their actions on each screen page.

To address our current concerns with imperfect or missing atter 9 iterations we reached a stable and validated design. At
information in development tasks, we suggest the following ine end of the process (Point 7 in Figde we had: (1) the
requirements for development tools: Pnalized EELLEVUE prototype, (2) a set of changes to imple-

(1) Received code changes should always be visible, (2) In-ment but that were not eventually integrated, and (3) a set of
formation should be provided in context, both semantic candidate aspects to be investigated as future work.

(code) and procedural (history, project) without undue ac- \ye designed BLLEVUE as a prototype code editing and nav-
tions by the user, both at the project and Ple level (3) History jgation solution aimed at being a lightweight, ready to be
of code chunks should be easily accessible, possibly using,sed, without requiring developers to change their working
progressive disclosure to prevent information fatigue (4) Er- giyle. |t takes the historical change information that is already
ror identiPcation ad diagnostics should be supported throughgyajjable, but currently neither visible nor easily accessible,
a RBuid integration of code history, (5) Code changes should 5q displays it in a non-obtrusive wayEBLEVUE offers an

be reversible at the sub-ble level, and (6) Requiring context jnteractive view that shows detailed historical information for
switches to acquire the necessary knowledge to solve a tasksjes and specibc chucks with respect to a previous version.

should be avoided. We detail the features of B LEVUE, as they were at the end

of the RITE phase, and the feedback from participants (men-
Prototype and evaluation tioned as R1D9). The bnal version of the slide-deck used in
Consequently, we devised an IDE extension, named.B- the RITE is available as a ble accompanying this paper.

VUE, to fulbll the requirement outlined above and to serve as

a tool to explore our preliminary design ideas (Point 3 in Fig- Recognizable changed Ples and blocks

ure4). The prototype allowed us to communicate ourideas to gg| | yye decorates changed Ples with an arrow (Figgjre
various experienced designers and practitioners at Microsoft, pgint 1), and denotes changed lines with a baored sign,
and to get their feedback, reveal early problems, and improve o at a pne-grained granularity (Point 2), to see them in the
the initial concept (Point 4 in Figuré). context of the current text window, and a more coarse-grained
We devised a detailed storyboard including a high-pdelity ©ne (Point 3), to see them in the context of the entire Ple.
prototype of BELLEVUE (Point 5). This was implemented = One can decide (Point 4) to see only the ples that were just
as a PowerPoint presentation with a sequence of believablemerged into the current local version. This design supports
action steps of interaction with the prototype. Each step was recognition over recall: Once new changes are merged into
devised to let the participants of the evaluation phase observethe local version, their traces remain visible. It also enhances
what was happening, explain what they would do, and de- the visibility of the system status, with respect to changes.
scr!be the effects they would expect as a consequence of theilg e participants® feedbdekll the participants appreci-
actions. We used this prototype to evaluate BEVUE with ated this feature. In particular, they liked that it helps Pltering
professional software developers, using the RITE (Rapid It- ot jrrelevant information when looking for the reason of an
erative Testing & Evaluation) metho&4], to evaluate and gy that could have been introduced by a received change:
identify problems in the prototype, quickly bPx them, and then (Knowing what | can ignore is huge, the larger the project,
empirically verify the efpcacy of the Pxes (Point 6). the more benebcial it com@gR1]. Concerning the way in

Participants in the RITE study were selected among a pop-Which changes are made recognizable, some users did not
ulation with the following characteristics: More than three Pnd itintuitive, or appropriate:1Od prefer a bar or something
years as a professional developer, more than one year in the‘Also available athttp:/iwww.st.ewi.tudelft.nl/ +guzzil

current Company,_and more than three months in the CurrentzThis color has been chosen because it is currently considered a
team. Moreover, interviewees had to spend at least 20 hoursheuytral color in the IDE. As opposed to green or red, which are often
per week on writing and editing code, their team had to use associated to versioning systems or debuggers.

713*-489** 4444954698,

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Windows;

using System.Windows.Media;

using System.Windows.Shapes;

I '#45673

3 3<<2@ICAMI'N3
$56=+456720N
#4567+46H4>? G
#4567+46H4>+9DD46I>? OV
#=6@5E#4567TNEIN'
&=@T7H4S67TMER
J5619KL?CADE?@GMI'N3
3
3

namespace Paint

public class PaintCanvas : System.Windows.Controls.Canvas
{

private List<List<
private |

bject>> history;

ntobj
©> paintobjects;

st<Paintobje

private Paintob
private Pai
private Rec

t temporaryobject;
+ hoveringObject;
;1e hoveringRender;

private bool currentlyDrawing;

public PaintCanvas() : base()

history = new ListcListcPaintObject>>();
paintObjects = new List<Pai ©0);

hoveringRender = new Rec)
hoveringRender . StrokeThickness = 1;
hoveringRender .Stroke = Brushes.DarkGray;
hoveringRender .Visibilit ibility.Hidden;
this.Children.Add(hoveringRender);

currentlybrawing = false;

public void Repaint()

this.Children.Clear();
foreach (PaintObject po in paintobjects)
{

this.Children.Add(po.getRendering());

ON

Figure 5. Recognizable changed Ples and blocks, and bltering

L
this.Children.Add(hoveringRender); N

}

W/ $47=>T'@046B=>'96EP'MQASE=>N3

much more visibilgthan a blue-colored sigrtp see that itOs
differen©O [R2]. Nevertheless, after they continued in the sce-
nario and experienced the following features @&fLBEVUE,

by all the remaining participantg.g., &k, good! | can see
here how[this part] changed® [R6]), because it also helps
with the progressive disclosure of the information about the
changes: Users can quickly verify whether the changes seem
relevant and, only if necessary, investigate more.

7/3+-489*4444054404

-1012 "3415°206789:"

482@) B6C D=6
>GIH62>=@K06789:)"
><1=@L6-718>9.0"

35G/H6219-T18>GIH62>=::0"

-1012 "3415"B549:"

M>6NMBS60"P'<1=>482@K4 B5'Q"J
"P'e1=>482@D7=>E D= /18>G/HE2HOI"
82@L6N436A>007=>M>6NMBS60:3"
~@L6RE6=<9.0"

PP Y o

1485ESTR 46/ @96>5>7=6¢

Qi<

a0

MIOPOS ¢ ¢
1459648
08

p) K=EEVESH=?@9D

QUE=46=IF<TU=@II=46IASC=I>D=X pac

" <1=>487@LONA36/B<1=>487@KA. B :I"
" ><1-@L6REGEI"

<1=>482@LENAI6A>0<1=>482@KA B>'S"1J"
" ><1=@LE-T1B>0:)"

Figure 7. Accessible historical details

they withdrew their concerns. Some participants suggestedAccessible historical details .
to let the users personalize the color to denote changes; othet? BELLEVUE the user can see the code history of any block

participants suggested to use different colors to clearly dis-
tinguish added, removed, or modibed lines, as it currently
happens in tools that display code differences.

,-/01 "2304"-:43>B"
0:7 "/@57\76¢\:46]"E"A05739KDT3-:7"d"IF"
', @0:7<.=6175"E"A05739KDV@57a V/057a?@0:7<.=617bb>BF"
""A05739KDI6¢c326" 7>/@57\76¢\:46]BF"
""" 7A0SDI6G965A>BF""
An

Figure 6. Visibility of changesO effect by mouse hovering

Visible changesO effect
To show the effect of the change in the code, the user can

that was changed with respect to the previous local version.
This is achieved with one click on the colored sign on the left
of the interesting block. For example, in Figutghe user de-
cided to further inspect the history of lines 142D143 because
they led to an unexpected behavior. Once the block is clicked,
a pane appears from the bottom (Point 8): It contains the his-
torical details of the changes happened to that block since the
last update of the user. Each item represents a change and
shows the changed code with respect to the previous commit
(Point 9), the commit message to document it (Point 10), and
the contact information of the change author (Point 11). The
changed code only regards the chosen block, butitis possible
to extend it by clicking on the O...O before and after. It is also
possible to inspect also previous history (Point 12).

RITE participantsO feedbatks for the other steps, before

hover on any colored block to see the latest changes. ForShOWing what would happen next, the interviewer asked the

example, in Figuré, the user decided to look at the changed
block that was not visible in Figurg Then, by hovering on
the colored sign on the left (Point 5), (s)he can see the effect
of that change: The argument of thRemoveAt method call

has changed (Point 6), and tRe fresh method call has
replaced a call present before on the same object (Point 7).

RITE participantsO feedb&tkhis feature was introduced in
the third iteration of the tool, after considering the feedback
received by the brst participants. As an example, one partici-
pant had some expectations when hovering the lines indicat-
ing a change: t©ggle to highlight whatOs different from the

participants how they would interact with the design and what
their expectations would be. In particular, for this feature, the
interviewer asked what participants expected it would happen
by clicking on the colored sign on the left (Point 5). In this
way, we learned that the participants wanted to have some-
thing similar to a diff with the previous versiore.g., 90d

do a compare versus the previous version, and just look at
those particular chang&s [R3]). The BLLEVUE solution
was, thus, very much appreciated and it often exceeded their
expectations: Al the details! This is exactly what | was look-
ing for: It tells me whd...] and it tells me what did each one,
and how long agdDd [R1]; 6h | see, so this is exactly what

last version, to quickly diagnose, | donOt need a true side byl was looking for. [tOs even bett®r]R8]. Seeing the version
sideO [R3]. Once introduced, this feature was well received that could have introduced the errae(,#9044) was a clearly

ror by reverting that particular change, because that would not int lastItenindex - history.Count - 1;

marked exit: Some participants considered to recover the er- public void undoO
. " : m paintObjects = history.last<List<PaintObject>>();
imply reverting entirely to a more complex change set.

history.RemoveAt(lastItemIndex)j
this.Repaint();

Through the iterations, we added the clickable revision num- .
ber (to open a panel to see all the changes in a revision), and @
the hovering function to show the full commit comment.

ParticipantsO suggestions that we did not eventually include in oot
the iterative evaluation, due to time reasons, mostly regarded o | o history Removehc 1asttentndex);
the possibility of selecting specibc parts to see the history, 2

instead of the contiguous block.(.,0 want to see the whole |, Vessr-itussesrpasionsssrsa .

10 hours ago3

function[history, by]right clicking on a functio® [R2]). = A Teas s etreon0g o eminas;
Aloo -
Editable code Figure 9. New local change added to history

BELLEVUE allows editing code while reviewing the history

(Figure 8), because it integrates history within the active

editing context. It also highlights the new code differently icons are for contacting the author of a given commit. Fig-
(Point 13 in Figured) and automatically adds a new item to ure 10 shows the email template automatically generated by
the list (Point 14) to put it in its historical context. This dif- clicking on the email icon for commit #9044 it includes the
fers from current approaches for visualizing history, which diff with the previous commit, for easier reference.

involve opening a distinct context or application, and do not

make it possible to edit code.g.,to Px a bug) and see history

in the same context, at the same time.

RITE participants® feedb#tkhis feature was very well re-
ceived by all the participants. In particular, many were pos-
itively surprised and realized the possibilities of having code o e
changes better integrated in the IDEh@ve a diff view, but | I, e weowsmmonconn
am not trapped in thaft..] | got my editor and my diff view, so ||l ——
the split view is very very helpf{il.]. Let me do what | want E 1
to do, while looking at the information | needed to make my
chang® [R1]; ®ow that | see, | know what is happenihg].

That is intuitive to me: Just clicking, edit, and@g¢R7]. They
also appreciated the immediate feedback of the change in the
local history (Figured): ADh, | like it shows itOs lodal[R4]. 1,

revision #9844: “Cleaned up the code and fixed some of the missing comments [..]”

sion #8227: “Added undo method”

-/012 "3415".B549:" 4 ¥
1B>'07=>M>6NMB560"P"<1=>48?@K4.B>"Q"1J"
71B>G/H62>="P"<1=>48?@D7=>E = D1="E-71B>G/H62H9:J" STUl3
1=>487@L¢ 36A>907=>M>6NMB560:J"
XI@‘EFBMQ_J ; Figure 10. Contacting the author of a change from the IDE
pain
RITE participantsO feedbdtkhe social interaction within
the view was extremely well received by all the participants.
P P They especially appreciated the possibility of quickly using
reswre T : L7036 BTGB 0T email and IM: Oreally like that. 10d click on chat[R6].
) athy.farewell@live.com* £ >< =<9 3 . . A
0 !n&&wn&a&’ ase When discussing the email they would write to the author of
Cloaned up the code and fed some L1 200 thg buggy che_lnge, they _aII specify the things Fhey Wo_uld like
sy | L0 ; 1=>487QLENAIOAI<1=>4570K4 B>'S"1) to ideally see in the email, and when they see it, they like how
I joe.smith@live.com " " ><1=@L6R86=<9:" oy . . : ~ H H
ﬁ_ A=A ase it includes everything they wantedTRat is perfect.[lt is]

exactly what | would have sedffR1]. However, some would
have liked to obtain the diff view asi& LEVUE shows it in
the IDE, while @ow itOs like standard dif[R6].

Contacting changeOs author Participants® suggestions not integrated for time reasons are:
The authorOs photo and contact pane is inspired byAdding anemail all feature, change the email title to give
CARES B2, a tool to help developers discover and choose information about method and class in which the new change
relevant colleagues to speak with when seeking information is taking place, support for copy and paste from history to
or coordinating action. In BLLEVUE, the communication email, and add communication clientsd.,IRC or Skype).

Figure 8. Editable code while accessing historical details

Evaluation DebriePng ready available data and visualizing it in a non-obtrusive way.
After each RITE session, participants Plled two short ques- Another example of improved communication in the IDE is
tionnaires about their experience with the tool: A System Us- REmail [4], which integrates developersO email communica-
ability Scale (SUS) questionnairé]] and a proprietary 7- tion in the IDE to support program comprehension; REmail
point Likert scale questionnaire standardly used at Microsoft. can be used in conjunction witheEBLEVUE to extend the
The SUS answers were overall positive: The mean SUS scorecommunication feature of the latter.

is 85.1 (answers had = 0.66, on average), which is consid-
ered a high value across different domaiBs§, 67]; as an
example, the statement ink that | would like to use this
product frequentl® scored 4.7/5.0 (= 0.50). The propri-
etary survey was equally positive: Mean score was 5.4/7.0
(the higher the better: items only included positive word-
ings [40)), with ! =1 on average. For example participants
gave 5.4/7.0!(= 1.13) to the statementTdis product has
powerful functionality and excels at what it was designe®for
and Ghis product is something | am likely to share informa-

Workspace awareness solutions, such as Ral§d], Light-
house 19, CollabVs [23], Syde B4], and Crystal 12] are
concerned with changes before they are committed to the
source code repository, to address the conRict detection or
real-time development information. For example, Syde tracks
Pne-grained real-time changes and alerts developers on the
code editor and on a view when potential conRicts are emerg-
ing. Given the goal of these tools, differently fromeB_E-

VUE, they do not show change history related information.

tion abou® scored 5.9/7.0 (= 0.79). Interestingly, BELLEVUE design could be included in envi-
ronments such as Mylyn and Jazz, and could be used con-
COLLABORATIVE SOFTWARE DEVELOPMENT TOOLS currently with workspace awareness tools, in order to offer

Coordination in software development has been studied in thec00rdination support from a complementary perspective.

Pelds of Software Engineering and Computer Supported Co-|nformation discovery approaches, such as Ariadi@ nd
operative Work since the 1980s, and researchers have proTesseract§3], seek and assemble information to perform
duced a wide range of analyses and to6H.[tasks such as expert bnding and socio-technical network anal-

ysis. Recommender systems, such as Seahawlbp], ex-

ploit change information and externally generated data to sup-
t Port software development and comprehension. Similarly to
BELLEVUE some of these approaches also use historical code
information to inform their users. Given their goal, they offer
different, complementary views on data and integration with
he development environment.

BELLEVUE uses historical change information to support de-
velopersO coordination. Saretzal. present a comprehen-
sive review of coordination tools and debnes a framework tha
classibes those technologies according to multiple coordina-
tion paradigms®6]. In this framework, tools such as version-
ing systems and issue tracking systems support the develop
ment process and are at the basis of the more sophisticate(ﬁ
tools that provide meaningful and automatically aggregated Code information visualization tools include the OblameO
information: These are research prototypes and industrial ap-functionality offered, for example, by git or svn.This feature
plications conceived to better support developers coordina-allows to see who did the last change on each line of code
tion in the IDE. Such tools includes full-Bedged platforms, of a ble, and when. Another tool is the concept presented by
specibc workspace awareness solutions, information discov-Rastkar and Murphy, in which the developer is able to see for
ery approaches, and code information visualization tools. 5 summary of commit messages connected to a line of code
in the IDE [60]. In contrast, BEELLEVUE offers an interactive
view that shows detailed historical information for specibc
and aim at transforming the IDE experience. Jazz, or Rational ¢1UCks with respect to a previous versiorELBEVUE always
displays which ples and lines changed, so it does not require

Team Concert, is an IDE platform, built on top of Eclipse and the devel ¢ vl K for th it f'th
Visual Studio, that integrates several aspects of the software. € aeveloper o actively ask for the commit message of the
line, because the developer may not be already aware of the

development process, including integrated planning, tracking A X .
of developer effort, project dashboards, reports, and procesg(ﬂ(’tv"’mCe of t_he Ple and the I|n_e. In our exploratory invest-
support. Relations between artifacts can be debned and leverd2tion narrowing down a breaking change to the Ple and line
aged to gather project information. Jazz also offer support causing the issue emerged as one of the most problematic and
for communication within the IDE€.g.,instant messaging), time-consuming efforts for developers.

more advanced thanBLEVUE. Mylyn and its successor,

Tasktop Dev 70, are based on Eclipse and Visual Studio and FINAL REMARKS ~

use task context to improve the productivity of developers and In our study we explored how to support developersO collab-
teams £3]; for example, they reduce information overload oration in teamwork. We focused on teamwork in the soft-
by providing developers with just the artifacts and informa- ware implementation phase, which takes place in the IDE,
tion necessary for their current code modibcation task, andand we conducted a qualitative investigation to uncover ac-
offer a comprehensive task repository to support teamwork tionable areas for improvement. We identibed internal break-
by sharing information on tasks and their context. Both plat- ing changes as one of the most important areas for improve-
forms support the creation of novel informationd., tasks ment, because current IDE support for receiving changes is
and work items, and relations among artifacts) to support not optimal. Consequently, we designeéBEVUE to en-
developers productivity, and encourage a task or work item able developers better coordinate, by making historical infor-
based approach to evolution.EBLEVUE aims at using al- mation visible and more accessible in the IDE.

Full-Bedged platforms, such as Ja3g][and Mylyn [25], are
at the far end of the spectrum in terms of complexg][

Overall, this paper makes the following main contributions: 10

1. A qualitative analysis indicating that teamwork needs
mostly regard coordination, that developers are able to face
scenarios considered problematic in literature, and that

11

dealing with breaking changes is hard, but it only gener- ;5

ates frustration if the breaker is internal to the project.

2. Recommendations on how to improve collaboration in

teamwork in the software implementation phase, such astoq5

focus on interactions revolving around coordination rather
than on collaboration on the same (sub)task.

3. Requirements for a tool to support teamwork based on cur-
rently unmet usability heuristics and the results of our qual-
itative analysis. For example, to favor recognition of code 4
changes over recall, and to increase the visibility of the
codebase status with respect to received changes.

4. The design and evaluation ofEBLEVUE, an IDE exten-

sion to support teamwork by improving the integration 16.

of code changes in the IDE.ERLEVUE makes received
changes visible inside the editor, and makes the history of

code chunks easily accessible using progressive disclosurel?.

ACKNOWLEDGMENTS 18.

We want to express our gratitude to the anonymous reviewers,
whose valuable comments signibcantly helped to improve the
paper. We warmly thank Andrew Begel for his brst-class
feedback on the revision of this paper, and Monty Hammon-
tree for his support during AnjaOs internship.

20.

REFERENCES
1. Anvik, J., Hiew, L., and Murphy, G. C. Who should pbx this bug? In
Proceedings of ICSE 2006 (28th International Conference on Software
Engineering) ACM Press (2006), 361D370.

2. Anvik, J., and Murphy, G. C. Reducing the effort of bug report triage: 21.

Recommenders for development-oriented decisia@d Transactions
on Software Engineering and Methodology 2qAug. 2011),
10:1P10:35.

3. Arnold, R., and Bohner, SSoftware Change Impact Analysis

Wiley-IEEE Computer Society Press, 1996. 22.

4. Bacchelli, A., Lanza, M., and Humpa, V. RTFM (Read The Factual
Mails) Baugmenting program comprehension with REmail. In
Proceedings of CSMR 2011 (15th IEEE European Conference on

Software Maintenance and Reengineeri(2)11), 15D24. 23.

5. Bangor, A., Kortum, P., and Miller, J. An empirical evaluation of the
system usability scalénternational Journal of Human-Computer
Interaction 24 6 (July 2008), 574D594.

6. Bangor, A., Kortum, P., and Miller, J. Determining what individual
SUS scores mean: Adding an adjective rating sciernal of

Usability Studies 43 (May 2009), 114D123. 25.

7. Begel, A., Khoo, Y. P., and Zimmermann, T. Codebook: Discovering

and exploiting relationships in software repositoriesPtoceedings of 26.

ICSE 2010 (32nd ACM/IEEE International Conference on Software
Engineering) ACM (2010), 125D134.

8. Begel, A., Nagappan, N., Poile, C., and Layman, L. Coordination in

large-scale software teams.Pnoceedings of the CHASE 2009 (2nd 27.

International Workshop on Cooperative and Human Aspects of
Software Engineering)EEE Computer Society (2009), 1D7.

9. Biehl, J. T., Czerwinski, M., Smith, G., and Robertson, G. G.
FASTDash: a visual dashboard for fostering awareness in software
teams. InProceedings of CHI 2007 (25th SIGCHI Conference on
Human Factors in Computing SystemACM (2007), 1313D1322.

19.

24.

28.

29.

. Black, S. Computing ripple effect for software maintenadoeiwrnal of
Software Maintenance 13 (Sept. 2001), 263D.

. Brooke, J. SUS: A Oquick and dirtyQ usability scaldstbility
Evaluation in IndustryP. W. Jordan, B. Thomas, I. L. McClelland, and
B. Weerdmeester, Eds. CRC Press, 1996, ch. 21, 189D194.

Brun, Y., Holmes, R., Ernst, M. D., and Notkin, D. Proactive detection
of collaboration conBicts. IRroceedings of ESEC/FSE 2011 (8th Joint
Meeting on Foundations of Software EngineerifgEM (2011),
168D178.

Brun, Y., Holmes, R., Ernst, M. D., and Notkin, D. Early detection of
collaboration conBicts and riskiEEE Transactions on Software
Engineering 3910 (2013), 1358D1375.

14. Cataldo, M., Mockus, A., Roberts, J. A., and Herbsleb, J. D. Software

dependencies, work dependencies, and their impact on fail&es.
Transactions on Software Engineering, 85Nov. 2009), 864D878.

5. Cataldo, M., Wagstrom, P. A., Herbsleb, J. D., and Carley, K. M.

Identibcation of coordination requirements: Implications for the design
of collaboration and awareness toolsAroceedings of CSCW 2006
(20th Anniversary Conference on Computer Supported Cooperative
Work), ACM (2006), 353D362.

Chen, W.-N., and Zhang, J. Ant colony optimization for software
project scheduling and stafbng with an event-based scheti.
Transactions on Software Engineering, 39Jan. 2013), 1D17.

Cheng, L.-T., de Souza, C. R., Hupfer, S., Patterson, J., and Ross, S.
Building collaboration into IDESACM Queue 19 (2003), 40D50.

Curtis, B., Krasner, H., and Iscoe, N. A beld study of the software
design process for large syster@@mmunications of the ACM 311
(Nov. 1988), 1268D1287.

da Silva, I., Chen, P., der Westhuizen, C. V., Ripley, R., and van der
Hoek, A. Lighthouse: Coordination through emerging design. In
Proceedings of ETX 2006 (OOPSLA Workshop on Eclipse Technology
eXchangeACM Press (2006), 11D15.

de Souza, C. R. B., Quirk, S., Trainer, E., and Redmiles, D. F.
Supporting collaborative software development through the
visualization of socio-technical dependenciesPtoceedings of
GROUP 2007 (International ACM SIGGROUP Conference on
Supporting Group Work)ACM (2007), 147D156.

de Souza, C. R. B., Redmiles, D., and Dourish, P. Breaking the code,
moving between private and public work in collaborative software
development. IlProceedings of GROUP 2003 (International ACM
SIGGROUP Conference on Supporting Group WotgM Press

(2003), 105D114.

de Souza, C. R. B., and Redmiles, D. F. An empirical study of software
developers® management of dependencies and changexdadings

of ICSE 2008 (30th ACM/IEEE International Conference on Software
Engineering) ACM (2008), 241D250.

Dewan, P., and Hegde, R. Semi-synchronous conRict detection and
resolution in asynchronous software developmenBrisceedings of
ECSCW 2007 (10th European Conference on Computer Supported
Cooperative Work)Springer (2007), 24D28.

Duggan, J., Byrne, J., and Lyons, G. J. A task allocation optimizer for
software constructiodlEEE Software 213 (May 2004), 76D82.

Eclipse Foundation. Mylyn. [Software]. Available:
https://www.eclipse.org/mylyn/ [Accessed: Jun 4, 2014], 2014.

Fritz, T., and Murphy, G. C. Using information fragments to answer the
questions developers ask.Pmoceedings of ICSE 2010 (32nd
ACM/IEEE International Conference on Software EngineeridM
(2010), 175D184.

Frost, R. Jazz and the eclipse way of collaborati®EE Software 24
6 (2007), 114D117.

Furnham, A. Response bias, social desirability and dissimulation.
Personality and Individual Differences 3 (1986), 385 B 400.

Grinter, R. Supporting articulation work using software conbguration
management systentSomputer Supported Cooperative Worki5
(1996), 447D465.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Grubb, A. M., and Begel, A. On the perceived interdependence and 49
information sharing inhibitions of enterprise software engineers. In
Proceedings of CSCW 2012 (ACM Conference on Computer Supported
Cooperative Work)ACM (2012), 1337D1346.

Guzzi, A., Bacchelli, A., Lanza, M., Pinzger, M., and van Deursen, A. 50
Communication in open source software development mailing lists. In
Proceedings of MSR 2013 (10th IEEE Working Conference on Mining
Software Repositorie§2013), 277D286.

Guzzi, A., Begel, A., Miller, J. K., and Nareddy, K. Facilitating
enterprise software developer communication with CARES. In
Proceedings of ICSM 2012 (28th IEEE International Conference on
Software Maintenancgp012), 527D536.

Hattori, L. Change-centric Improvement of Team CollaboratiBhD 53.

thesis, Universi della Svizzera Italiana, February 2012.

Hattori, L., and Lanza, M. Syde: A tool for collaborative software
development. IProceedings of ICSE 2010 (32nd ACM/IEEE

International Conference on Software Engineeri(@f)10), 235D238. 54.

Hattori, L., Lanza, M., and DOAmbros, M. A gualitative analysis of
preemptive conf3ict detection. Tech. Rep. 2011/05, University of
Lugano, Sept. 2011.

Hegde, R., and Dewan, P. Connecting programming environments to
support ad-hoc collaboration. Proceedings of ASE 2008 (23rd

IEEE/ACM International Conference on Automated Software 56.

Engineering IEEE CS Press (2008), 178D187.
Henderson, R. M., and Clark, K. B. Architectural innovation: The

reconbguration of existing product technologies and the failure of 57.

established Prm#&dministrative Science Quarterly 35 (Mar. 1990),
9D30.

Herbsleb, J. D., Mockus, A., and Roberts, J. A. Collaboration in

software engineering projects: A theory of coordination. In 58
Proceedings ICIS 2006 (International Conference on Information
Systems{2006).

IBM. Rational Team Concert. [Software]. Available: 59
http://jazz.net/projects/rational-team-concert/ [Accessed: Jun 4, 2014],
2014.

Jeff, and Lewis, J. R. When designing usability questionnaires, does it 60
hurt to be positive? IProceedings of CHI 2011 (29th Conference on

Human Factors in Computing Systern@HI 011, ACM (2011),

2215D2224.

Jeong, G., Kim, S., and Zimmermann, T. Improving bug triage with bug
tossing graphs. IRroceedings of ESEC/FSE 2009 (7th Joint Meeting
on Foundations of Software EngineeringlCM (2009), 1119120.

Kasi, B. K., and Sarma, A. Cassandra: Proactive conRict minimization
through optimized task scheduling. Rroceedings of ICSE 2013 (35th
International Conference on Software Engineerin§EE Press

(2013), 732D741.

(22}

Kersten, M., and Murphy, G. C. Using task context to improve 63.

programmer productivity. Proceedings of FSE 2006 (14th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering) ACM (2006), 1D11.

Kirsch, L. J. The Management of Complex Tasks in Organizations:

Controlling the Systems Development Proc&ganization Science,7 64.

1 (Jan. 1996), 1921.

Ko, A. J., DeLine, R., and Venolia, G. Information needs in collocated
software development teams.Pnoceedings of ICSE 2007 (29th

ACM/IEEE International Conference on Software EngineeritigEE 65.

Computer Society (2007), 344D353.

Kraut, R. E., and Streeter, L. A. Coordination in software development.
Communications of the ACM 38 (Mar. 1995), 69P81.

Kwan, I., Schroter, A., and Damian, D. Does socio-technical

congruence have an effect on software build success? a study of 66.

coordination in a software projedEEE Transactions on Software
Engineering 373 (May 2011), 307D324.

LaToza, T. D., Venolia, G., and DeLine, R. Maintaining mental models: 67.

a study of developer work habits. Rroceedings of ICSE 2006 (28th
ACM International Conference on Software Engineerifg}M
(2006), 492D501.

51.

52.

2.

. Lidwell, W., Holden, K., and Butler, JJniversal Principles of Design,
Revised and Updated: 125 Ways to Enhance Usability, InBuence
Perception, Increase Appeal, Make Better Design Decisions, and Teach
through Design2nd ed. Rockport Publishers, January 2010.

. Lindlof, T. R., and Taylor, B. CQualitative Communication Research
Methods SAGE Publications, Inc., 2010.

Malone, T. W., and Crowston, K. The interdisciplinary study of
coordination ACM Computing Surveys 26 (Mar. 1994), 879119.

Martin, B., and Hanington, BUniversal Methods of Design: 100 Ways
to Research Complex Problems, Develop Innovative Ideas, and Design
Effective SolutionsRockport Publishers, 2012.

Matter, D., Kuhn, A., and Nierstrasz, O. Assigning bug reports using a
vocabulary-based expertise model of developer®raceedings of

MSR 2009 (6th International Working Conference on Mining Software
Repositories)|[EEE Computer Society (2009), 1319140.

Medlock, M. C., Wixon, D., Terrano, M., Romero, R. L., and Fulton, B.
Using the RITE method to improve products: A debnition and a case
study. InProceedings of UPA 2002 (Usability Professionals
Association)2002).

. Molich, R., and Nielsen, J. Improving a human-computer dialogue.
Communications of the ACM 33 (Mar. 1990), 338D348.

Nielsen, J. 10 usability heuristics for user interface design.
http://www.nngroup.com/articles/ten-usability-heuristics/, January
1995.

Ponzanelli, L., Bacchelli, A., and Lanza, M. Leveraging crowd
knowledge for software comprehension and development. In
Proceedings of CSMR 2013 (17th European Conference on Software
Maintenance and Reengineerin¢ifEE CS Press (2013), 57D66.

. Ponzanelli, L., Bacchelli, A., and Lanza, M. Seahawk: Stack overBow
in the ide. InProceedings of ICSE 2013 (35th International Conference
on Software Engineering)EEE CS Press (2013), 1295D1298.

. Proenca, T., Moura, N., and van der Hoek, A. On the use of emerging
design as a basis for knowledge collaboratidaw Frontiers in
Artibcial Intelligence 62842010), 124D134.

. Rastkar, S., and Murphy, G. C. Why did this code change? In
Proceedings of ICSE 2013 (35th ACM/IEEE International Conference
on Software Engineering)EEE Press (2013), 1193D1196.

. Robbes, R., Lungu, M., andg&lisberger, D. How do developers react
to api deprecation?: The case of a smalltalk ecosystefrdoeedings
of FSE 2012 (20th ACM SIGSOFT International Symposium on the
Foundations of Software Engineeringd)CM (2012), 56:1D56:11.

Sarma, A. A survey of collaborative tools in software development, isr.
Tech. rep., Institute for Software Research, University of California,
Irvine, 2005.

Sarma, A., Maccherone, L., Wagstrom, P., and Herbsleb, J. Tesseract:
Interactive visual exploration of socio-technical relationships in
software development. IRroceedings of ICSE 2009 (31st International
Conference on Software Engineerintff EE Computer Society
(Washington, DC, USA, 2009), 23D33.

Sarma, A., Noroozi, Z., and van der Hoekvan der Hoek. Patant
Raising awareness among conbguration management workspaces. In
Proceedings of ICSE 2002 (23rd International Conference on Software
Engineering) IEEE CS Press (2003), 444D454.

Sarma, A., Redmiles, D., and van der Hoek, A. Empirical evidence of
the benepts of workspace awareness in software conbguration
management. IRroceedings of FSE 2008 (16th ACM SIGSOFT
International Symposium on Foundations of Software Enginegring
ACM Press (2008), 113D123.

Sarma, A., Redmiles, D., and van der Hoek, A. Categorizing the
spectrum of coordination technolodiZEE Computer 436 (June
2010), 61D67.

Sauro, JA Practical Guide to the System Usability Scale: Background,
Benchmarks and Best Practic&reateSpace, 2011.

68. Sillito, J., Murphy, G. C., and Volder, K. D. Questions programmers ask 71. Whitehead, J. Collaboration in software engineering: A roadmap. In

during software evolution tasks. Proceedings of FSE 2006 (14th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering) ACM (2006), 23D34.

69. Spencer, D. Card sorting: a debnitive guide.
http://boxesandarrows.com/card-sorting-a-dePnitive-guide/, April 2004.

70. Tasktop. Tasktop Dev. [Software]. Available:
http://www.tasktop.com/dev [Accessed: Aug 1, 2014], 2014.

72.

73.

Proceedings of FOSE 2007 (Future of Software EngineerifthE
Computer Society (2007), 214D225.

Yau, S. S., Colofello, J. S., and MacGregor, T. Ripple effect analysis of
software maintenance. Proceedings of COMPSACEEE Computer
Society Press (1978), 60D65.

Zeller, A. The future of programming environments: Integration,
synergy, and assistance.Pnoceedings of FOSE 2007 (Future of
Software Engineering)EEE Computer Society (2007), 316D325.

