
Palantõ«r: Early Detection of Development
Conflicts Arising from Parallel Code Changes

Anita Sarma, Member, IEEE, David F. Redmiles, Member, IEEE, and
Andre« van der Hoek, Member, IEEE

AbstractÑThe earlier a conflict is detected, the easier it is to resolveÑthis is the main precept of workspace awareness. Workspace
awareness seeks to provide users with information of relevant ongoing parallel changes occurring in private workspaces, thereby
enabling the early detection and resolution of potential conflicts. The key approach is to unobtrusively inform developers of potential
conflicts arising because of concurrent changes to the same file and dependency violations in ongoing parallel work. This paper
describes our research goals, approach, and implementation of workspace awareness through Palantõ«r and includes a comprehensive
evaluation involving two laboratory experiments. We present both quantitative and qualitative results from the experiments, which
demonstrate that the use of Palantõ«r, as compared to not using Palantõ«r 1) leads to both earlier detection and earlier resolution of a
larger number of conflicts, 2) leaves fewer conflicts unresolved in the code base that was ultimately checked in, and 3) involves
reasonable overhead. Furthermore, we report on interesting changes in usersÕ behavior, especially how conflict resolution strategies
changed among Palantõ«r users.

Index TermsÑSoftware engineering, computer-supported collaborative work, programmer workbench, configuration management.

‚

1 INTRODUCTION

A CORE function of any Software Configuration Manage-
ment (SCM) system is to coordinate access to a

common set of artifacts when multiple developers all must
make modifications to the same code base at the same time
[12], [43]. Virtually all SCM systems employ personal
workspaces as the key technology to manage parallel
changes [10], [12]. The reliance on personal workspaces,
however, has historically harbored an inherent weakness in
that it is possible for two changes that are made in parallel
to conflict. That is, while each change may individually
result in a correctly operating version of the code, their
combination may not. Combining such changes will
necessarily involve resolving which of the two to use and,
consequently, reconciling this choice with the needs of the
other changeÑa task that generally is not easy and may
involve recoding and adjusting of solution strategies.

Over the years, a new class of coordination technologies
called workspace awareness tools has emerged that
attempts to identify conflicts arising from parallel work in
personal workspaces so as to help developers mitigate the
impact of these conflicts. The idea is to enable developers to
become aware of conflicts earlier than is possible in current
practice. Normally, developers become aware of a conflict

only after each of the conflicting changes has been fully
coded. Exactly when conflicts become apparent depends on
the type of conflict. For instance, conflicts may become
apparent when the second change is being checked in and
its developer is informed of a merge conflict, when the
combined code is being compiled and the compiler issues a
build failure, or, for more subtle conflicts, when integration
tests fail. In order to reveal conflicts earlier, while changes
are still under development in personal workspaces, our
approach informs developers of a potential conflict from the
moment that two parallel changes begin to conflict. This
enables developers to monitor the conflict and proactively
resolve it before it becomes too unwieldy. The earlier
developers know that their changes are conflicting, the
earlier they will be able to address the situation and avoid
doing unnecessary work.

We implemented Palantõ«r, a workspace awareness tool
that augments existing SCM systems. Palantõ«r monitors all of
the artifacts that developers modify in their personal work-
spaces and, for each of these artifacts, visually shares
information regarding the state of its changes. This informa-
tion helps developers identify when two artifacts are being
concurrently modified or when two parallel changes cause a
dependency violation. We use the term artifacts to refer to
files that are under SCM control, with the reservation that our
current implementation is limited to Java files only. We
designed Palantõ«r to be unobtrusive, yet catch the attention of
developers at certain ÒnaturalÓ points of task or other context
switching actions, e.g., when they open a new artifact to
begin modifying it. Developers can thus concentrate on their
day-to-day task of programming, but have the opportunity
to contextualize their work with parallel changes that have
been taking place and continue to take place.

Because our solution integrally relies on both the
technological advances provided by Palantõ«r and the human
responses that developers make to the information that is
provided to them, our evaluation focuses on this interplay.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012 889

. A. Sarma is with the Department of Computer Science and Engineering,
University of Nebraska-Lincoln, 256 Avery Hall, Lincoln, NE 68588-0115.
E-mail: asarma@cse.unl.edu.

. D.F. Redmiles and A. van der Hoek are with the Department of
Informatics, Donald Bren School of Information and Computer Sciences,
University of California Irvine, 5029 Donald Bren Hall, Irvine, CA 92697-
3440. E-mail: {redmiles, andre}@ics.uci.edu.

Manuscript received 29 Dec. 2010; revised 25 Apr. 2011; accepted 7 May
2011; published online 16 June 2011.
Recommended for acceptance by H. Gall.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2010-12-0383.
Digital Object Identifier no. 10.1109/TSE.2011.64.

0098-5589/12/$31.00 ! 2012 IEEE Published by the IEEE Computer Society

Through two laboratory experiments, we examine whether
and how developers respond to the awareness cues of
Palantõ«r. We found that the use of Palantõ«r, as compared to
not using Palantõ«r: 1) leads to both earlier detection and
earlier resolution of a larger number of conflicts, 2) leaves
fewer conflicts unresolved in the code base that was
ultimately checked-in, and 3) involves acceptable overhead.
We also report qualitatively on the behaviors Palantõ«r users
exhibited, particularly regarding how they monitored the
awareness cues, how they interpreted them, and what they
subsequently did in response.

While our previous conference publications reported on
aspects of this work, this paper combines all aspects to
provide a concise and complete overview of our work. We
also present an extensive, new, qualitative analysis of our
experimental data focusing on interviews, chat logs, and
observations to provide a detailed account of why Palantõ«r
works the way it does, as well as how users reacted to the
information provided to them. A discussion of the lessons
learned from our research on workspace awareness has also
been added, which has implications for the design of future
workspace awareness technology.

The rest of this paper is organized as follows: We discuss
background material on awareness and conflicts in Sections 2
and 3. Then, we present our approach in Section 4. We briefly
present the implementation features of Palantõ«r in Section 5.
We discuss the experimental setup and our evaluation in
Section 6. In Section 7, we present the threats to validity to
our experimental design. We discuss lessons learned in
Section 8, followed by related work in Section 9. We conclude
with an outlook for our future work in Section 10.

2 AWARENESS

Working in a distributed team requires an in-depth under-
standing of the context of oneÕs changes and how they fit
with othersÕ tasks. Developers have responded to this need,
often by establishing informal conventions to coordinate
their work. They may send an e-mail informing other
developers of the changes that they have made and the
possible effects of these changes [13]. They may also use
Instant Messaging (IM) to coordinate their work [29],
periodically visit the bug database to informally assess
who is working on which tasks and thereby may be
changing which artifacts [32], or simply walk over to a
colleagueÕs office asking them about their current tasks [23].

These kinds of ad hoc actions aim to improve awareness of
one anotherÕs activities. Thenotion of awarenesshas gathered
considerable attention in the Computer-Supported Coopera-
tive Work (CSCW) literature, where it was first characterized
as Òan understanding of the activities of others, which
provides a context for your own activityÓ [18]. Early work
focused on the social behavior of mutual awareness, invol-
ving participants who explicitly display their actions and
monitor each othersÕ conduct to inform their own behavior
[28]. Another form of awareness arises when individuals
meet by accident at, for instance, the water cooler, allowing
them to exchange relevant information impromptu. Both
these forms of awareness rely on collocated orin situ settings.

Recognizing that geographically distributed teams cannot
rely on in situ awareness [27], [30], researchers pursued the
development of tools to provide awareness in distributed

settings. This line of work is commonly referred to as
Òworkspace awarenessÓ and is defined as the Òup-to-the-
moment understanding of another personÕs interaction with
a shared workspaceÓ [26], [27]. Workspace awareness
involves an understanding about where others are working,
what they are doing, and what they are going to do next.
Tools for workspace awareness then actively collect infor-
mation that they share with those individuals for whom
(portions of) this information is relevant. Some tools focus on
presence information (e.g., porthole systems such as [34]),
some share fine-grained information at the level of key-
strokes through shared interfaces (e.g., Suite [16], ShrEdit
[36], Google Wave [2]), and others present coarser grained
information on project level activities (e.g., FASTDash [6]
and CollabVS [17]). The overall goal of all these tools is the
same: to enable individuals to monitor their colleaguesÕ
actions and prod them into assessing if their respective
activities could be better adjusted to one another and, if so,
proactively engage in self-coordination [40].

The work presented in this paper specifically focuses on
improving awareness of potentially conflicting parallel
changes with the goal of reducing merge and integration
problems arising from parallel work in personal workspaces.

3 THE NATURE OF CONFLICTS

Many different kinds of conflicts can arise in parallel work
when that work is performed in personal workspaces. We
first distinguish direct conflicts from indirect conflicts.
Direct conflicts involve incompatible, parallel changes to
the same artifact. Indirect conflicts involve incompatible,
parallel changes across artifacts. This partition simply
divides conflicts depending on the locality of the changes,
that is, whether a conflict is confined to a single artifact or
involves multiple, interacting artifacts.

A second, orthogonal dimension is the degree of
difficulty in resolving a conflict. This scale is difficult to
quantify as it involves such factors as syntax versus
semantics, a developerÕs personal experience, available
tools and test cases, and so on. Intuitively, a conflict
involving incompatible syntactical changes is more easily
found and addressed than a conflict involving two
conflicting changes that introduces an intricate timing
problem in a multithreaded system. In the first case, a
build failure will likely point a developer in the right
direction fairly quickly. In the second case, one has to hope
that the available test cases reveal the problem since
otherwise it might not be found until well after the product
has been deployed in the field.

Our interest is in conflicts whose emerging presence
might be detectable using (semi-)automated analyses.
Currently, conflicts are generally not detected until after
both changes are completed, when the changes are checked-
in, merged, built, and tested. To detect these conflicts
earlier, relevant information from respective pairs of work-
spaces must be brought together for analysis. This informa-
tion will necessarily be partial in that it represents changes
in progress that have not been completed as of yet. It also is
partial because it is virtually impossible to share entire
changes across workspaces in the case of large development
efforts, due to issues of scale. Choices must therefore be

890 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

made as to which information is shared, for which type of
analysis, and for which kind of conflict.

A principal design choice that we use is to notify
developers of conflicts at the level of entire artifacts. For
direct conflicts, this means that the tools do not differentiate
among different degrees of difficulty in resolving a conflict:
Any concurrent modifications to the same artifact will be
marked. While this is conservative with respect to whether
or not an actual conflict is present since the respective
changes could well be compatible, it highlights those
situations where developers are expected to closely look
at the result of merged changes since automated merge
algorithms cannot always be trusted [4], [37].

For indirect conflicts, a choice still must be made as to
what kind of analysis, or kinds of analyses, to perform. We
focus on indirect conflicts arising from mismatches in
modifications to, and use of, class signatures (i.e., public
class variables and methods). While this choice represents a
relatively small percentage of all indirect conflicts and also
addresses indirect conflicts for which an analysis is readily
available for adaptation, our work represents an initial
foray in cross-workspace analysis for an early conflict
detection. We realize that addressing increasingly difficult
indirect conflicts will bring with it its own challenges,
especially when it concerns semantic conflicts.

4 APPROACH

Our approach builds on two key insights: 1) Conflicts take
time to developÑthe time during which developers make
code changes in their personal workspaces, and 2) devel-
opers will want to self-coordinate their activities to avoid or
mitigate conflicts.

Any code change involves time spent thinking, typing,
compiling, testing, correcting mistakes, and refining the
modifications one is making. Consequently, conflicts do not
appear suddenly in full, but emerge slowly as the result of
parallel coding efforts of two or more developers. At first, a
conflict will be a result of a small action, perhaps involving
single line modifications to the same file, or a single method
signature that has changed while another developer just
happens to introduce a call to that method. But, over time a
conflict typically grows with additional changes that
developers make. Single line modifications may aggregate
into significant edits, and a single changed method
signature may turn into a significant reorganization of the
entire public interface of a class.

To take advantage of the Òwindow of timeÓ during which
conflicts emerge, our approach informs developers of on-
going parallel changes in other workspaces. The hypothesis
is that, on being informed of conflicts, developers will take
proactive measures to resolve those conflicts early while they
are still small in size. The benefit would be twofold: 1) A
reduction in the amount of effort that has already been
expended by the time a conflict is detected, lowering the
amount of work that must potentially be redone, and 2) a
reduction in the amount of effort involved in resolving
conflicts since the changes are still small at this time.

The effort expended, naturally, lies in the overhead of
monitoring the awareness information provided by Palantõ«r
and, if deemed necessary, subsequently taking coordinative

actions. Our approach therefore considers developers as an
integral part of the solution. Palantõ«r intentionally prods
developers into a behavior which, rather than continuing to
code and ignoring a conflict, involves them taking proactive
steps to assess and, if necessary, resolve an emerging
conflict of which they are notified. This might involve
telephoning or using IM to contact the other developer,
walking over to discuss and redistribute the respective
tasks, making a unilateral decision to hold off on oneÕs
changes until the other developer has checked in theirs,
using the functionality of the SCM system to examine the
changes in the other workspace [24], and other courses of
action. For such actions to be taken, a developer has to
invest some extra effort in monitoring and interpreting the
awareness information that Palantõ«r provides. As we will
show in Section 6, this extra effort is relatively minor.

Palantõ«r operates by monitoring ongoing changes taking
place in personal workspaces and continuously sharing
information about those changes with developers to whom
it is relevant. By default, this information communicates
which other developers are modifying which artifacts, and
by how much. As such, Palantõ«r provides an automated and
enhanced version of soft locks [38]: A developer can engage
in parallel changes to the same artifact, but does so
consciously, at all times knowing the amount of change
that an artifact has undergone in another workspace. This
amount of change is a critical piece of information. If it is
small, a developer may engage in a conflict without even
contacting the other developer. If it is larger, they may well
want to first contact the other developer or wait to make
further changes.

Palantõ«r is bidirectional. When a conflict arises, both
developers are informed of each otherÕs changes. While one
may choose to ignore the warnings, the other developer may
consider the conflict too important to ignore and engage
with the first developer anyway, change their course of
action altogether by temporarily suspending the current
task, or use any of the other means described in Section 6.

The above describes how Palantõ«r supports direct
conflicts. In the case of indirect conflicts, an additional step
is required. Specifically, Palantõ«r performs a cross-work-
space analysis of the impact of changes in a class signature
on the use of that class: A change to a class signature (i.e., a
change to a classÕ public variables and methods) in one
workspace is compared to changes in the use of that class in
other workspaces. To perform this analysis, Palantõ«r broad-
casts a ÒdiffÓ detailing the changes to a class signature
whenever this signature is modified. The other workspaces
interpret this diff and analyze whether its contents leads to
an indirect conflict with any of the local changes. If so,
Palantõ«r informs all workspaces of this conflict.

It is a conscious choice to inform developers of ongoing
changes and not just of changes that are guaranteed to
conflict. First, it would be irritating to be under the
impression that no one is working on an artifact, open the
artifact, begin to make changes, and only then be informed
that someone has been working on this artifact for quite
some time and has, perhaps, made significant changes.
Second, knowing which artifacts are actively undergoing
change, and what other artifacts they indirectly impact
because of those changes, allows one to plan their tasks
around the ongoing changes, rather than engage in a task

SARMA ET AL.: PALANT!IR: EARLY DETECTION OF DEVELOPMENT CONFLICTS ARISING FROM PARALLEL CODE CHANGES 891

blindly and hope no conflicts will occur. Finally, as we shall
discuss in Section 6, we do not believe that the extra
information deters from the task at hand of programming.
The user interface of Palantõ«r is designed so developers
notice relevant information at relevant times, particularly
when they switch from artifact to artifact or task to task.
This enables a developer to work on their code undisturbed,
yet provides them with ample opportunity to absorb remote
changes when it is pertinent to do so.

Two additional design decisions govern the approach
underlying Palantõ«r. The first is that a developer is
continuously informed of ongoing changes (it broadcasts
relevant information every 5 seconds, or when a file is
(auto) saved), but leaves the decision as to whether or not a
conflict must be addressed to the developer. Not every
conflict needs to be addressed immediately upon detection.
Deciding when a conflict merits immediate attention, as
well as what specific actions may be needed, depends on
how the conflict develops over time and the criticality or
urgency of the parallel changes that cause the conflict.

The second decision is that a developer is informed of
conflicts at the level of entire artifacts. While information
detailing precisely where in the code an individual conflict
appears is important (and indeed can be obtained from
Palantõ«r), the more practical concern pertains to being able
to quickly assess in what ways oneÕs overall work interferes
with that of another developer because this determines
when a response is warranted. The more conflicts exist, the
more interference exists between workspaces, and it is less
likely that the respective changes can be easily integrated.
Since resolution strategies are also normally expressed in
terms of artifacts (i.e., checking out artifacts, reverting
changes to an artifact, merging two versions of an artifact),
Palantõ«r reports conflicts at the level of artifacts rather than
individual methods or lines of code.

Overall, our approach allows parallel work while
making it possible to detect and resolve conflicts before
all changes are complete and checked in. An interesting
outflow of this approach is that, until conflicting changes
are actually checked in, it is technically more appropriate to
label them as Òpotential conflicts.Ó It is possible that an
emerging conflict grows for some time, but all of a sudden
disappears because a developer who was just experiment-
ing decides to roll back their changes (Palantõ«r tracks such
rollbacks and modifies the awareness icons accordingly). By
the same token, a conflict does not always grow; it can
shrink when a developer removes some of the conflicting
code. One is therefore not guaranteed that a conflict
identified by Palantõ«r actually will result in a real conflict
in the future or that it will be at the level it is currently at.
Even so, it is a simple step to contact another developer to
learn of their intentions, thereby determining whether a
potential conflict should be treated as a real conflict to be
addressed immediately or as one to be ignored for now. In
the remainder of this paper, we will not make a distinction
between conflicts and potential conflicts, using the term
conflicts for reasons of simplicity.

5 IMPLEMENTATION

Palantõ«r is written entirely in Java and is currently available
as a plug-in for Eclipse and supports both Subversion [54]

and CVS [20]. It relies on: 1) Subclipse [53], an Eclipse plug-
in for the Subversion SCM system, or the built-in CVS plug-
in for Eclipse, from which Palantõ«r obtains relevant
information regarding SCM actions through event listeners,
2) Dependency Finder [51], an open source code analysis
tool that Palantõ«r uses to incrementally extract information
regarding differences in the dependency graph of the code
being developed, and 3) PostgreSQL [41], a generic
database in which Palantõ«r stores all of the events. Palantõ«r,
its source, and its documentation are all freely available
from its website: http://tps.ics.uci.edu/svn/projects/
palantir/trunk/.

In this section, we discuss the overall Palantõ«r architec-
ture, briefly describing each of its components. An in-depth
description of each component can be found in [44].

5.1 Palantı́r Architecture

The Palantõ«r architecture (see Fig. 1) consists of the
following components: The Workspace Wrapper, specific
per SCM system and development editor, monitors SCM
and editor related activities; the Internal State stores a local
cache of events which are used to calculate potential
conflicts and their severity; the Metric Analyzer performs
cross-workspace conflict analysis to identify indirect con-
flicts and also calculates the severity of direct conflicts; the
Extractor component is responsible for filtering and
formatting the events from the Internal State cache; and
the Visualization component presents notifications about
conflicts and their information through an integration with
the IDE. Finally, a central server, the Palantõ«r Server, keeps a
log of all events from events from all workspaces for
persistent storage and to support bootstrapping new or
returning clients. An in-depth discussion of each of these
components and how our choices were shaped as our
project evolved can be found here [44].

5.2 Events

At the heart of Palantõ«r are the events that describe the
ongoing activities in each workspace. Of importance in the
design of these events is the need for Palantõ«r to be
portable across different SCM systems and not assume that
all of those systems follow the same SCM policy [1]. The
key insight is that, instead of capturing operations such as
check-in, check-out, or synchronize, events represent
particular states in which an artifact may exist in a
workspace. Given a specific set of operations for a specific

892 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

Fig. 1. Palantõ«r architecture.

SCM system then, the custom Workspace Wrapper for that
SCM system is responsible for mapping the results of its
SCM systemÕs specific operations onto the states repre-
sented by the general events of Palantõ«r.

The most common events are provided in Table 1, along
with their interpretations. Additional events exist to deal
with more esoteric cases, such as renaming or deleting
artifacts. These, as well as a detailed description of how
events are implemented and how artifacts are identified
across workspaces, are discussed elsewhere [45].

Every artifact will go through one of two basic sequences
of events. Artifacts that must be present in a workspace for
ancillary purposes, such as compilation or just a quick
examination of its code by a developer, trigger the simple
sequence of a pair of Populated and Unpopulated events to
signify their presence in, and eventual absence from, the
workspace a developer uses. Artifacts that are modified
trigger the following sequence:

Populated !ChangesInProgress!MetricsChangedj Metrics-

Changed Impacted"#ChangesCommitted"#UnPopulated:

The sequence of ChangesInProgress and ChangesCom-
mitted, which may occur multiple times within the over-
arching Populated, Unpopulated pair, provides the skeleton
for the two key events of Palantõ«r: MetricsChanged, which
indicates the magnitude of changes to an artifact, and
Impacted, which indicates whether the changes lead to an
indirect conflict. Because these events are sent out con-
tinuously, they enable the monitoring of ongoing changes
and conflicts by developers.

The Metric Analyzer generates one or more Metrics-
Changed events. After an artifact has entered a state of
ChangesInProgress, every incremental change made by a
developer leads to a new MetricsChanged event being
emitted. This event always includes a measure of severity
(calculated as the percentage of code that has changed in
the artifact as compared to the version that was initially
placed in the workspace). This measure of severity is
displayed to developers so they can determine the
magnitude of the change and decide whether to defer
resolution or address the conflict immediately.

A MetricsChanged event also includes a ÒdiffÓ when a
code change involves modifications to a class signature.
This ÒdiffÓ is used internally by Palantõ«r to determine
whether an indirect conflict is present. It is analyzed upon

receipt by a particular workspace with respect to its local
dependency graph that summarizes changes in usage of
classes within that workspace. If an indirect conflict is
detected, it is reported by emitting an Impacted event to
indicate that the remote change interferes with a local
change. The Impacted event informs other workspaces of
both the artifact that caused the indirect conflict and the
artifact that is impacted, along with information about the
signature changes causing the conflict.

Receipt of a ÒdiffÓ is not the only trigger for analysis.
Changes in the local dependency graph that involve
changes in the use of classes whose signatures have
undergone change also trigger an analysis for the potential
of an indirect conflict. If such a conflict has been introduced,
an Impacted event is once again emitted.

5.3 Workspace Wrapper

Workspaces and their access mechanisms differ per SCM
system. While most of the architecture of Palantõ«r can be
insulated from that fact because it is driven by the generic
events defined in the previous section, the Workspace
Wrapper is necessarily specific to the SCM system for which
it must translate SCM actions and their outcomes into
Palantõ«r events. By the same token, the Workspace Wrapper
is specific to the editor from which it must receive events
regarding editing actions that have not yet been committed
to the SCM system. We chose to use Subversion [54] and CVS
[20] as the SCM system, and Eclipse [19] as the editor. To
access information from Subversion, we use Subclipse [53],
an Eclipse plug-in that allows us to interface with Subversion
in a convenient and ÒEclipse-likeÓ manner through listeners
that intercept Subversion commands invoked directly from
the Eclipse interface. Similarly, we use the CVS plug-in that is
included in the standard Eclipse distribution to track CVS
commands. We note that other editors and other SCM
systems have features similar to the ones upon which we
relied in implementing the functionality of Palantõ «r. In
particular, we note that most SCM systems provide Eclipse
plug-ins, which new workspace wrappers for these SCM
systems could leverage.

5.4 Internal State
The Internal State maintains a summary of: 1) the changes
being made in remote workspaces, and 2) the changes
being made in the local workspace. It uses two sources of

SARMA ET AL.: PALANT!IR: EARLY DETECTION OF DEVELOPMENT CONFLICTS ARISING FROM PARALLEL CODE CHANGES 893

TABLE 1
List of Palantõ«r Events Describing Workspace Activity and Changes

information. First, it queries the Event Database to always
maintain an up-to-date view of the activities in other
workspaces. This query only requests relevant information,
that is, events that pertain to the artifacts that are present in
the local workspace. Furthermore, the query is incremental,
only requesting new events since the last query. The
second source of information is the Workspace Wrapper,
which transmits any events emerging from the local
workspace. All of the events are combined in a single
cache, which is optimized for use by the Extractor and
Metric Analyzer components.

5.5 Metric Analyzer

Palantõ«r calculates two measures, severity and impact, for
two kinds of artifactsÑelementary artifacts (i.e., files) and
compound artifacts (i.e., directories). For elementary arti-
facts, the Workspace Wrapper performs the calculation of
severity as it already has all of the necessary information
(the ÒdiffÓ) at hand in performing its other tasks. All other
calculations are performed by the Metric Analyzer based
upon the information in the cache maintained by the
Internal State.

The severity measure is calculated based on the
percentage of change present in an artifact. For individual
files, the severity is calculated as the total number of lines
of noncomment code changed divided by the total number
of lines of noncomment code. To provide an overall
picture of the state of the workspace, the individual
severities of the artifacts are communicated up the
directory tree. The directory severity is a compilation of
the severities of the child artifacts contained within a
directory, calculated as a weighted average over the
severities of the artifacts that have been changed. A
detailed discussion about this choice of how to calculate
compound severity can be found elsewhere [42].

Palantõ«r implements a binary measure for impact: An
artifact is either impacted by one or more artifacts or not.
Conversely, an artifact either causes impact on one or more
other artifacts or it does not. Palantõ«r performs this
determination incrementally with information of each
change transmitted to the Metric Analyzer. Particularly, it
analyzes each remote change in a class signature and each
local change in the use of classes to determine whether a
potential conflict arises (e.g., insertion of a call to a method
that in another workspace has a changed signature or
insertion of a call to a method that no longer exists in another
workspace). Impact for compound artifacts is calculated
similarly to compound severity: as a relative measure that
divides the number of impacted files by the total number of
files in the directory. Details on the implementation of
impact analysis are presented elsewhere [44].

While certainly more complicated and detailed analyses
could be implemented to calculate the impact of indirect
conflicts, we purposely chose a straightforward binary
measure. Higher levels of precision incur increased cost,
particularly when the algorithm used is not incremental, or
require significant amounts of information to be exchanged
among workspaces. This cost may be prohibitive, and it is
unclear whether the benefits of increased precision are
necessary. Finally, Palantõ«r currently works only on Java
projects because we use Dependency Finder for the under-
lying analysis. Implementing Palantõ«r to work on other

programming languages would require replacing Depen-
dency Finder with other third party tools that analyze other
programming languages (e.g., Understand 1 for C or C++).
Note that once the internal cache of dependencies and diffs
are generated via a given analysis tool, the rest of the
implementation for Palantõ«r remains the same.

5.6 Extractor

The Extractor component is responsible for filtering and
formatting events stored in the Internal State so as to match
user specified preferences or special formatting require-
ments of different visualization components. For instance, a
user may decide to further filter the information presented
to them by specifying that they be notified of only those
changes that have a severity measure of 50 percent or
higher. Alternatively, they may wish to only monitor a few
select workspaces, selecting only those developers who are
working on closely related tasks that they know have a high
chance of interfering. The Extractor component is respon-
sible for selecting the subset of events that matches a
developerÕs preferences.

Additionally, different visualizations require different
amounts and kinds of information (see [45] for all of the
visualizations with which we have experimented). For
example, it is possible in one of our visualizations to pairwise
compare workspaces, whereas in another visualization all
changes from all workspaces are aggregated. The Extractor
component is therefore tailored to each visualization and, in
addition to filtering user preferences, is responsible for
maintaining a visualizationÕs particular state.

5.7 Visualization
Throughout the development of Palantõ«r, we experimented
with a number of different visualizations to present
developers with information on the direct and indirect
conflicts that arise during the course of their work [45], [47].
Based on informal interviews with developers, managers,
and students, we found the Eclipse package explorer view
to be the most popular.

We designed the Eclipse package explorer view to
integrate awareness fluidly in the day-to-day practices
and work environment of software developers. Particularly,
it aims to balance between effectively informing developers
of conflicts, yet not continuously distracting them from their
day-to-day coding activities. Rather than invasively notify-
ing developers of conflicts, the Eclipse package explorer
view inserts small awareness cues in selected parts of the
standard Eclipse user interface. The idea is that the cues are
unobtrusive, but clearly noticeable at relevant times when,
for instance, developers switch from artifact to artifact or
overall task to overall task. Developers can concentrate on
coding, but are provided with the opportunity to gauge the
severity and impact of remote changes when they need to.

Fig. 2 presents the Eclipse package explorer view with an
illustrating example. Imagine a scenario where two devel-
opers, Ellen and Mike, are working on a hypothetical
software system for a bank, written in Java. Ellen is
responsible for updating an existing class, Payment.java,
which offers facilities for keeping track of the payments that
a person makes using his or her bank account. Mike has the

894 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

1. www.scitools.com/.

task of updating the class DebitCard.java, which uses
Payment.java to keep track of expenses made with a personÕs
debit card. Ellen, on reviewing the implementation of
Payment.java that she completed previously, decides to
move the initialization code to a new method called
initialize(). Ellen also decides on another change, one in
which the method addPayment (Amount amt) is modified to
take as additional input a date and time stamp. At present,
these are automatically set by Payment.java, but she realizes
that it is more accurate to let the date and time stamp be set
by the calling class. Her development environment warns
her that this method is being called from DebitCard.java, so
she checks it out and updates the calling code to reflect the
new method signature.

In the meantime (while Ellen was contemplating and
making her changes), Mike significantly refactors Debit-
Card.java, making some drastic changes to the set of
methods, particularly splitting some and merging others.

In this scenario, one direct conflict and one indirect
conflict have been introduced. The direct conflict involve
Ellen and Mike both making changes to DebitCard.java. The
indirect conflict is caused by EllenÕs changes to the
signature of the method addPayment() in Payment.java,
which is incompatible with how it is used in DebitCard.java
by Mike in his workspace. Fig. 2 shows the interface that
would be presented to Mike as he is completing his changes
to DebitCard.java.

Artifacts that exhibit a direct conflict are marked in the top
left with a blue triangle, the size of which grows and shrinks
with the evolving severity of the conflict. The color of the icon
darkens or lightens as well. Artifacts involved in an indirect
conflict, whether as the artifact that causes it or as an artifact
that is affected by it, are marked with a red triangle on the top
right. In textual annotations next to the name of an artifact,

Palantõ«r further explains the status of a change. In this case,
the annotation of [S:24] on Payment.java indicates that
24 percent of the file has been modified, $I %&on the same
file that its changes are causing at least one indirect conflict,
and $I '& on DebitCard.java indicates that it is affected by at
least one indirect conflict.

Additional information detailing the number of indirect
conflicts affecting an artifact can be found in an extra tab
that Palantõ«r provides at the bottom of the Eclipse
environment. In our example, Mike has selected (implicitly,
by opening and editing it) DebitCard.java, for which the
indirect conflict with Payment.java is annotated with a
yellow bomb icon. The color yellow indicates that the
indirect conflict still is in progress, residing in the work-
spaces only. Once Ellen checks in Payment.java, the color
will change to red to indicate that the indirect conflict has
become concrete. The exclamation annotation (!) indicates
that a new method (initialize()) has been added to a file
(Payment.java) being currently used by DebitCard.java.

6 EVALUATION

We conducted a two-tiered experiment that evaluated the
effectiveness and usability of Palantõ«r through a program-
ming and a nonprogramming task in order to minimize the
impact of individual differences arising because of varia-
tions in participant expertise.

We present and analyze our experiment results by
addressing three research questions:

1. Does workspace awareness help users in their ability to
identify and resolve a larger number of conflicts?

2. Does workspace awareness affect the time-to-completion
for tasks with conflicts?

SARMA ET AL.: PALANT!IR: EARLY DETECTION OF DEVELOPMENT CONFLICTS ARISING FROM PARALLEL CODE CHANGES 895

Fig. 2. Palantõ«r package explorer user interface.

3. How does workspace awareness affect development
behavior?

The first two questions are answered through quantitative
analyses, the results of which demonstrate the effectiveness
of Palantõ«r through statistical measures. The third question
is necessarily qualitative, helping us understand how
participants subtly changed their behavior in response to
the notifications provided by Palantõ«r.

In the rest of the section, we first present how our
experimental design minimizes individual differences. We
then present our experiment setup, followed by the
experiment results and analysis.

6.1 Eliminating Individual Differences

In the case of user evaluations of workspace awareness
tools such as Palantõ«r, individual differences among study
participants may dominate the results of the experiment by
eclipsing the effects that the tool is intended to provide. The
particular individual differences that concern our study are
a programmerÕs technical skills [35] and the anticipated
variance in when conflicts emerge because of differences in
the order and the pace at which a team of developers
perform its tasks. We explicitly designed our experiments to
minimize these two individual differences.

With respect to differences in a programmerÕs technical
skills, we used a two-stage approach. In the first stage, we
evaluated the user interface of Palantõ«r with nonprogram-
ming tasks, where variances stemming from individual
differences are minimal [35] and we could examine the
effects of Palantõ«r in a purer form. In the second stage, we
repeated the experiment with programming tasks to
determine the extent to which the same effects also arose
in the programming domain. In so doing, we established a
baseline with the first experiment that helped put the result
of the second experiment in context.

In the first experiment (which we hereafter refer to as the
Text Experiment), we used text-based assignments that
relied on a cognitively neutral text. We specifically used a
geology text, which we selected from a set of sample texts
that we tested on a sample population (see [46] for details
on how we performed this selection). The geology text
exhibited minimal bias with respect to its complexity (it was
neither too straightforward nor too complex to understand)
and with respect to the level of expressed interest by the
participants (they were neither too excited nor too agnostic
about the subject).

Additionally, the text chosen for the experiment mimics
some key properties of software, such as: 1) modularity, as
the text consists of several separate artifacts, and 2) depen-
dencies, as the text contains references that link text across
artifacts, which must be kept consistent. 2 As such, the tasks
provided to participants sufficiently resembled tasks re-
garding software changes that may directly or indirectly
conflict, and therefore can be used to evaluate Palantõ«rÕs
basic behavior in terms of how the information that it
presents supports individuals in coordinating parallel work.

The second experiment (which we hereafter refer to as the
Java Experiment) evaluated Palantõ«r in the programming

domain with an analogous study, but involved participants
making changes to a shared code base. This experiment
sought to confirm results from the Text Experiment while
taking into account the limitation that programmersÕ
individual differences become visible, especially in the time
it takes for them to complete tasks.

The second type of individual differences that we address
in the design of our study concerns the anticipated variances
in the occurrence of conflicts when a team of developers
works on some set of tasks. With each team member making
changes at their own pace, conflicts may or may not be
introduced in the experimental setting, and those that are
introduced will arise at different times for different teams.
Drawing any statistical conclusions from such data is
difficult, if not impossible. To mitigate this risk, we designed
our experiments to use confederates, research personnel
acting as virtual team members [7], [50]. This enabled us to
keep the nature and timing of conflicts that were introduced
constant. Participants were unaware of the tasks assigned to
the confederates, the order in which the confederates would
work on their tasks, or even that their teammates were
confederates. We verified these facts in a postexperiment
questionnaire. Participants thus believed they were in a
genuine collaborative development setting.

6.2 Experiment Setup

The goal of the experiments was to mimic team development
settings in which conflicts arise, allowing us to observe how
individuals note conflicts and take action to resolve them,
both with Palantõ«r (Experimental group) and without
Palantõ«r (Control group). The Control group used Eclipse
with a CVS plug-in, while the Experimental group had the
additional use of the Palantõ«r plugin. The individual nature
of coding allowed us to test one participant at a time, that is,
because collaborating individuals each operate in their own
workspace, we could simulate a team by observing one
participant as they interacted with the other, virtual team
members under our control. All interaction among the team
members took place via Instant Messaging. Each study
participant was given the task of making a given set of
changes, and was told that two other teammates (the
confederates) were making some changes to the same
artifacts as well. The confederates had the responsibility of
introducing a given number of conflicts at set times, so the
timing and nature of the various conflicts remained constant
across the participants. The confederates were blind to the
treatment condition of participants. Further, they were given
a strict script of responses to chat conversations to mitigate
any bias that a confederate may develop.

Each experiment took 90 minutes. Participants first
completed a set of tutorial tasks to ensure that they could
use the tools upon which the experiment relied. The Control
group was given tutorials on Eclipse and CVS, which covered
hands-on instructions for finding and resolving merge
conflicts along with other relevant SCM functionalities
available via Eclipse. The Experimental group was given
the same tutorials on Eclipse and CVS, but included
additional instructions on using Palantõ«r. The tutorials were
designed to ensure that participants were not biased to expect
conflicts in the experiment, and merely focused on explaining
the functionality of the various tools. Participants were then

896 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

2. The text, tasks, and all other materials used in our experiment are
available on the Palantõ«r website at http://www.cse.unl.edu/~asarma/
palantir_experiment.

given the set of tasks to be completed. At the end of a session,
participants were compensated $30 and were interviewed by
the experimenter, who also was present throughout the
experiment as an observer. Screen Capture software was
used to record all keyboard and mouse actions as well as the
screen content throughout the session.

The experiments were conducted at the University of
California, Irvine. All experiment participants were graduate
and undergraduate students in the Donald Bren School of
Information and Computer Sciences. We had 40 participants
total, 26 for the Text Experiment and 14 for the Java
Experiment. Participants volunteering for the experiment
first completed an online background survey asking about
their experience in programming (including industry experi-
ence), SCM tools, and Eclipse, as well as demographic
information. This information was used to make a stratified
random assignment of participants [50]. Based on the spread
of experience of the participant pool, participants in the Text
Experiment with more than one year of experience in both
SCM systems and Eclipse were assigned to Stratum 1 and the
others to Stratum 2. In the Java Experiment, individuals with
four or more years of experience in using SCM systems and
Eclipse were assigned to Stratum 1 and the rest to Stratum 2.
Following standard procedure in stratified random assign-
ment, participants from each stratum were randomly
selected for treatment groups such that each treatment group
had an equal number of participants from each stratum to
avoid biasing the experiments through participantsÕ past
experiences.

Experiment tasks. For the text-based experiment, the
participant was given the role of the editor for a textbook on
geology, as collaboratively written. Each chapter of the book
was treated as a separate text file in the project, and the
overall project consisted of 30 artifacts. Participants were
given a set of nine tasks, six of which had conflicts: three
direct and three indirect. Direct conflicts were introduced in
Tasks 2, 4, and 8 when, a short while after each participant
engaged in one of these tasks, a confederate would begin to
change one or more of the same artifacts. Indirect conflicts
were introduced in Tasks 3, 5, and 7, for example, by a
confederate deleting one chapter or changing a chapter
heading without changing the Table of Contents. The final
task in the experiment (Task 9) required the participant to
ensure the consistency of all chapters, particularly the Table
of Contents and the List of Figures. The remaining tasks,
Tasks 1 and 6, were benign and did not contain any conflicts.

For the Java Experiment, participants were provided
with a list of functionality to implement in an existing Java
project. The project contained 19 Java classes and approxi-
mately 500 lines of code. Participants were given a set of six
tasks, four of which had conflicts: two direct and two
indirect. Direct conflicts involving parallel changes to the
same Java artifact were introduced in Tasks 1 and 2. Indirect
conflicts involving deleted or modified methods were
introduced in Tasks 4 and 6. Tasks 3 and 5 were benign.
Participants were provided with a UML diagram to help
them understand the dependencies among the Java
artifacts. Unlike the Text Experiment, the Java Experiment
did not require participants in either group to integrate all
the code at the end of the experiment. To be realistic, this

would have required an extensive set of build and test
scripts, as well as the seeding of several indirect conflicts
not caught by those scripts. This would have seriously
complicated the experiment and introduced several other
potential design variables that we did not want to introduce
or could realistically control for.

We closely controlled when each conflict was introduced
(generally 10 to 15 seconds after a participant began or
completed a particular task). Participants were presented
with the set of tasks in the same order. Our goal was to
observe the effects of the tool on the way in which
participants handled both kinds of conflicts. Therefore, we
treated the data for direct and indirect conflicts separately.
We did not investigate interaction effects with respect to the
order in which conflicts were introduced. For instance,
whether conflicts that were introduced later in the experi-
ment were resolved faster is an interesting question, but a
topic for future study.

Dependent variables. The two primary variables of
interest in our experiment were the number of seeded
conflicts that participants: 1) identified and 2) resolved.
Results were grouped into four categories, namely, conflicts
that were:

1. Detected and correctly Resolved [D:R],
2. Not Detected until the participant was notified by

the SCM system of a merge problem, forcing them to
Resolve it [ND:R],

3. Detected by the participant, but Not Resolved
[D:NR], and

4. Not Detected and Not Resolved by the participant
[ND:NR] (refer to Table 2, which will be explored in
the next section).

Conflicts that were incorrectly resolved are treated here as
Detected, but Not Resolved [D:NR].

We also measured the time that participants took to
complete a task. Task completion times include the time
to implement a task and, when applicable, the time to
coordinate with team members and the time to resolve a
conflict.

Finally, we recorded the coordination actions that the
participants performed to resolve a conflict, including
invoking the SCM tool, chat conversations with confeder-
ates, and other miscellaneous actions.

6.3 Experiment Results—Question I

The primary goal of Palantõ«r is enabling developers to
detect emerging potential conflicts, thereby providing them
the opportunity to avoid the conflict altogether or mitigate
its effects. To test this hypothesis, we observed how
effective Palantõ«r was in enabling participants to identify
and resolve a larger number of conflicts than participants
who did not use Palantõ«r.

Results. Table 2 presents the conflict detection and
resolution observations for both the text and the Java
Experiment. Participants in the Experimental group (using
Palantõ«r) detected and resolved a larger number of conflicts
for both conflict types (direct and indirect) and did so in
both experiments. Further, in both experiments, the results
are found to be statistically significant (p < : 05 for the
! 2 test; FisherÕs exact test confirms the p values).

SARMA ET AL.: PALANT!IR: EARLY DETECTION OF DEVELOPMENT CONFLICTS ARISING FROM PARALLEL CODE CHANGES 897

Note that the results for direct conflicts for the Java
Experiment are categorized differently into Detected versus
Not Detected to address low expected cell counts in the
! 2 test. Of the 12 conflicts detected by the Experimental
group in this experiment, nine were detected early and
resolved and three were detected later, but not resolved
(these three were for a direct conflict that was introduced
after the participant had already completed the task). Of the
seven conflicts detected by the Control group, all seven
were detected during check in (which resulted in a merge
conflict) and resolved.

Text experiment. Participants in the Experimental group
detected and resolved a larger number of direct conflicts
(DC) while they were working on their tasks (row 1, Table 2).
These conflicts were resolved either immediately upon
noticing them or after the participant had finished editing.
We note that, in two cases, participants ignored the
notifications provided by the tool about a potential conflict.
They continued working until their changes were complete
and then attempted to check in their artifacts, subsequently
facing a merge conflict that they resolved.

The results for participants in the Control group are
significantly different. None of the participants detected a
single conflict beforehand. This is not surprising since the
SCM system shields them entirely from parallel work and
their only option to perhaps avoid conflicts would involve
them continuously polling the SCM repository or asking
their teammates repeatedly. Such a process is too cumber-
some, as evidenced by some participants who indeed had
an early practice of updating their workspaces before each
next task, but discontinued this practice over time.
Participants therefore discovered direct conflicts only upon
attempting to check in the changes and being notified by the
SCM system of a merge conflict.

In the case of indirect conflicts (IC), we again observe that
a majority of participants in the Experimental group
identified and resolved a larger number of conflicts (row
2, Table 2). The difference here is more important than for
direct conflicts since, in the case of direct conflicts, the
conflicts were at least detected due to the merge conflict

warnings from the SCM system. In the case of indirect
conflicts, however, participants in the Control group
identified only five indirect conflicts; the other 34 remained
undetected and remained in the final version stored in the
SCM repository. This failure occurred even after partici-
pants were explicitly encouraged to carefully examine the
text for inconsistencies as the last step in the experiment. By
comparison, participants in the Experimental group de-
tected and resolved 31 conflicts.

In both the Experimental and Control groups, several
participants identified conflicts early, but could not resolve
them. We attribute these situations to conditions in which
the participants updated their workspaces, but could not
correctly deduce the dependencies among the artifacts. For
instance, some participants did not detect that the confed-
erate had slightly modified the caption of a particular figure
in one of the chapters and that it affected the List of Figures
that they were supposed to update accordingly.

Java experiment. We found that the Experimental
group detected a larger number of direct conflicts early,
12 out of 14, differing significantly from the Control group,
which detected 7 out of 14 (row 3, Table 2). In the case of
indirect conflicts, we notice that all participants in the
Experimental group identif ied and resolved conflicts,
whereas none in the Control group even detected a single
conflict (row 4, Table 2). These results confirm the findings
of the Text Experiment and show how incompatible
changes once again entered the SCM repository unnoticed
without Palantõ«r.

Note that for direct conflicts, the observed outcomes for
detection and resolution rates resulted in low expected cell
counts in the ! 2 test. These low counts can be attributed to
two factors: 1) The experiment had a relatively small sample
size (14) for a ! 2 test, and 2) there was one conflict that was
seeded by the confederate after the participant had already
completed the task. With respect to this second point, in a
typical SCM environment, a developer who checks in first
generally is not the person who is responsible for conflict
resolution; instead, it is the responsibility of the next

898 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

TABLE 2
Conflict Detection and Resolution Data

The text experiment concerns a total of 39 direct and 39 indirect conflicts (13 participants in each group, three seeded conflicts of each type per
participant). The Java experiment concerns a total of 14 direct and 14 indirect conflicts (seven participants in each group, two seeded conflicts of
each type per participant).

developer who checks in their changes. Therefore, it was
not surprising that our participants did not always resolve
this conflict. For analysis purposes, the low expected cell
counts meant that, instead of using the standard four-
category breakdown, we had to group the results into
Detected versus Not Detected.

Summary. While the p-value for direct conflicts in the
Java Experiment is somewhat higher than in the other three
cases, which had p < 0:01, it is statistically significant
(p value < 0:05). Overall then, we can confirm that the
use of Palantõ«r leads to statistically better improvements in
the detection and resolution rates of conflicts in our
experimental settings.

6.4 Experiment Results—Question II

Monitoring the awareness cues provided by Palantõ«r and
taking the coordination step is an additional activity that
is bound to have some time overheads. Here, we wanted
to quantitatively determine how using a workspace
awareness solution affects the time-to-completion for tasks
with conflicts.

Results. Table 3 presents the average time-to-completion
of tasks as organized per kind of conflict (DC and IC) and per
experiment type (text and Java). We use this table to analyze
the overhead that is imposed by the use of Palantõ«r. As such,
the time-to-completion for each individual task includes the
time to detect, investigate, coordinate, and resolve a conflict,
as applicable. We do not penalize participants who missed
detecting or resolving a conflict, choosing to simply report
the time they took to complete the task.

In the Text Experiment, participants in the Experimental
group took less time for direct conflicts, but longer for
indirect conflicts (rows 1 and 2, Table 3). But, in the Java
Experiment, the Experimental group took more time for
both conflict types (rows 3 and 4, Table 3). All results are
statistically significant (Mann-Whitney test, p < : 05), with
the exception of direct conflicts in the Java Experiment,
where p (0:26.

Text experiment. We observe that participants in the
Experimental group took less time (on average, 3 minutes
fewer) to complete tasks with direct conflicts. At the same
time, we see a reverse trend for indirect conflicts (the
Experimental group took on average one-and-a-half min-
utes longer). This difference can be explained because, in

the case of direct conflicts, Control group participants were
warned by the SCM system of a merge conflict and forced to
resolve each such conflict, while no forcing factor existed
for indirect conflicts. Thi s forcing factor resulted in
participants in both the Control and Experimental group
resolving exactly the same number of direct conflicts.
Because participants in the Control group, however,
detected these conflicts later, they incurred extra time and
effort in facing a merge conflict and investigating it, leading
to an overall longer time-to-completion. Participants in the
Experimental Group, on the other hand, coordinated with
the confederate upon noticing an emerging conflict and
rescheduled tasks or already took into account anticipated
changes by the confederate in their own changes, thereby
saving time as compared to the future problem that those in
the Control group faced (see also Section 6.5).

As stated, in the case of indirect conflicts, no forcing factor
exists, as a result of which the Control group detected only a
few conflicts. In contrast, the Experimental group detected
and resolved a majority of the conflicts, causing them to
incur an extra coordination effort (primarily additional
communication through instant messaging) in investigating
conflicts and resolving them with their teammates (confed-
erates). As a result, the average time per task was higher. The
tradeoff, of course, is that the code delivered by the
Experimental group had most of the conflicts resolved,
which means that it would incur no further future effort to
resolve these conflicts. Our experimental setup was de-
signed to quantify this future effort by asking participants in
the Control group to examine and correct the text after all
change tasks were completed. Participants, however, could
rarely find any of the remaining inconsistencies. Therefore,
no usable data were obtained regarding the amounts of time
and effort that might have been saved.

Nonetheless, a critical observation arises: At the expense
of extra effort, the number of conflicts remaining in the text
that was delivered was significantly lower.

Java experiment. The data for the Java Experiment
showed a larger variance in average time-to-completion. In
the case of direct conflicts, the groups did not differ
significantly (p (0:26), even though it is interesting to note
that, unlike in the Text Experiment, the Experimental group
did take longer than the Control group on average. In
closely examining our data, we did not find any factors

SARMA ET AL.: PALANT!IR: EARLY DETECTION OF DEVELOPMENT CONFLICTS ARISING FROM PARALLEL CODE CHANGES 899

TABLE 3
Time-to-Completion of Tasks

other than a probable cause of individual differences in
programming skills explaining this difference. As both
treatment groups detected and resolved about the same
number of conflicts, this seems to be the likely explanation.

In the case of indirect conflicts, we note a pattern similar
to the Text Experiment, with statistical significance
(p < 0:05). In particular, the Experimental group took
notably more time than the Control group (row 4, Table 3)
as they became aware of and had to resolve more conflicts.
The extra effort in time, however, is again offset by the
improved quality of the code that is delivered, with the
number of (indirect) conflicts remaining in the code taken as
a proxy for quality.

For reasons explained previously, we did not attempt to
force the Control group to reexamine the code base at the
end of the Java Experiment in order to quantify the time
that may have been saved (as we attempted in the Text
Experiment). The research literature, however, shows that
conflict resolution at later stages is expensive and might
take significant amounts of time (sometimes on the order of
days) [11], [31]. Any indirect conflict saved from entering
the SCM repository thus constitutes one fewer and possibly
major future concern.

Summary. There is an overhead to using Palantõ«r, but our
results suggest that this overhead is strongly justified. For
direct conflicts, the Text Experiment indicates less time
spent per task, despite the overhead of monitoring and
interpreting Palantõ«r notifications. This is the clearest
evidence that resolving conflicts early is beneficial as
compared to resolution later. For indirect conflicts, more
time is spent, though the overhead is not unreasonable,
especially when one realizes that the result of the extra effort
is a less error-prone body of code in the SCM repository.

6.5 Experiment Results—Question III
A critical functionality of Palantõ«r is its ability to prompt
users to take steps to self-coordinate. Evaluating whether
Palantõ«r is successful in eliciting such coordination behavior
has to be qualitative in nature as users can take a wide
spectrum of possible actions. Here, we present the different
behaviors that we observed during the experiments
regarding development work.

Using concepts of grounded theory, we analyzed data
gathered from exit interviews, observation logs, video
transcripts, and chat transcripts between the subjects and
confederate(s) to identify behavior patterns emerging from
the data. Grounded theory is the systematic generation of
theory from data acquired by a rigorous, iterative qualita-
tive research method [52]. From our analysis, four broad
themes emerged:

1. conflict resolution,
2. conflict mitigation,
3. manifestation of awareness, and
4. awareness monitoring behavior.

Together, these help explain why some of the effects we saw
in the previous two sections occurred, as well as how theusers
actually coordinated their efforts and how their strategies
were positively influenced by Palantõ«r. In the following
sections, we discuss each of these behavior patterns.

6.5.1 Conflict Resolution

Participants in the treatment groups varied in their
conflict resolution strategies. We found that participants
in the Experimental group developed a team spirit and
interacted with their team members to resolve a conflict
when they were made aware of their team membersÕ
activities. In contrast, Control group members followed
an individualistic model, favoring their changes over those
of others. Further, the time at which conflict resolution was
performed (e.g., at the onset of a conflict, after full
completion of a task) was largely dependent on individual
preferences and varied across participants.

Human-in-the-loop resolution. We found that partici-
pants typically liked having a Òhuman in the loopÓ when
resolving a conflict. Even though, in both cases (Control and
Experimental groups), participants felt that their own
changes were of higher quality as compared to those of
the confederate, exposing a personal bias, Palantõ«r users felt
a higher camaraderie with their team members and
typically had chat conversations when resolving a conflict.
The appreciation of having a human to discuss to resolve a
conflict is best summarized by one of the participants using
Palantõ«r: ÒIt was extremely important to be able to chat with the
other workers because changes need a human touch.Ó Two
examples illustrate how users resolved conflicts with the
help of other users.

First, from the Java Experiment: Ò. . . so [file name] has
changed, there’s no more...[details of deleted methods]. I’m
assuming you want me to fix the codes with errors?Ó

Second, from the Text Experiment:
Subject: you added some timeline pictures to [timescale.txt].
Subject: the middle one should be [timeLine2.png], right?
Subject: also, will you be uploading these files to the

repository?
Confederate: I have actually replaced it with 1 picture.
Confederate: graphic [timeline.tif].
Subject: ok, please update [timescale.txt] to reflect that change.
Subject: also, make sure your caption is written with the

proper syntax.
Confederate: Sure I will do so.
Interviews confirmed how Palantõ«r helped spark human

conversation. One Palantõ«r user (Text Experiment) men-
tioned: ÒIn order to mitigate conflicts when performing changes I
looked at the blue arrows before editing the file, then proceeded to
IM the person modifying the file to check to see if I could obtain
access to the file.Ó Another, when asked specifically about
how Palantõ«r affected conflict resolution behavior, re-
sponded: ÒYep; [I] told him what I did, I asked him if I can do
some stuff and commit it and he said yes, and I think there was
code that was slightly same, I verified with him if I can overwrite
and he said yes.Ó

We also note that, when participants who were using
Palantõ«r found a problem, they were able to start a
conversation with their team with the exact details of the
problem immediately at hand. This is possible because
Palantõ«r affords both parties with information about the
ongoing conflict. Here, is an example of a typical chat
exchange from the Text Experiment:

Subject: why did you change the [name-year] pair to [Jean-
Andre Gucci, 1558] and [Horace de Saussure, 11779]?

900 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

Confederate: which file is this?
Subject: the introduction text.
Confederate: it was part of my task.
Subject: My task said to change the pairs to [Jean-Andre

Deluc,1778] and [Horace-Benedict de Saussure, 1779].
Confederate: oh Ok!
Confederate: I have completed my changes.
Confederate: You can overwrite them if you want.
Subject: ok, thanks.

Another example shows similarly rich context to immedi-
ately anchor the conversation:

Subject: I noticed you deleted the getter/setter for [Demo-
graphics] in [Customer]. I am implementing a change to
[CreditCardValidator] that needs those methods in order to work.

Confederate: Yes, I am making some changes to the [Customer]
class.

Confederate: I will let you know as soon as I complete.
Subject: will the getter/setter still be there when you are done

making your changes.
Confederate: For the [Demographics] field? No it will not be

there.
Confederate: I am replacing it with the “Age” field.
Confederate: along with a getter and a setter for that.
Subject: alright that works.
Subject: thanks.
In contrast, a majority of participants in the control

group kept their own changes without thinking to contact
the team member responsible for the conflict. For instance,
a participant comments aloud when resolving a conflict:
ÒSo...hmmm, someone already had done this! Oh!! I see someone
had done it, but hmmm I think they made a mistake...Ó [the
participant then goes ahead with the assumption that his
task is the right one and overwrites the file in the
repository]. Another participant, on finding a conflict,
would repeatedly ponder aloud Ò Is there any way I can just
overwrite the CM repository with my changes. I know my
changes are better.Ó

When questioned about conflict resolution strategies at
the exit interview, a non-Palantõ«r participant said: Òso, I just
used the commit thing, so when it said a problem, I synchronized
to see the differences and then I updated...I compared the
differences and if there was additional information then I
included it and if it was information that was, I guess worse
than what I was adding, I ignored it.Ó It was interesting to
note that during the experiment the participant had largely
kept all his changes.

We found that the majority of participants in the control
group did not feel the need to communicate with their team
members. When asked about this in the exit interview, a
participant responds: ÒYea...that [confederate’s parallel actions]
would make conflict, if I don’t know what they are doing or what
they are supposed to be doing. If I knew what they were doing then
I could see if their changes were applicable or not.Ó Another
subject responds: Òumm...they [changes] were pretty obvious
things—[I] didn’t need any help.Ó

Timing. We found that the resolution behavior of
participants regarding when they resolved a conflict can
be categorized into two groups: 1) participants who took
immediate action and 2) participants who noticed the
conflict when it appeared, sometimes even investigated the

conflict further, but only resolved the conflict after they had
completed their own task. 3

For example, one subject was highly cognizant of the
conflict icons appearing and made sure that she resolved
the conflict then and there. As soon as she started working
on a file, she would check to see whether the file had a
conflict. When she found that it did, she updated the file
with the contents from the repository and then proceeded to
check the Òimpact viewÓ to find out more information about
the conflict.

Compare this behavior with that of another subject, who
skipped all tasks that involved files with conflicts. In fact, he
skipped four tasks in succession (Tasks 2, 3, 4, and 5, each of
which included a direct or indirect conflict). He even
stopped working and skipped checking in the files for
Task 3 when a conflict arose while he was working on the
file. After finishing all nonconflicting tasks, he finally went
back to the tasks involving conflicts. When asked about this
behavior, he commented: ÒI skipped the task, when I saw that
there were changes on the file that I was working on. Later on I
realized that it was always going to be the case and that I should
complete my task so I went back.Ó

We also noted that participants were interested in
ensuring resolution of all problems. In fact, even when
they noticed a conflict with a task they had already finished
and checked in, they would inform their team member
(who apparently had forgotten to check out the latest
version before making their changes) about the problem.
Here, is a chat excerpt where the participant warns their
team member about the conflict that they will have to
resolve: Ò...ok, be warned that you are going to break [artifact
name] when you check it in...Ó

6.5.2 Conflict Avoidance

One of the key user characteristics to emerge was that,
while Palantõ«r helped users in dealing with conflicts, users
still attempted to avoid them when possible. The previous
section has an example (the participant who skipped all
tasks with conflicts), but this behavior is worth discussing
in more detail. Two representative comments are:

“The hardest part of the tool was merging two documents
together. Just adding text and bizarre syntax symbolizing changes
made it extremely complicated to make it [understand] what the
two documents should look like together. When I was making
changes to a document that had already been changed and
committed, the hardest part was merging my changes with the
new version.”

Ò...well I don’t know if people like that [conflict resolution], but
I didn’t. It made me happy when the tasks that I did didn’t include
anyone else’s; anyone else has not trampled on it yet so didn’t
have to worry about that.”

This behavior mirrors current anecdotal complaints on
merge conflicts and observations on how developers create
intricate informal practices (e.g., partial commits [15], rush
to complete changes first [24], informal locks on artifacts
[30]) to avoid performing conflict resolution. We found that

SARMA ET AL.: PALANT!IR: EARLY DETECTION OF DEVELOPMENT CONFLICTS ARISING FROM PARALLEL CODE CHANGES 901

3. Note that this behavior was observed only for experimental group
participants. Participants in the control group found conflicts only during a
check-in or at the end of the experiment.

being armed with awareness of ongoing activities actually
helped developers fine-tune these informal practices.

Conflict mitigation strategies. The different coordina-
tion actions that participants took to avoid or at least
mitigate the impact of conflicts on detecting a conflict can be
grouped into five classes:

1. partial commits (checking-in their artifacts even
when their task was still unfinished),

2. rush to complete their changes so they can check-in
first,

3. use placeholders,
4. skip their current task, and
5. chat to informally coordinate their tasks (e.g., by

informally locking an artifact or determining the
future tasks of their team members).

Partial commits: We found a few instances of this strategy
being employed when a task required edits to a set of files
or a set of edits to a particular file and a conflict would
arise in that task. In such a situation, the files or changes
that were already completed were checked-in before the
rest of the task was completed, For instance, one
participant was extremely cautious and averse to conflict
resolution. The first time a conflict arose the subject
ignored it and faced a merge conflict. After that she made
sure to check for any conflict icons before starting a task.
She also committed every small unit of change that she
made. For example, when her task (Task 3) involved two
files and sets of instructions for each of these files, she
made a total of five commits during the task (in a time
period of around 14 minutes). Several other participants
exhibited similar behavior, breaking up their tasks to
preventively check-in partial work.

Rush to commit first: We found scattered instances of
participants rushing to commit their changes first to avoid
facing a merge conflict. For instance, a participant responds
on his conflict resolution strategy: Òha! There was this one
time, when I purposely committed right away, so wanna make
sure that I wasn’t the one to resolve the conflict.Ó However, this
strategy did not work in our experiment setting because a
majority of the conflicts introduced by the confederate were
scripted and instantaneous, so there was not enough time
within which a subject could notice the conflict, understand
its significance, and rush to quickly commit their changes.
Subjects would try it the first time and then quickly learn
that this strategy was infeasible in the given setting. For
example, upon spotting a conflict, a participant exclaims:
ÒYo, oh no!!! What are you doing this [confederate name]. I am
going to commit first. I don’t want to resolve.... I know what it
means, but just don’t like dealing with it, hmm lets see [he tries to
commit, but gets a merge conflict].Ó

Use placeholders: Subjects who identified an indirect
conflict sometimes would adjust their own code to already
accommodate the change in the other workspace. While
their current code therefore would not compile, the final
merged version would. Below are observations and chat
excerpts of two participants (one from each experiment
setup) following this strategy. In the first case, a
participant in the Text Experiment notices a conflict icon
on one of her files. She then tries to synchronize her work
with the repository, but finds that the changes are still

work-in-progress. She starts a chat conversation with the
confederate to further investigate the conflict.

Subject: What changes are you making to [history.txt].
Confederate: I am making a few to the name [William Smith].
Confederate: I am just about to commit my changes.
Subject: Ok thanks.
Confederate: I have committed the file.
Subject: What are you changing the name to?
Confederate: [William Theodore Smith].
Subject: ok thanks.
She then uses the anticipated change to the name

(William Theodore Smith) in the text that she is modifying
and continues with her task. Similarly, a participant in the
Java Experiment chats with the confederate (chat not shown
here) and then decides to already use the variable ÒageÓ in
her changes, even though it does not exist yet. When
finished with her changes, she does not commit the task and
moves on to the next task. After completing this next task
she checks back with the confederate to find out whether he
had committed the changes so she can finish her previous
task and commit it.

Skip their current task: We found numerous instances of
this strategyÑsubjects skipping tasks that would involve
files already being edited by others or already being marked
as being indirectly impacted by an ongoing change. For
example, on noticing an indirect conflict warning, one of the
participants made the decision to skip their next task. She
commented aloud: ÒI’m going to be affected by [file name], so
I’ll skip the task and do something else.Ó When questioned at
the end of the experiment about her decision the participant
replied: ÒRight, I skipped that task. And then I sent him
[confederate] a message asking whether he is going to add the
method, and then he said he will, so I decide to wait for him.Ó

One interesting outcome of skipping a task was that
sometimes it avoided duplicate work since one of the tasks
for the participants was a duplicate of a confederateÕs task.
If the participant was cog nizant of the conflict and
investigated it before they started their task, then it was
possible to not only avoid the conflict, but also avoid having
to implement the task. A user comments: “...before I started
working on it, Palantı́r tells me that someone is changing it, so I
went and checked, saw that everything is there, so cool, task
completed and no conflicts.Ó

Chat to informally coordinate: We already have discussed
how participants liked having a human in the loop during
conflict resolution. They also chatted with their teammates
to proactively avoid conflicts altogether, as evidenced by
these two excerpts.

Subject: dood? Are you working on [Address.java]?
Subject: I mean, is it pretty stable now?
Confederate: i made some changes.
Confederate: and I’ve committed them.
Confederate: its stable.
Subject: cool, thanks!

Another participant checks on another artifact of interest:
Subject: hey I am subject 1.
Subject: hey, i will change [creditcard validator java].
Subject: will you change it?
Confederate: Let me check......
Subject: ok.

902 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

Confederate: Hmm.... No I do not plan to touch that file right
now

Subject: ok, please do not change it until i will finish, i will let
you know when i will finish

Confederate: ok.
We note that participants coordinated their activities based
on their task at hand and an awareness of their teammatesÕ
changes. Chat messages were used to informally lock
artifacts that the subject would change in the near future.

Implicit communication. An undercurrent in the discus-
sion thus far is that of implicit communication. While a fair
amount of explicit communication takes place, Palantõ«r users
were able to understand ongoing activities through the
visual cues that the tool provides and self-coordinate their
actions. They did not always need to communicate as
Palantõ«r regularly provided them with the information they
needed. For example, a participant commented: ÒThere were
many times during the experiment that someone else opened a file
that I was editing, and the tool gave me notice of this that I probably
wouldn’t have noticed otherwise, allowing me to update my version
before wasting my time inputting redundant information.Ó

Another observed: ÒThe parallel changes warnings were
very useful because it let me know who was working on what at
any given time. This allowed me to not only stay away from files
others are working on to reduce conflict, but also gave me a heads
up to contact other team members when we are working on the
same files. The affected files warnings were helpful because it let
me know if a change in one file will affect any other files. This is a
great help because with the complex relationships between files in
program code, a very small change can affect many files down the
line. This warning helped to fix those problems early on.Ó

Generally, participants would only use chat communica-
tions when the information provided by Palantõ «r was
insufficient for them to resolve a problem on their own.
When asked about this in the exit interview, a participant
responds: ÒYeah, I just updated myself when I could. When I
saw that there was impact (red icon) I would talk to him
[confederate]. Whenever I found that I could go ahead without
talking to him I would, but when I could not get the changes I
talked to him.Ó

Another participant mirrors this sentiment: Ò well, early on
I was actually asking him [confederate] multiple times when I
noticed there was a potential conflict if he had checked in his
changed yet. I realized later that that was unnecessary.Ó

6.5.3 Mutual Awareness

Maintaining awareness through (explicit) user behavior.
We noted that in a majority of cases Palantõ«r users wanted
to ensure that they were kept abreast of the activities of their
remote team members and likewise wanted to make sure
that their team members were aware of their actions. A
participant in the Text Experiment comments aloud:
ÒUsually I would like people to know that I’m changing the file,
make sure he knows I’m changing the file. Maybe he knows, but I
don’t know.Ó Another mentions that during the experiment
he wanted to ensure that his team members knew about all
of the changes he was making: ÒI wanted to keep updating, as I
wanted all the changes to be seen.Ó Many participants at the
beginning of the experiment wanted to know about the
frequency at which Palantõ«r notified users. One participant

noted aloud to himself: ÒDoes the system show other users only
when I make changes and save them? Or [silence follows]...Ó

In fact, we noticed that in some cases participants
communicated with their team members specifically to keep
them abreast of their changes even though they knew that
Palantõ«r would send notifications. A participant comments:
ÒSo, I am sending him a message and telling him what I am
doing—its kind of duplicated because its in the repository, but
never mind.Ó A chat excerpt from another participant shows a
similar intent: ÒHey, buddy. I’ll be hittin’ up [item.java]. But, it
looks like you’re on [shopping cart], so you’re fine. Just keep an eye
out for my triangle [notification icon].Ó

Participants used the information about the artifacts that
their teammatesÕ were currently editing along with the
knowledge of their own task to warn their teammates about
potential future problems that they may face. A user
responded: ÒUm, Palantı́r helped me sometimes identify when
someone was changing a file that I was supposed to change. It also
helped me talk to that person, and try to warn that person that I
would like to change the file. Palantı́r doesn’t tell him my
intention of changing the file, so I needed to do that through the
IM system, but it tells me that someone is doing it, so it helped me
prevent that kind of conflicts that I get when I check in a file.Ó

Another participant comments about a similar situation:
ÒI contacted team member. I saw that he was changing a file,
which was broken before, and I noticed [task reference], I assumed
that he was fixing the bug that I was fixing too. And I then alert
him not to do that because I had already fixed the bug. And he was
very grateful to me.Ó

6.5.4 Monitoring and Internalizing Awareness Cues

One of the interesting challenges to creating workspace
awareness is deciding when is the right time and the right
way to provide information about ongoing activities to
create appropriate context for usersÕ changes. In Palantõ«r we
made the decision to broadcast change and impact
information every time a user saved their changes. How-
ever, we found that users noticed the awareness icons
mainly only at specific points. Here, we discuss when
participants noticed the awareness cues and how they
reacted to the cues.

Monitoring awareness cues. The times when users
noticed the Palantõ«r icons can be classified into three
categories: 1) when participants started a new task, 2) when
participants were taking a short break from their task,
which usually occurred when there were multiple files
involved in a task, and 3) after they finished their task, but
before checking-in their changes.

Regarding the first case (before starting a task), a
participant notes: ÒIt’s useful to know what someone is working
on before they actually check it in, to try to resolve conflicts before
they happen, or at least be aware that they are going to happen.
Because I found that even before I started a task, I tended to try to
find if someone was currently working in the classes that would
affect what I was doing so that if it was possible, to update them
and avoid going the wrong direction, I could do it before I actually
began the task.Ó

Another participant commented: ÒWhen I was working, I
was concentrating on the editor and not looking at the side.
However, when I was starting a task and I saw the things [icons]
on the file, then I tried to understand what that was about. So

SARMA ET AL.: PALANT!IR: EARLY DETECTION OF DEVELOPMENT CONFLICTS ARISING FROM PARALLEL CODE CHANGES 903

before opening a file, I would like to see what arrows [awareness
icons] were there.Ó

Another typical point when participants noticed the
icons was when they were taking a break from focusing
their attention at the editor. This typically occurred when
subjects were switching between files for a task. For
example, we observed a participant whose task required
edits to two files. The participant made all the changes to
the first file and saved the changes. Before she started
working on the next file she noticed a conflict warning for
that file. She then used Palantõ«r to get a basic understanding
of the conflict and thereafter communicated with her
teammate to determine its full extent and her next steps.

The final point at which participants typically took notice
of the visual cues and became aware of the conflicts was
before commenting and committing their changes. One
participant comments on his strategy for completing his
tasks: “...my approach of first doing my task and then checking
what was happening allowed me to concentrate on putting my
energy into something that I was supposed to be doing than trying
to figure out what I should do next.Ó Another participant
responded: ÒI want to go ahead and finish a task first. And
compare after I have finished the task to see how my changes
clashes with others changes, so I didn’t want to take any
premature actions.Ó Note that in such situations the partici-
pants had to resolve the conflicts after their changes were
complete. Still, Palantõ«r provides a benefit compared to
standard SCM functionality, particularly because the other
changes with which they had a conflict could well still be in
progress, so the resolution is likely to still be easier.

Internalizing awareness cues. A common concern of
awareness tools is whether the awareness information will
distract the user from their main task. We noted that users
quickly became adept in filtering pertinent information.
Participants would quickly scan the package explorer view
for the cues and only pay attention to icons that appeared
for artifacts that were relevant to them. Furthermore, a
majority of participants did not take any action (even after
hovering over the icon and getting an extra information on
the conflict) to resolve a conflict unless the conflict involved
an artifact that they were currently working on. When
asked about this behavior, a participant responded: Òyeah, I
noticed there were other icons, but, they were like, on others
[artifacts], they did not bother me. I only look at stuff that were on
artifacts that I had open in my editor.Ó Another participant,
when asked why he did not take any action on noting a
potential conflict in an artifact, responds: ÒI noticed the
problems, but, you know, they were not affecting me, so I was like
fine, it doesn’t bother me, so I was working on my own files.Ó

We explicitly asked users whether the awareness icons
provided by Palantõ«r were distracting. Quite a few
participants complained that while they were focusing on
the tasks the cues were too subtle to grab their attention and
recommended Òpop upÓ notifications. A participant when
asked said: ÒThe small blue and red triangles were large and
colored enough for me to notice, but not enough so that they were
a huge distraction. They also didn’t take up noticeable space or
require the UI to expand.Ó He went on to explain that he
would have liked more explicit warnings about ongoing
changes to the file that he was currently editing: ÒIts just that

when I working, I am focusing on a particular file, I don’t pay
attention to what’s going on in the left...If its [icons] blinking,
then I will notice, but if it just pops up, then I don’t notice it.Ó

Another participant provides similar feedback: Ò Small
icons are really good because they don’t interfere too much, but I
still had to pay too much attention. A lot of attention to see the
changes, I had to keep looking. There weren’t anything that
caught my attention as soon as it changes. I was thinking about
when you are in IM, you see briefly, a good sign that something
happened, and then it fades. So I think something like that would
help me see things.Ó

It would be interesting for a future experiment to
determine whether such more explicit actions lead to the
same levels of effectiveness and user flexibility in the actual
actions they take to address the conflicts.

7 THREATS TO VALIDITY

7.1 Generalizing Results

Our experiment involved students as experiment partici-
pants working on a relatively small project, with a small
number of changes to be made in a limited time. Naturally,
we agree that the ideal approach to testing a software tool is
a thorough longitudinal study set in a real-life software
project. At the same time, we observe that it is important to
first evaluate the effectiveness of a tool in a controlled
environment. Such an environment provides the opportu-
nity, as we have shown, of drawing detailed conclusions
and controlling for individual differences.

It is interesting to observe that, because students were
used as participants, it is actually possible that our results
are conservative with respect to the real world. Software
developers who have experienced the difficulties of inte-
grating their changes with conflicting changes made by
others may well be more willing to invest time and effort
up-front in order to avoid these difficulties. Also, there is
bound to be a learning effect if Palantõ«r were to be installed
in the real world. In particular, we would expect developers
to learn to ignore certain conflicts and pay particular
attention to others. For instance, they may know that some
coworker always delivers code that integrates nicely, even
though in the beginning any conflicts that arise might seem
difficult. They may also know that another coworker tends
to engage in changes that are seemingly innocuous at the
beginning, but always end up being difficult to resolve in
the end. Coordination actions taken by developers in
response to activities of either coworker will differ, and
these differences possibly will streamline and make the use
of Palantõ«r more efficient.

We did not test the Palantõ«r interface in a large project
that comprised numerous artifacts, lots of parallel work,
and therefore a possible proliferation of awareness cues.
Although we used a small project, our experiment did
include benign tasks that produced extra awareness icons.
In our exit interviews, participants responded that once
they got used to them, the icons did not bother them.
Further, they paid attention to an icon only if it concerned
an artifact that they were editing or had previously edited.
This highlights that the awareness cues used by the tool
were unobtrusive, yet effective when they needed to be. We

904 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

also note that Palantõ«r is explicitly designed to reduce the
number of notifications presented to the user by grouping
them per artifact and providing additional filters on
artifacts or developers, as discussed in Section 5.6 [44].

7.2 Experimental Design

Our experiment, specifically the Java Experiment, did not
force participants to carry out integration testing after all
tasks were completed. As participants in the Control group
did not detect any indirect conflicts, they thus did not spend
any time in coordination attempts. As discussed, this
difference penalized the Experimental group in their time-
to-completion of tasks and precludes us from comparing
the time-to-resolution data across treatment groups. It thus
may be possible that the extra time and effort that the
developer is asked to invest because they use Palantõ«r is
actually more costly than the resolution of full-blown
conflicts at a later time. However, given that Palantir allows
resolution of conflicts earlier in a change process and
knowing from other research how high the cost is for
resolving changes later in the process [14], [23], we believe
that the cost concerns of using Palantir are minimized.

Another design choice that may represent a threat to
validity is the introduction of a conflict 10 to 15 seconds
after a participant began or completed a task. In real life,
conflicts occur at any time. We used specific times to
maintain consistency across the participants and because of
the limited time window of the experiment. Results would
be different if conflicts arise closer to completion of a task
since some of the benefit of early resolution would be lost.

A potential issue also exists with respect to conclusion
validity in drawing inferences about the influence of
awareness on programming tasks from the lessons learned
from the Text Experiment. Working with text can be
different from working with code, and participants may
have an affinity with code that influences their behavior
with respect to code conflicts as compared to when dealing
with conflicts in a text assignment. We structured the text
assignments as much as possible to resemble the activity of
coding, especially in terms of the conflicts we seeded and
the structure and relationships that the overarching text
exhibited. Our results show that the behaviors exhibited by
participants in the Java Experiment strongly resemble the
behaviors of the participants in the Text Experiment, with
the same kinds of statistical significance, building con-
fidence that we should be able to rely on the Text
Experiment to draw the conclusions we did regarding
how developers react to and use Palantõ«r.

Finally, all tasks were presented to participants in the
same order. Although the lack of counterbalancing leads to
learning effects, these effects are the same for all partici-
pants. The primary objective of our experiments was to
investigate the effect of the two between-participant factors
(treatment and strata) and not the effects of the within-
subject factor, namely, the sequence of the conflicts in terms
of their order and kind. We also observe that learning
effects will take place in real life as well, and in fact are a
desirable trait of awareness toolsÑusers must calibrate the
information that is provided in order to best leverage the
tools. The short duration of our experiment potentially
undervalues this factor.

8 DISCUSSION

In this section, we summarize the key lessons from the user
evaluation and their consequences for the design of future
awareness tools, as well as the design of empirical studies
on awareness and coordination.

Current interface designs for fostering awareness, in-
cluding Palantõ«r, are based on the premise that developers
should be continuously informed about parallel ongoing
changes so they are aware of changes as and when they
occur. However, observations from our experiment show
that participants typically noticed the awareness cues
provided by Palantõ«r only at specific points during a task
(before starting a task, when switching across files, taking a
short break, or after finishing their tasks). This implies that
continuous streaming of information or constantly updating
graphical displays may not be necessary. For instance, it
may be possible to both query for remote information and
present it only when a developer switches which artifact
they work on. As another example, it may be possible to
provide mini views that show summarized histories. Such
solutions might make workspace awareness systems com-
putationally less expensive and reduce the information
overload on users.

Nonetheless, no one solution should be assumed to be
universal since different users have different preferences in
how they would like to be informed. In our experiment, we
found participants who desired more explicit notifications
about critical events. These participants were usually
immersed in their coding activities, focusing solely on the
editor. Because of their immersion, they missed notifications
that were provided peripherally (e.g., icons in the package
explorer view). To cater to these types of users, more explicit
notification mechanisms need to be exploredÑnotifications
that immediately draw the userÕs attention to critical events.
The tradeoffs between immediately attracting the userÕs
attention versus distraction are critical when designing such
explicit notifications, and may perhaps even lead to
different kinds of notification mechanisms for different
kinds of events.

We found that, despite the availability of Palantõ«r, users
still employed informal conflict mitigation strategies, such
as partial commits or soft locksÑstrategies that have been
observed in teams without informal coordination support.
Our observations show that, by using Palantõ«r, users were
able to make these strategies more fine-grained and
purposeful. This suggests that formal and informal
coordination are both an integral aspect of development
and one cannot be totally separated from the other. The
critical point is that, with workspace awareness tools,
users have the flexibility to adopt the mix of strategies that
suits them the best, with the possibility of this mix even
varying per conflict and per team member with whom a
conflict is generated.

With respect to communication, users of Palantõ«r quickly
started rich conversations about a particular task or change.
This was possible because the same information about a
change was available to all team members and every team
member was aware of this fact. We believe that future
awareness tools could improve their support to further
enrich such conversations. For example, systems that provide

SARMA ET AL.: PALANT!IR: EARLY DETECTION OF DEVELOPMENT CONFLICTS ARISING FROM PARALLEL CODE CHANGES 905

comprehensive background and context information of
changes could enable users from different teams to quickly
create common ground and thereby help coordination.

A subtle social outcome of using Palantõ«r and the
awareness generated by it was that users felt more
connected with their team members and not as isolated.
Palantõ«r was therefore able to greatly enhance a sense of
shared presence with team members as opposed to when
teams only used SCM systems. In the latter case participants
became aware of othersÕ activities only during specific
synchronization (check-in/check-out) points. A direct out-
come of this phenomenon was that users were willing to
make extra efforts to work together more effectively (e.g.,
warning their colleague about a potential problem, being
more inclined to correctly resolve changes instead of
overwriting othersÕ changes in the repository). Further, this
willingness to make extra efforts implies that when users
are able to see the direct benefits of the effort they make,
they are more apt to take the few extra steps (e.g., not leave
commit comments empty, explicitly linking a commit with
its issue number) to provide the information necessary for
awareness technology to be most effective.

Finally, we note that implicit coordination was fostered
by the information provided by Palantõ«r. As discussed
previously, we found that subjects used awareness cues
about ongoing changes to implicitly coordinate their
activities (e.g., skipping a task, using a placeholder). Some
participants commented that they used chat conversations
only when they could not find information that they needed
from Palantõ«r. This has implications for a large body of
work involving empirical studies that use communication
as a proxy for studying coordination [8], [9], [33], [48], [55].
These studies make the assumption that more communica-
tion is a sign of good coordination. However, the presence
of implicit coordination demonstrates that this is not
necessarily a valid assumption, especially in situations
where users can acquire information through other sources
and take implicit coordination actions. In fact, the presence
of more communication may well be a sign of ineffective
coordination strategies being used. Researchers performing
empirical studies should take this into account.

9 RELATED WORK

CVS [5] provides what might be considered the oldest
configuration management awareness solution in existence.
Before changing an artifact, developers can announce their
intent of doing so by invoking the CVS EDIT command.
Any developer who declared their interest in this artifact
through the CVS WATCH command will then be notified,
usually via e-mail. Howeve r, this required manually
setting watches and the need to sort through potentially
numerous automated e-mailsÑa tedious process, which
developers avoided.

Since then, a number of other systems have implemented
improved versions of workspace awareness. BSCW [3]
provides a web-based, shared, centralized workspace that
integrates versioning facilities to allow it to be used as an SCM
system. Awareness of parallel work is provided statically,
through icons that decorate an artifactÕs webpage with
information regarding its current state, and dynamically,
through a Monitoring Applet that continuously informs
developers of what editing activities are presently taking

place. While this is one of first tools to successfully implement
the concept of awareness, it suffered from two drawbacks: a
cumbersome interface and an overload of information, since
BSCW presented many fine-grained details.

The War Room Command Console [39] used a centra-
lized, multimonitor display to show all artifacts in the
software repository, color coding and decorating those that
are concurrently being edited in multiple workspaces. This
system took a different approach to awareness as the
information was centralized and aimed at supporting group
meetings focusing on understanding the system as a whole
and project management.

Compared to Palantõ«r, neither CVS, nor BSCW or the
War Room Command Console provides information on the
severity of direct conflicts. None of them addresses indirect
conflicts either.

Elvin [22] and Celine [21] do provide awareness of direct
conflicts. Elvin uses a relatively simple ticker tape to inform
developers of any SCM activities and allows chat messages
to be initiated through its interface. Celine uses the concept
of hierarchical workspaces to enable information sharing to
scale to very large projects. Both tools provide a more
detailed development context to the developers and
integrate additional information on the nature and size of
(only) direct conflicts.

FASTDash [6] is another awareness system, focusing
particularly on agile teams. It uses different traffic meta-
phors (e.g., traffic signals, stop signs) to indicate direct
conflicts and presents this information to individuals in
their IDE as well as through a centralized display for teams.

Compared to Palantõ«r, Elvin, Celine, and FASTDash do
not address indirect conflicts.

In addition to Palantõ«r, TUKAN [49], CollabVS [17], and
WeCode [25] are three other systems that address indirect
conflicts. TUKAN uses a programÕs def-use graph to
identify changes that are semantically close and presents
this information through icons following a weather meta-
phor. If two developers modify closely related code
elements, a lightning symbol is used to warn them about
the potential conflict, with several other icons representing
various other situations (a sun is used to represent changes
far from each other, for instance). CollabVS works with
Visual Studio and uses call graphs to identify conflicting
instances, similarly to Palantõ«r. WeCode uses a shadow
repository to continuously merge ongoing compiled
changes from private workspaces to produce an executable
that it tests for integration problems. Of these three,
CollabVS is the only tool that has been evaluated, through
a small laboratory experiment. The work reported in this
paper, then, distinguishes itself from the CollabVS work
with an extensive and in-depth evaluation.

10 CONCLUSIONS AND FUTURE WORK

Current team development using SCM systems exhibits a
fundamental tension between the need for individual
developers to work in isolated workspaces and the need
for the overall team to maintain control over the integration
of the individual changes into the overall system. To better
address this tension, we have developed Palantõ«r, a work-
space awareness tool that deliberately breaks workspace

906 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

isolation by informing developers of ongoing parallel
changes being worked on by other developers. By con-
tinuously sharing who modifies which artifacts, the
magnitude of the changes, and their impact, Palantõ«r
complements current automated SCM policies with the
capability of early human intervention regarding any
potential conflicts that may emerge.

Our empirical evaluations conclusively show that the use
of Palantõ«r: 1) leads to early detection and resolution of a
larger number of conflicts as compared to when it is not used,
2) results in fewer conflicts that are unresolved in the code
base that is ultimately checked in, and 3) involves a reason-
able overhead in terms of the extra effort that must be
expended. We also present a detailed qualitative analysis that
sheds light on how users reacted to information provided by
Palantõ«r, the strategies they followed in coordinating their
work, and how awareness affected team dynamics.

Our future work involves a number of different direc-
tions. First, we recognize that our work in detecting indirect
conflicts merely scratches the surface. The next challenge is
to extend the range of indirect conflicts that can be
addressed including semantic conflicts.

Second, we wish to perform longitudinal studies of
Palantõ«r in use. Our current evaluations are limited in not
accounting for the learning effect that takes place when
using the tool for extended periods of time on a real system
that the developers are intimately familiar with. Factors
such as the intuition to differentiate significant conflicts
from more innocuous ones, the insight into which devel-
opers are more prone to insert problematic changes, and
overall team dynamics and emergent coordination strate-
gies can only be understood when Palantõ«r is used in a live
project over a longer period of time.

Finally, we are interested in leveraging our experience
with Palantõ«r to address collaboration between teams as well
as within teams, especially in geographically distributed
projects that may or may not involve outsourcing. In such
cases, changes generally do not become visible until official
release dates of the component(s) for which a team is
responsible. Furthermore, the nature of these kinds of
projects is such that the kinds of direct interactions
encouraged by Palantõ«r likely will need to be adjusted to
involve very different notification and resolution strategies.

ACKNOWLDEGMENTS

The authors thank Gerald Bortis, Peggy Lin, Zahra Noroozi,
Roger Ripley, Ryan Yasui for their contributions to the
Palantõ«r project. Effort partially funded by the US National
Science Foundation (NSF) under grant numbers CCR-
0093489, IIS-0205724, IIS-0534775, IIS-0414698, IIS-1111446,
and IIS-0808783. Effort also supported by an IBM Eclipse
Innovation grants and an IBM Technology Fellowship.

REFERENCES

[1] L.G. Alan, ÒThe Evolution of a Source Code Control System,Ó
SIGSOFT Software Eng. Notes, vol. 3, no. 5, pp. 122-125, 1978.

[2] Apache, Google Wave, https://wave.google.com/wave/, 2012.
[3] W. Appelt, ÒWWW Based Collaboration with the BSCW System,Ó

Proc. Conf. Current Trends in Theory and Informatics, pp. 66-78, 1999.
[4] U. Asklund and B. Magnusson, ÒSupport for Consistent Merge,Ó

Proc. 10th Int’l Workshop Software Configuration Management: New
Practices, New Challenges and New Boundaries, pp. 27-32, 2001.

[5] B. Berliner, ÒCVS II: Parallelizing Software Development,ÓProc.
USENIX Winter 1990 Technical Conf., pp. 341-352, 1990.

[6] J. Biehl et al., ÒFASTDash: A Visual Dashboard for Fostering
Awareness in Software Teams,ÓProc. SIGCHI Conf. Human Factors
in Computing Systems, pp. 1313-1322, 2007.

[7] E. Bradner and G. Mark, ÒWhy Distance Matters: Effects on
Cooperation, Persuasion and Deception,Ó Proc. ACM Conf.
Computer Supported Cooperative Work, pp. 226-235, 2002.

[8] M. Cataldo and J. Herbsleb, ÒCommunication Networks in
Geographically Distributed Software Development,Ó Proc. Conf.
Computer Supported Cooperative Work, pp. 579-588, 2008.

[9] M. Cataldo et al., ÒIdentification of Coordination Requirements:
Implications for the Design of Collaboration and Awareness
Tools,Ó Proc. ACM Conf. Computer Supported Cooperative Work,
pp. 353-362, 2006.

[10] R. Conradi and B. Westfechtel, ÒVersion Models for Software
Configuration Management,Ó ACM Computing Surveys, vol. 30,
no. 2, pp. 232-282, 1998.

[11] B. Curtis et al., ÒA Field Study of the Software Design Process for
Large Systems,ÓComm. ACM, vol. 31, no. 11, pp. 1268-1287, 1988.

[12] S. Dart, ÒConcepts in Configuration Management Systems,ÓProc.
Third Int’l Workshop Software Configuration Management, pp. 1-18,
1991.

[13] C.R.B. de Souza and D. Redmiles, ÒAn Empirical Study of
Software DevelopersÕ Management of Dependencies and
Changes,ÓProc. 30th Int’l Conf. Software Eng., pp. 241-250, 2008.

[14] C.R.B. de Souza et al., ÒHow a Good Software Practice Thwarts
Collaboration: The Multiple Roles of APIs in Software Develop-
ment,Ó Proc. Int’l Symp. Foundations of Software Eng., pp. 22-230,
2004.

[15] C.R.B. de Souza et al., ÒÔBreaking the CodeÕ, Moving between
Private and Public Work in Collaborative Software Development,Ó
Proc. Int’l Conf. Supporting Group Work, pp. 105-114, 2003.

[16] P. Dewan and R. Choudhary, ÒA High-Level and Flexible
Framework for Implementing Multi-User Interfaces,Ó ACM Trans.
Information Systems, vol. 10, no. 4, pp. 345-380, 1992.

[17] P. Dewan and R. Hegde, ÒSemi-Synchronous Conflict Detection
and Resolution in Asynchronous Software Development,Ó Proc.
Conf. European Computer Supported Cooperative Work, pp. 159-178,
2007.

[18] P. Dourish and V. Bellotti, ÒAwareness and Coordination in
Shared Workspaces,ÓProc. ACM Conf. Computer-Supported Co-
operative Work, pp. 107-114, 1992.

[19] Eclipse.org, Eclipse, http://www.eclipse.org/, 2012.
[20] Eclipse.org, CVS Support, http://www.eclipse.org/eclipse/

platform-cvs/, 2012.
[21] J. Estublier and S. Garcia, ÒProcess Model and Awareness in

SCM,ÓProc. 12th Int’l Workshop Software Configuration Management,
pp. 69-84, 2005.

[22] G. Fitzpatrick et al., ÒSupporting Public Availability and Acces-
sibility with Elvin: Experiences and Reflections,Ó Proc. ACM Conf.
Computer Supported Cooperative Work, pp. 447-474, 2002.

[23] R.E. Grinter, ÒRecomposition: Putting It All Back Together
Again,Ó Proc. ACM Conf. Computer Supported Cooperative Work,
pp. 393-402, 1998.

[24] R.E. Grinter, ÒSupporting Articulation Work Using Software
Configuration Management Systems,ÓProc. ACM Conf. Computer
Supported Cooperative Work, pp. 447-465, 1996.

[25] M.L. Guimara÷es and A. Rito-Silva, ÒTowards Real-Time Integra-
tion,Ó Proc. ICSE Workshop Cooperative and Human Aspects of
Software Eng., pp. 56-63, 2010.

[26] C. Gutwin and S. Greenberg, ÒWorkspace Awareness for Group-
ware,Ó Proc. Conf. Companion on Human Factors in Computing
Systems, pp. 208-209, 1996.

[27] C. Gutwin et al., ÒGroup Awareness in Distributed Software
Development,Ó Proc. ACM Conf. Computer Supported Cooperative
Work, pp. 72-81, 2004.

[28] C. Heath and P. Luff, ÒCollaboration and Control: Crisis Manage-
ment and Multimedia Technology in London Underground Line
Control Rooms,ÓComputer Supported Cooperative Work, vol. 1, no.
12, pp. 69-94, 1992.

[29] J. Herbsleb et al., ÒIntroducing Instant Messaging and Chat in the
Workplace,Ó Proc. SIGCHI Conf. Human Factors in Computing
Systems: Changing Our World, Changing Ourselves, pp. 171-178,
2002.

SARMA ET AL.: PALANT!IR: EARLY DETECTION OF DEVELOPMENT CONFLICTS ARISING FROM PARALLEL CODE CHANGES 907

[30] J.D. Herbsleb and R.E. Grinter, ÒArchitectures, Coordination, and
Distance: ConwayÕs Law and Beyond,ÓIEEE Software, vol. 16, no. 5,
pp. 63-70, Sept./Oct. 1999.

[31] J.D. Herbsleb et al., ÒDistance, Dependencies, and Delay in a
Global Collaboration,Ó Proc. ACM Conf. Computer Supported
Cooperative Work, pp. 319-328, 2000.

[32] S. Jonathan et al., ÒAsking and Answering Questions during a
Programming Change Task,Ó IEEE Trans. Software Eng., vol. 34,
no. 4, pp. 434-451, July/Aug. 2008.

[33] I. Kwan et al., ÒDoes Socio-Technical Congruence Have an Effect
on Software Build Success? A Study of Coordination in a Software
Project,ÓIEEE Trans. Software Eng., vol. 37, no. 3, pp. 307-324,
May/June 2011.

[34] A. Lee et al., ÒNYNEX Portholes: Initial User Reactions and
Redesign Implications,Ó Proc. ACM SIGGROUP Conf. Supporting
Group Work: The Integration Challenge, pp. 385-394, 1997.

[35] R.E. Mayer, ÒFrom Novice to Expert,Ó Handbook of Human-
Computer Interaction, M.G. Helander, et al., eds., second ed.,
pp. 781-795, Elsevier, 1988.

[36] L.J. McGuffin and G. Olson, ÒShrEdit: A Shared Electronic
Workspace,Ó Technical Report #45, Cognitive Science and Ma-
chine Intelligence Laboratory, Univ. of Michigan, 1992.

[37] T. Mens, ÒA State-of-the-Art Survey on Software Merging,ÓIEEE
Trans. Software Eng., vol. 28, no. 5, pp. 449-462, May 2002.

[38] P. Molli, ÒCOO-Transactions: Supporting Cooperative Work.,Ó
Proc. Seventh Int’l Workshop Software Configuration Management,
pp. 128-141, 1997.

[39] C. OÕReilly et al., ÒImproving Conflict Detection in Optimistic
Concurrency Control Models,Ó Proc. 11th Int’l Workshop Software
Configuration Management, pp. 191-205, 2003.

[40] I. Omoronyia et al., ÒA Review of Awareness in Distributed
Collaborative Software Engineering,Ó Software Practice and Experi-
ence, vol. 40, no. 12, pp. 1107-1133, 2010.

[41] PostgreSQL, http://www.postgresql.org/, 2012.
[42] R. Ripley, ÒImproving the Practical Usability of Palantõ«r,Ó

masterÕs, Informatics, Univ. of California, Irvine, 2004.
[43] M.J. Rochkind, ÒThe Source Code Control System,ÓIEEE Trans.

Software Eng., vol. 1, no. 4, pp. 364-370, Dec. 1975.
[44] A. Sarma et al., ÒTowards Supporting Awareness of Indirect

Conflicts across Software Configuration Management Work-
spaces,ÓProc. Conf. Automated Software Eng., pp. 94-103, 2007.

[45] A. Sarma et al., ÒPalantõ«r: Raising Awareness among Configura-
tion Management Workspaces,Ó Proc. Int’l Conf. Software Eng.,
pp. 444-454, 2003.

[46] A. Sarma et al., ÒEmpirical Evidence of the Benefits of Workspace
Awareness in Software Configuration Management,Ó Proc. ACM
SIGSOFT Int’l Symp. Foundations of Software Eng., pp. 113-123,
2008.

[47] A. Sarma and A. van der Hoek, ÒA Conflict Detected Earlier Is a
Conflict Resolved Easier,Ó Proc. Workshop Open Source Software
Eng., pp. 82-86, 2004.

[48] A. Schro¬ter, ÒPredicting Build Outcome with Developer Interac-
tion in Jazz,ÓProc. Int’l Conf. Software Eng. vol. 2, pp. 511-512, 2010.

[49] T. Schu¬mmer and J.M. Haake, ÒSupporting Distributed Software
Development by Modes of Collaboration,Ó Proc. Seventh European
Conf. Computer Supported Cooperative Work, pp. 79-98, 2001.

[50] W.R. Shadish et al.,Experimental and Quasi-Experimental Designs for
Generalized Causal Inference, first ed. Houghton Mifflin Company,
2001.

[51] Dependency Finder, http://depfind.sourceforge.net/, 2012.
[52] A.C. Strauss and J. Corbin,Basics of Qualitative Research: Techniques

and Procedures for Developing Grounded Theory, second ed. Sage
Publications, Inc., 1998.

[53] Subclipse: Eclipse Team Provider Plug-In Providing Support for
Subversion within the Eclipse IDE, http://subclipse.tigris.org/,
2012.

[54] Tigris.org, Subversion, http://subversion.tigris.org/, 2012.
[55] G. Valetto et al., ÒUsing Software Repositories to Investigate Socio-

Technical Congruence in Development Projects,ÓProc. Workshop
Mining Software Repositories, p. 27, 2007.

Anita Sarma received the PhD degree from the
Department of Informatics in the Donald Bren
School of Information and Computer Sciences at
the University of California, Irvine (2007). She is
an assistant professor in the Department of
Computer Science and Engineering at the Uni-
versity of Nebraska-Lincoln. Before this she was a
postdoctoral fellow at Carnegie Mellon University,
School of Computer Science. Her research
focuses on understanding and facilitating coordi-

nation in distributed work, which involves both software development as
well as other nonroutine intellectual team work. Her work lies at the
intersection of Software Engineering and Computer Supported Coopera-
tive Work (CSCW). She directs the Interaction Design and Coordination
Laboratory, its research focusing on understanding and advancing the
roles of innovative interaction designs, collaboration, and empirical
understanding in software development. She is a member of the IEEE.

David F. Redmiles received the BS degree in
mathematics and computer science in 1980 and
the MS degree in computer science in 1982 from
the American University, Washington, DC, and
the PhD degree in computer science from the
University of Colorado, Boulder, in 1992. From
1979 to 1987, he worked at the US National
Institute of Standards and Technology (formerly
the National Bureau of Standards), Gaithers-
burg, Maryland. From 1992 to 1994, he did

postdoctoral work at the University of Colorado, Boulder. Since 1994, he
has been at the University of California, Irvine, where he is currently
working as a professor in the Department of Informatics in the Donald
Bren School of Information and Computer Sciences. He formerly chaired
that department from 2004 to 2011. During this period there was great
expansion of the faculty, facilities, and degree programs. He has a
background in software engineering, human-computer interaction, and
computer-supported cooperative work and has more than 100 research
publications in these areas. For the past decade, he has been
researching collaborative software engineering. He is active in the
IEEE/ACM Conference on Automated Software Engineering, serving on
the steering committee and organizing the 2005 conference as general
chair. That research community designated him Fellow of Automated
Software Engineering in 2009 and in 2010 awarded him and his
coauthors the first Most Influential Paper Award for their 1996 paper on
software design environments. He has also organized a number of
panels and workshops held in conjunction with the ACM Conference on
Human Factors in Computing Systems, the ACM Conference on
Computer-Supported Cooperative Work, and the International Confer-
ence on Software Engineering. He is a member of the IEEE.

André van der Hoek received the joint BS and
MS degrees in business-oriented computer
science from the Erasmus University Rotterdam,
The Netherlands, and the PhD degree in com-
puter science from the University of Colorado at
Boulder. He is a professor in the Department of
Informatics of the Donald Bren School of In-
formation and Computer Sciences and a faculty
member of the Institute for Software Research,
both at the University of California, Irvine. He

directs the Software Design and Collaboration Laboratory, its research
focusing on understanding and advancing the roles of design, collabora-
tion, and education in software development. He has authored or
coauthored more than 80 peer-reviewed journal and conference
publications, and in 2006 was a recipient of an ACM SIGSOFT
Distinguished Paper Award. He is a coauthor of the 2005 Configuration
Management Impact Report as well as the 2007 Futures of Software
Engineering Report on Software Design and Architecture. He has served
on numerous international program committees, is a member of the
editorial board of the ACM Transactions on Software Engineering and
Methodology, and was program chair of the 2010 ACM SIGSOFT
International Symposium on the Foundations of Software Engineering. In
2009, he was a recipient of the Premier Award for Excellence in
Engineering Education Courseware. He is the principal designer of the
BS in Informatics at UC Irvine and was honored in 2005 as UC Irvine
Professor of the Year for his outstanding and innovative educational
contributions. He is a member of the IEEE.

908 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

